Syntheses of Pyridine Alkaloids and Related Compounds. Part II.¹ Syntheses of some 4-Alkyl- and 4-(1-Hydroxyalkyl)-piperidines

By K. B. Prasad, H. N. AI-Jallo,* and K. S. AI-Dulaimi, Department of Chemistry, Faculty of Science, University of Mosul, Mosul, Iraq

Syntheses are described of some 4-alkylpyridines, 4-alkylpiperidines, and 4-(1-hydroxyalkyl)piperidines (alkyl = Prⁿ, Buⁿ, n-pentyl, phenethyl, and 3-phenylpropyl).

THE previous paper¹ described a new method for the preparation of coniine and conhydrine in good yield. This method has been extended to the syntheses of related compounds with side chains at the 4-positions of the pyridine and piperidine nuclei. Similar compounds have been found to be of special interest in chemotherapy; the benzoates of N-alkyl derivatives of 2-(2- or compounds occurred in the range 1680-1690 cm.⁻¹. The u.v. spectra all show two maxima, at 216-221 and 260-272 mµ, attributed to K- and B-bands respectively.

The 2,4-dinitrophenylhydrazone hydrobromides and the corresponding bases are listed in Tables 2 and 3 respectively.

Application of the Wolff-Kishner reduction as sim-

TABLE 1	
4-Acylpyridines	;

)	r J	~							
			Yield		Ca	alc. (%)	$\mathbf{F}\mathbf{c}$	ound (?	%)	$\nu_{\text{max.}}$	λ _{max.}	
Acyl group	B.p.	$n_{\mathrm{D}}{}^{20}$	(%)	Formula	Ċ	H	N	C	н	N	(cm1)	(mµ)	ε _{max} .
Propionyl	140°/30 ª	1.5227	60.4	C ₈ H ₉ NO	71-1	6.7	10.4	71.2	6 ∙8	10.5	1680	$\begin{array}{c} 221 \\ 272 \end{array}$	$\begin{array}{c} 6600\\ 3270 \end{array}$
n-Butyryl	150/30	1.5163	57.5	$C_9H_{11}NO$	$72 \cdot 45$	7 ·4	9·4	72.6	7.1	9∙6	1682	222	6100
n-Valeryl	148/20	1.5102	50.9	$C_{10}H_{13}NO$	73.6	8 ∙0	8.6	73.8	7.8	8.4	1680	$\begin{array}{c} 272 \\ 221 \\ 070 \end{array}$	$2970 \\ 3400 \\ 2070$
Phenacetyl	178/10 ^b		35.4	C ₁₃ H ₁₁ NO	79 ·2	5.6	7.1	79.2	5.5	6.9	1690	270 219	2970 6100
3-Phenylpropionyl	218/20	1.5724	39·4	$\rm C_{14}H_{13}NO$	79 .6	$6 \cdot 2$	6.6	79 ·6	6.3	6.4	1690	$260 \\ 216 \\ 260$	$3350 \\ 7000 \\ 2100$
			ª Lit., :	212—214° (re	f. 7). • 1	M.p. 53	354°.					200	2100

3-hydroxypropyl)piperidines have been shown to possess local anaesthetic properties.²⁻⁴

4-Cyanopyridine⁵ on condensation with appropriate alkylmagnesium bromides gave the 4-acylpyridines listed in Table 1. The i.r. carbonyl absorptions of these

¹ Part 1, K. B. Prasad and S. C. Shaw, Chem. Ber., 1965, 98, 2822. ² W. H. Hunt and R. J. Fosbinder, Anaesthesiology, 1940, 1,

305. ³ C. W. Tullock and S. M. McElvain, J. Amer. Chem. Soc.,

1939, 61, 961.

plified by Lock⁶ gave good yields of 4-alkylpyridines (Table 4).

Reduction of the alkylpyridines with hydrogen over Adams catalyst in N-hydrochloric acid (uptake 3 mol.) gave the corresponding alkylpiperidines (Table 5). The

4 J. F. O. Leary, D. E. Leary, and I. H. Slater, Proc. Soc. Exp. Biol. Med., 1951, 76, 738. ⁵ E. Feeley and E. M. Beavers, J. Amer. Chem. Soc., 1959, 81,

4004.

⁶ G. Lock, Monatsh., 1954, 85, 802.

