Accepted Manuscript

Efficient visible-light-responsive photocatalyst: hybrid TiO₂-Ag₃PO₄ nanorods

Yulong Jia, Ying Ma, Lili Zhu, Jun Dong, Yinhe Lin

PII:	S0301-0104(18)31207-2
DOI:	https://doi.org/10.1016/j.chemphys.2019.01.015
Reference:	CHEMPH 10282
To appear in:	Chemical Physics
Received Date:	1 November 2018
Revised Date:	15 January 2019
Accepted Date:	15 January 2019

Please cite this article as: Y. Jia, Y. Ma, L. Zhu, J. Dong, Y. Lin, Efficient visible-light-responsive photocatalyst: hybrid TiO₂-Ag₃PO₄ nanorods, *Chemical Physics* (2019), doi: https://doi.org/10.1016/j.chemphys.2019.01.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Efficient visible-light-responsive photocatalyst: hybrid TiO_2 -Ag₃PO₄ nanorods

Yulong Jia,^[a] Ying Ma,^{[a]*} Lili Zhu,^[a] Jun Dong,^[a] Yinhe Lin,^[a]

a. School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, PR China.

ABSTRACT

Herein, ordered TiO₂-Ag₃PO₄ nanorods are fabricated by loading Ag₃PO₄ nanoparticles on the as-prepared brookite TiO₂ nanorods. The amount of Ag₃PO₄ nanoparticles loaded on brookite TiO₂ nanorods can be rationally optimized. These hybrid TiO₂-Ag₃PO₄ nanorods could provide large surface area, extend the visible light absorption and facilitate the charge separation, leading to efficient visible-light-driven photocatalytic performance. When evaluated as photocatalysts under visible light illumination, all the hybrid TiO₂-Ag₃PO₄ nanorods exhibit high photocatalytic activity for degrading 2-propanol. Particularly, TiO₂-Ag₃PO₄-3 enables the best photocatalytic property, which yields high acetone production of 147 ppm at 3 h and CO₂ production of 424 ppm at 11 h.

Key Words: Nanocomposites; TiO2-Ag3PO4; Visible-light-responsive; Solar energy materials

1. Introduction

Photocatalysts have attracted numerous interests ascribed to their potential applications for energy conversion and degradation of pollutants [1-2]. Titanium dioxide (TiO₂) as one of the most important photocatalysts exhibits excellent photocatalytic activity, good stability and abundant source, enabling the extensively research on exploring efficient photocatalyst. Furthermore, brookite TiO₂ has been confirmed to be superior in photo-degradation of organic containments [3-5]. Nevertheless, the brookite TiO₂ demonstrates photocatalytic response under UV-light instead of visible light irradiation, limiting the sufficient utilization of solar light. In order to extend the visible-light-driven photocatalytic response of brookite TiO₂, fabrication of heterostructures is highly proposed [6-8]. For instance, Peng et al. prepared g-C₃N₄ nanodots decorated brookite TiO₂ nanocubes with enhanced visible-light-driven photocatalytic activity [9]. Chen and co-authors constructed g-C₃N₄/anatase/brookite heterojunction structure with improved hydrogen production under visible light [10]. It is validated that the brookite TiO₂-based hetero-structured materials

^{*} Corresponding author: E-mail: yma2017@126.com

demonstrate efficient visible-light-driven photocatalytic performance. However, the research on brookite TiO₂-based heterojunctions is limited devoted to the difficult synthesis techniques.

 Ag_3PO_4 [11,12] exhibit excellent visible light driven photocatalytic response ascribed to the narrow bandgap. However, the inherent fast charge recombination and poor photostability hinder the widely research and application of Ag_3PO_4 on photocatalysis. To address this issue, the strategy of coupling Ag_3PO_4 with other semiconductors was reported [13,14]. Herein, the well-defined brookite TiO₂ nanorods are obtained by a simple hydrothermal reaction. Subsequently, the precipitation method is adopted to yield Ag_3PO_4 -brookite TiO₂ hybrid nanorods, which effectively extend the visible light absorption, enhance the surface area and promote charge separation. As expected, the TiO₂-Ag₃PO₄ heterostructured nanorods manifest distinct visible-light-driven photocatalytic performance for degrading 2-propanol. Moreover, the loading amount of Ag_3PO_4 can be rationally controlled and the highest photocatalytic activity can be obtained by TiO₂-Ag₃PO₄-3 with molar percentage of 13% for Ag_3PO_4 .