 TABLE 2

 2.4-Dinitrophenylhydrazone hydrobromides of 4-acylpyridines

	-	, ,		., ar o o o o			Ginob					
	М.р.		Calc. (%)					Found (%)				
Acyl group	(decomp.)	Formula	Ċ	н	Br	N	C	н	Br	N		
Propionyl	256° ª	$C_{14}H_{14}BrN_5O_4$	42.4	$3 \cdot 6$	20.2	17.7	$42 \cdot 2$	4.1	20.4	17.7		
n-Butyryl	252 ^b	$C_{15}H_{16}BrN_5O_4$	43.9	3.9	19.5	17.1	43.8	4 ·2	19.3	17.2		
n-Valeryl	250 b	$C_{16}H_{18}BrN_5O_4$	45.3	$4 \cdot 3$	18.8	16.5	$45 \cdot 4$	4.5	18.7	16.7		
Phenacetyl	255 b	$C_{19}H_{16}BrN_5O_4$	49 ·8	3.5	17.4	15.3	49.6	3.6	17.6	15.35		
3-Phenylpropionyl	262 ^b	$C_{20}H_{18}BrN_5O_4$	50.85	3.8	16.95	14.8	50.8	3.9	16.8	14.7		
	a 37.11.	- 1 / /1 1	\$ 77 11			1 1						

"Yellow cubes from methanol. 'Yellow cubes from benzene and light petroleum.

TABLE 3

2,4-Dinitrophenylhydrazones of 4-acylpyridines

	М.р.			Calc. (%)		Found (%)				
Acyl group	(from methanol)	Formula	C	H	N	c	н	N		
Propionyl	208°	$C_{14}H_{13}N_5O_4$	53.3	4.15	$22 \cdot 2$	53.3	$4 \cdot 2$	$22 \cdot 1$		
n-Butyryl	160	$C_{15}H_{15}N_5O_4$	54.7	4.6	21.3	54.5	4.6	21-1		
n-Valeryl	169	$C_{16}H_{17}N_5O_4$	56.0	5.0	20.4	55.95	5.1	20.2		
Phenacetyl	156	$C_{19}H_{15}N_5O_4$	60.5	4.0	18.6	60.3	$4 \cdot 2$	18.4		
3-Phenylpropionyl	238	$C_{20}H_{17}N_5O_4$	61.4	4.4	17.9	61.5	4.4	17.7		

		TABLE 4	:			
	4-	Alkylpyrid	ines			
Alkyl group	B.p.	$n_{\rm D}^{20}$	Yield (%)	λ_{\max} . (m μ)	emax.	Picrates M.p.
n-Propyl	116°/40 mm. «	1.4977	76 ·7	$\begin{array}{c} 214 \\ 257 \end{array}$	$\begin{array}{c} 1600 \\ 2230 \end{array}$	131° <i>1</i>
n-Butyl	100/20 %	1.4945	73.0	$\begin{array}{c} 213 \\ 256 \end{array}$	$\begin{array}{c} 2140 \\ 2360 \end{array}$	111 0
n-Pentyl	102/10 °	1.4902	74.7	$\begin{array}{c} 212 \\ 256 \end{array}$	$\begin{array}{c} 2540 \\ 1770 \end{array}$	96 h
Phenethyl	160/25 ª	1.5786	47.4	$\begin{array}{c} 214 \\ 252 \end{array}$	$\begin{array}{c} 1245 \\ 4120 \end{array}$	168
3-Phenylpropyl	152/20 °	1.5681	52	221 257 290sh	$\frac{3200}{3250}$	146

^a Lit., 184—186° (E. Koenigs and W. Jaeschke, Ber., 1921, **54**, 1351), 189°/776 mm. (J. F. Arens and J. P. Wibaut, Rec. Trav. chim., 1942, **61**, 59), 80°/20 mm., n_D^{20} 1.4966 (J. P. Wibaut and J. W. Hey, Rec. Trav. chim., 1953, **72**, 513), 172—172.5°/748 mm., n_D^{20} 1.4465 (W. Wawzonek, M. F. Nelson, and P. J. Thelen, J. Amer. Chem. Soc., 1952, **74**, 2894; ^b lit., 98°/20 mm., n_D^{20} /1.4937 (Wibaut and Hey in ref. a), 193—194°/745 mm., n_D^{20} 1.4472 (Wawzonek et al. in ref. a); ^c lit., 114°/20 mm., n_D^{20} 1.4908 (Wibaut and Hey in ref. a); ^a m.p. 68—69° [lit., 70—71° (F. W. Bergstron, T. R. Norton, and R. A. Seibert, J. Org. Chem., 1945, **10**, 452]; ^e lit., 150—152°/6 mm. (Bergstron et al. in ref. d); ^f yellow needles from methanol [lit., 131—131.6° (Arens and Wibaut in ref. a), 135° (Koenigs and Jaeschke in ref. a)]; ^g lit., 112° (M. Miocque, Bull. Soc. chim. France, 1960, 322); ^h lit., 104° (Wibaut and Hey in ref. a).

TABLE 5

4-Alkylpiperidines

			Yield			Calc. (%)		Found (%)			
Alkyl group	B.p.	n_D^{20}	(%)	Formula	Ċ	н	N	c	H	N	
n-Propyl ª	$62^{\circ}/2 \text{ mm}.$	1.4882	60	$C_{8}H_{17}N$	75.5	13.4	11.0	75.4	13.5	11.2	
n-Butyl ª	90/2	1.4718	63	C ₉ H ₁₉ N	76.5	13.55	9.9	76.4	13.7	10.1	
n-Pentyl	92/2	1.4747	71	$C_{10}H_{21}N$	77.3	13.6	9.0	77.2	13.5	9.3	
Phenethyl	180 */20 *	1.5139	54	$C_{13}H_{19}N$	82.5	10.1	7.4	82.35	10.2	7.5	
3-Phenylpropyl	155 */2	1.5415	77	$C_{14}H_{21}N$	82.7	10.4	6.9	82.6	10.3	7 ·0	

* Bath temp.

^a W. Wawzonek, M. F. Nelson, and P. J. Thelen, J. Amer. Chem. Soc., 1952, 74, 2894. ^b Lit., 200-210°/80 mm. (K. Friedlander Ber., 1905, 38, 2837).

TABLE	6
-------	---

N-Benzoyl derivatives of 4-alkylpiperidines

				C	Calc. (%)		Found (%)		
Alkyl group	B.p.*	M.p.	Formula	С	H	N	Ċ	Ĥ	N
n-Propyl	$180^{\circ}/20 \mathrm{mm}$.	109° †	C ₁₅ H ₂₁ NO	77.9	9.1	6.05	77.8	9.2	6.2
n-Butyl	185/20	101 †	$C_{16}H_{23}NO$	78.3	9.4	5.7	78.2	9.5	5.6
n-Pentyl	193/20	94 †	$C_{17}^{10}H_{25}^{10}NO$	78.7	9.7	5.4	78.5	9.8	5.3
Phenethyl	180/20	126 †	$C_{20}H_{23}NO$	81.9	7.9	4 ·8	81.7	7.9	4.6
3-Phenylpropyl	200/20	145 +	$C_{21}^{20}H_{25}^{20}NO$	82.0	$8 \cdot 2$	4.55	81.9	8.3	4.7

* Bath temp. † Light yellow liquid, white solid on cooling.

TABLE 7 4-(1-Hydroxyalkyl)piperidines

				Yield		Ca	lc. (%)		Foi	ind (%))	λ _{max} ,		$\nu_{\text{max.}}$
Alkyl group	B.p.	M.p.	$n_{\rm D}{}^{20}$	(%)	Formula	Ċ	H	N	Ċ	н	N	(mµ)	emax.	cm1)
n-Propyl	$54^{\circ}/2 \mathrm{mm}.$	111°	1.4609	66.2	$C_8H_{17}NO$	67.1	12.0	9.8	67.15	12.0	9.6	$\frac{225}{268}$	$\begin{array}{c} 323 \\ 143 \end{array}$	3270
n-Butyl	185/20 *	119	1.4654	60 ·5	$C_9H_{19}NO$	68 ·7	12.2	8·9	68 .6	$12 \cdot 1$	9∙0	$\begin{array}{c} 200\\222\\261\end{array}$	211 112	3270
n-Pentyl	114/2 *	124	1.4675	59 ·0	$\mathrm{C_{10}H_{21}NO}$	7 0·1	12.35	8 ∙2	70·3	12.2	8.3	$\frac{225}{226}$	$\frac{450}{242}$	3270
Phenethyl	180/20 *	124	1.5367	62.7	$\mathrm{C_{13}H_{19}NO}$	76.05	9.3	6.8	76.1	9.4	6.7	$\frac{220}{261}$	$\begin{array}{r} 1290 \\ 615 \end{array}$	3290
3-Phenylpropyl	190/20 *	131	1.5539	68 ·3	$\mathrm{C_{14}H_{21}NO}$	76.7	9.65	6·3	76.5	$9 \cdot 5$	6.2	$\frac{201}{219}$ 257	$\begin{array}{r} 2420 \\ 1500 \end{array}$	3290

* Bath temp.

 TABLE 8

 NO-Dibenzyl derivatives of 4-(l-hydroxyalkyl)piperidines

			•	(Calc. (%)		Found (%)		
Alkyl group	B.p.	M.p.	Formula	C	Ĥ	N	С	H	N
n-Propyl	110°/5 mm.	122°	$C_{22}H_{25}NO_3$	75.2	7.2	4 ·0	$75 \cdot 2$	7.2	4 ·0
n-Butyl	170/2	95	$C_{23}H_{27}NO_3$	75.6	7.4	3.8	75.7	7.3	3.9
n-Pentyl	220/20	85	$C_{24}H_{29}NO_3$	75.95	7.75	3.7	75.8	7.9	3.8
Phenethyl	130/4 *	115	$C_{27}^{27}H_{27}^{27}NO_{3},H_{2}O$	75.15	6.8	3.25	$75 \cdot 2$	6.75	$3 \cdot 3$
3-Phenylpropyl	200/2 *	144	$C_{28}H_{29}NO_3$	78.7	6.8	3.3	78.6	6.9	3.3
	,		* Bath ter	np.					

corresponding N-benzoyl derivatives (Table 6) were also prepared.