Experimental section

All reagents are of analytic grade (Chongqing Chemical Company) and used without any further purification.

The brookite TiO₂ nanorods were synthesized by a facile hydrothermal method [15] using the titanium bis(ammonium lactate) dihydroxide

(TALH) and urea as precursors. As typically, 5 mL TALH and 45 mL deionized water were added into urea (21.02 g), and then the solution was

stirred for 2 hours. Aimed to yield regular brookite TiO_2 nanorods, the as-prepared solution was transferred into a Teflon cup (100 mL), which was

kept at 230 °C for 48 h. The white powder could be collected and washed after the product cooling down to the room temperature. In order to load

Ag₃PO₄ on TiO₂, the as-prepared brookite TiO₂ (0.237 g) powder was dissolved in 50 mL deionized water, and then a certain amount of AgNO₃

(0.45 g) was added into the solution. After stirring for 10 min under dark, a solution of Na₂HPO₄ (50 mL, the molar ratio of AgNO₃ and Na₂HPO₄ is

controlled at 3:1) was added into the above solution drop by drop and then was stirred for 7 hours under dark. Moreover, the amount of AgNO₃ and

Na2HPO4 was optimized with the molar percentage of 2.9%, 5.8%; 13%, 23% and 37.5% for Ag3PO4 in TiO2-Ag3PO4 heterojunction.

Correspondingly, the obtained hybrid samples are marked with TiO2-Ag3PO4-1, TiO2-Ag3PO4-2, TiO2-Ag3PO4-3, TiO2-Ag3PO4-4 and

TiO₂-Ag₃PO₄-5. Finally, the well-defined TiO₂-Ag₃PO₄ composites can be obtained after filtration, washing and drying. For comparison, the pure

Ag₃PO₄ nanoparticles were obtained by the same procedure except adding the TiO₂ nanorods.

The X-ray diffraction (XRD) instrument (MiniFlex II, Rigaku Co.) was utilized to characterize the crystal phases of products. The morphologies were investigated by scanning electron microscope (SEM). Furthermore, the UV-vis patterns were measured by the UV-vis spectrometer (UV-2500PC, Shimadzu). The Brunauer-Emmett-Teller (BET) surface area was characterized by Quantachrome Nova 4200e. The photocatalytic activities of samples were evaluated by degrading 2-propanol. The as-prepared powder (0.1 g) was uniformly dispread on a glass dish (2 cm²), which was placed in a Tedlar bag with 125 mL 2-propanol (500 ppm). The absorption equilibrium was obtained by keeping the as-prepared bag in dark for 1 hour. Then the visible light (100 mW cm⁻²) was gained by Xenon lamp equipped with a Yellow-44 filter and was used as the light source to measure the photocatalytic performance. During the photocatalytic process, the amount of acetone and CO₂ were evaluated by online gas chromatography (Agilent Technologies, 3000A micro-GC, TCD detector) equipped with OV1 and PLOT-Q columns.

3. Results and discussion

Figure 1. SEM images of (A) pristine brookite TiO2 nanorods (B) TiO2-Ag3PO4-1 (C) TiO2-Ag3PO4-2 (D) TiO2-Ag3PO4-3 (E) TiO2-Ag3PO4-4 (F)

$TiO_2\text{-}Ag_3PO_4\text{-}5.$

The morphologies and structures of as-prepared samples are characterized by SEM images. As can be seen from Figure 1A, the pristine

brookite TiO₂ exhibits regular prismatic nanorod shape with smooth surface. Moreover, the nanorods display an average length of 100 nm and

diameter of 20 nm. With modification of Ag₃PO₄, the nanoparticles were loaded on nanorods (Figure 1B-F). With the molar percentage of Ag₃PO₄

controlled at 2.9%, no obvious nanoparticle was detected on brookite TiO_2 nanorods (Figure 1B), which is suggested to be resulted from the uniform distribution of Ag_3PO_4 on brookite TiO_2 nanorods. Small particles can be observed in TiO_2 - Ag_3PO_4 -2 (Figure 1C) and TiO_2 - Ag_3PO_4 -3 (Figure 1D), and nanoparticles grow with increasing the amount of Ag_3PO_4 . It is clearly that the aggregated nanoparticles distribute on brookite TiO_2 nanorods in SEM images of TiO_2 - Ag_3PO_4 -4 and TiO_2 - Ag_3PO_4 -5. Particularly, TiO_2 - Ag_3PO_4 -5 presents seriously agglomeration, and the

nanorod configuration is difficult to identify (Figure 1F).