Hydrogenation of the 4-acylpyridines in N-hydrochloric acid in the presence of freshly reduced Adams catalysts (uptake *ca.* 4 mol.) caused reduction of both the carbonyl group and the pyridine nucleus (*cf.* ref. 1). The products lacked i.r. carbonyl absorption and showed a broad band between 3270 and 3290 cm.⁻¹ (NH and OH stretch). The u.v. spectra show two maxima of much lower intensity (219-225 and 257-268 mµ).

EXPERIMENTAL

Unless otherwise stated, light petroleum refers to the fraction b.p. $60-80^{\circ}$, u.v. spectra were measured with a Unicam SP 800 instrument for solutions in ethanol, and i.r. spectra were measured with a Unicam SP 200 instrument for solutions in chloroform. Microanalytical samples were analysed in West Germany at the Ruhr Max Planck Institute. Analytical samples were dried at room temperature in a vacuum desiccator.

4-Acylpyridines.—4-Propionylpyridine. 4-Cyanopyridine (26 g., 0.25 mole) in dry ether (75 ml.) was slowly added to a cooled and stirred solution of ethylmagnesium bromide in dry ether (100 ml.) [from magnesium (6.6 g.; 0.28 g. atom), ethyl bromide (30 g.; 0.28 atom)]. The mixture was refluxed for 4 hr., then cooled (ice-bath) and decomposed by dropwise addition of cold water (50 ml.) followed by 5Nhydrochloric acid (100 ml.). The aqueous layer was separated and the ethereal solution was extracted with 2N-hydrochloric acid (2×50 ml.). The combined aqueous extracts were heated (1 hr.) on a water-bath, cooled, basified (K_2CO_3) , and extracted with chloroform. Distillation of the dried (Na₂SO₄) extract gave 4-propionylpyridine ^{7,8} Other 4-acylpyridines (Table 1) were prepared by similar methods. The corresponding 2,4-dinitrophenylhydrazone hydrobromides are listed in Table 2. Basification (Na₂CO₃) of these salts followed by extraction with chloroform gave the free 2,4-dinitrophenylhydrazones (Table 3).

4-Alkylpyridines.— 4-(n-Propyl)pyridine. 4-Propionylpyridine (8 g.) and hydrazine hydrate (99.9%; 16 g.) were refluxed for 2 hr. The mixture was cooled, mixed with powdered potassium hydroxide (32 g.), and heated (120— 150°) until evolution of nitrogen ceased (2 hr.). It was cooled, diluted with water, and extracted with ether. Distillation of the dried (Na₂SO₄) extract gave the 4-(npropyl)pyridine as an oily liquid. Other 4-alkyl pyridines (Table 4) were prepared by similar methods. The corresponding picrates (crystallised from ethanol) are listed in Table 4.

4-Alkylpiperidines.—4-(n-Propyl)piperidine. 4-(n-Propyl)pyridine (2 g.) and Adams catalyst (150 mg.) in Nhydrochloric acid (50 ml.) were hydrogenated (uptake 1250 c.c., ca. 3 mol.) at 22°/745 mm. for 77 hr. The catalyst was filtered off and the filtrate was evaporated under reduced pressure. The residue was basified with 10% sodium hydroxide solution and extracted with chloroform. Distillation of the dried (Na₂SO₄) extract gave 4-(n-propyl)piperidine. Other 4-alkylpyridine (Table 5) were prepared by similar methods. The corresponding N-benzoyl derivatives are listed in Table 6.

4-(1-Hydroxyalkyl)piperidines.— 4-(1-Hydroxy-n-propyl)piperidine. 4-Propionylpyridine (3 g.) and Adams catalyst (150 mg.) in N-hydrochloric acid (50 ml.) were hydrogenated for 79 hr. (uptake 2230 c.c. at $22^{\circ}/752$ mm.). The catalyst was filtered off and the filtrate was evaporated under reduced pressure. The residue was basified with 10% sodium hydroxide and extracted with ether. Distillation of the dried (Na₂SO₄) extract gave 4-(1-hydroxy-n-propyl)piperidine. Other 4-(1-hydroxyalkyl)piperidines (Table 7) were prepared by similar methods. The NO-dibenzoyl derivatives are listed in Table 8.

We thank the President of the University for a research allowance (to K. B. P.).

[9/372 Received, March 4th, 1969]

- 7 A. Pinner, Ber., 1901, 34, 4234.
- ⁸ Chin-Chiun Chu and P. C. Teague, J. Org. Chem., 1958, 1578.