Figure 2. (A) XRD pattern (B) UV-vis spectra (C) BET surface area (D) band gaps of samples.

The XRD patterns exhibited in Figure 2A revealed the crystalline structure and crystal phases of samples. Obviously, all the diffraction peaks of nanorods could be well-indexed to brookite TiO₂ (JCPDS: 00-029-1360). As for the composites, the diffraction peaks of Ag₃PO₄ (JCPDS: 06-0505) [16] appear besides the peaks of brookite TiO₂. Furthermore, the intensities of peaks demonstrate increase and decrease for Ag₃PO₄ and TiO₂ with enhancing the amount of Ag₃PO₄. It is clearly that the diffraction peaks of brookite TiO₂ nanorods show weak intensity when the molar percentage of Ag₃PO₄ increased to 37.5%. In order to confirm the surface area of samples, the BET was carried out on pristine TiO₂ nanorods and TiO₂: Ag₃PO₄ heterojunction structures. Ascribed to the nanosize and uniform nanorod structure, the brookite TiO₂ possesses large surface area of 48.096 m² g⁻¹. TiO₂: Ag₃PO₄:-1, TiO₂: Ag₃PO₄:-2 and TiO₂: Ag₃PO₄:-3 exhibit surface area of 53.233 m² g⁻¹, 57.581 m² g⁻¹ and 51.011 m² g⁻¹, which are higher than that of pure TiO₂ nanorods. However, the much more amount of Ag₃PO₄ would result in smaller surface area (41.994 m² g⁻¹ and 42.768 m² g⁻¹ forTiO₂:-Ag₃PO₄:-4 and TiO₂:-Ag₃PO₄:-5, respectively) with respect to TiO₂ and other hybrid samples attributed to the aggregated nanoparticles

[17].

The optical absorption properties of samples were investigated by the corresponding UV-vis spectra. As shown in Figure 2B, bare brookite TiO_2 nanorods display strong absorption in the UV light region. Interestingly, the samples exhibit visible light absorption when the Ag₃PO₄ nanoparticles are introduced into brookite TiO_2 nanorods. Moreover, the visible light absorption enhances with increasing the loading amount of Ag₃PO₄ on TiO_2 nanorods. It is worth to note that the absorption edges of TiO_2 -Ag₃PO₄ hybrid nanorods exhibit red-shift with the increased amount of Ag₃PO₄. Calculated from the Tauc plots of samples shown in Figure 2D, the band gaps of Ag₃PO₄, TiO_2 , TiO_2 -Ag₃PO₄-1, TiO_2 -Ag₃PO₄-2, TiO_2 -Ag₃PO₄-4 and TiO_2 -Ag₃PO₄-5 are 2.35, 3.25, 2.26, 2.22, 2.15, 2.08 and 2.02 eV, respectively. Based on the above results, it is

suggested that the suitable amount of Ag₃PO₄ on TiO₂ nanorods could greatly enhance the visible light absorption and surface area [18,19].

Figure 3. Acetone (A) and (B) CO₂ evolution through degradation of 2-propanol by photocatalysts (C) the scheme illustration for the

photocatalytic process of TiO2-Ag3PO4 hetero-nanorod.

The photocatalytic behavior of pure brookite TiO₂, Ag₃PO₄ and TiO₂-Ag₃PO₄ hybrid nanorods were evaluated by the concentrations of acetone

and CO2. For the hetero-nanorods, the concentration of acetone increases within 3 hours and then decreases with prolonged photo-irradiation time,

suggesting the intermediate product character of acetone. When the amount of acetone reaches saturation, acetone was dramatically decomposed to

CO2. The hybrid TiO2-Ag3PO4 nanorods exhibit enhanced photocatalytic performance compared with pristine TiO2 nanorods, validating the advantages of hybrid nanostructure. Furthermore, the photocatalytic efficiency improved with increasing the loading amount of Ag₃PO₄ on brookite TiO2 nanorods, while too much amount of Ag3PO4 led to the decrease of photocatalytic performance. It is obviously that TiO2-Ag3PO4-3 demonstrates the best photocatalytic property among these samples. The acetone production reaches 147 ppm at 3 h and CO₂ production reaches 424 ppm at 11 h irradiated by visible light, which is about 8 times and 3 times of that of brookite TiO2 nanorods. Particularly, TiO2-Ag3PO4-3 exhibits higher photocatalytic activity than that of pure Ag₃PO₄ nanoparticles, confirming the synergistic effect of TiO₂ and Ag₃PO₄. The introduction of Ag₃PO₄ into TiO₂ nanorods would greatly promote the visible light absorption and separation of photogenerated electrons-hole pairs. Ag₃PO₄ nanoparticles can be excited by visible light devoted to the band gap of 2.35 eV, while TiO₂ nanorods can't be excited by the visible light ascribed to the large band gap of 3.25 eV. More specifically, TiO2 and Ag3PO4 demonstrate valence bands at 2.7 and 2.9 eV [20-21], respectively. The much higher valence band position of Ag₃PO₄ than that of TiO₂ enables the holes transformation from Ag₃PO₄ to TiO₂ as shown in Figure 3C, leaving the electrons on the conduction band of Ag₃PO₄. The holes on TiO₂ would be consumed by the oxidation of 2-propanol and the electrons on Ag₃PO₄ would be consumed by the reduction of oxygen, realizing the separation of reduction and oxidation reactions. However, the aggregated and too much amount of Ag3PO4 nanoparticles on TiO2 nanorods would hinder the light harvesting, and increase the recombination efficiency of electrons and holes, resulting in the decreased photocatalytic activity. Above all, it is suggested that suitable amount of Ag_3PO_4 nanoparticles loaded on TiO2 nanorods would provide large surface area as well as active sites for photocatalytic reactions, and promote the charge separation, resulting in the efficient visible-light-driven photocatalytic activity.

Conclusions

In conclusion, the well-defined TiO_2 -Ag₃PO₄ heterostructured nanorods are constructed by a facile hydrothermal and co-precipitation method. The modification of TiO_2 brookite nanorods with Ag₃PO₄ nanoparticles allows visible light harvesting as well as visible-light-induced photocatalytic activity. Moreover, the suitable amount of Ag₃PO₄ nanoparticles loaded on brookite TiO_2 nanorods could greatly enhance the surface area, providing numerous active sites for photocatalytic reactions. When the molar percentage of Ag₃PO₄ is controlled at 13%, the TiO_2 -Ag₃PO₄

nanorods exhibited the best photocatalytic performance for degrading 2-propanol. It is suggested that the combination of TiO_2 and Ag_3PO_4 could

promote the transfer of generated holes from valence band (VB) of Ag₃PO₄ to the VB of TiO₂, resulting in greatly improved charge separation. This

work furnishes an effective strategy for exploration of visible-light-responsive photocatalysts with high photocatalytic properties.

Acknowledgements

The present work was supported by National Natural

Science Foundation

of

China

(No.21802006, China)

Science Foundation of Yangtze Normal University (No.2017KYQD124, China; 2017KYQD125, China and 2017KYQD103, China)

References

[1] M. Choi, J.H. Lim, M. Baek, W. Choi, W. Kim, K.J. Yong, ACS Appl. Mater. Interfaces 9 (2017) 16252-16260.

[2] N. Shao, J.N. Wang, D.D. Wang, P. Corvini, Appl. Catal. B: Environ. 203 (2017) 964-978.

[3] J.J.M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, ACS Catal. 7 (2017) 2644-2651.

- [4] Y. Li, P.F. Wang, C.P. Huang, W.F. Yao, Q. Wu, Q.J. Xu, Appl. Catal. B: Environ. 205 (2017) 489-497.
- [5] M. Bellardita, A.D. Paola, B. Megna, L. Palmisano, Appl. Catal. B: Environ. 201 (2017) 150-158.
- [6] X.Q. An, C.Z. Hu, H.J. Liu, J.H. Qu, Langmuir 34 (2018) 1883-1889.

[7] F.M. Zhao, L. Pan, S.W. Wang, Q.Y. Deng, J.J. Zou, L. Wang, X.W. Zhang, Appl. Surf. Sci. 317 (2014) 833-838.

[8] B.Q. Lu, N. Ma, Y.P. Wang, Y.W. Qiu, H.H. Hu, J.H. Zhao, D.Y. Liang, S. Xu, X.Y. Li, Z.Y. Zhu, C. Cui, J. Alloys Compd. 630 (2015) 163-171.

[9] K. Li, B.S. Peng, J.P. Jin, L. Zan, T.Y. Peng, Applied Catalysis B: Environmental 203 (2017) 910-916.

[10] Q.L. Tay, X.H. Wang, X. Zhao, J.D. Hong, Q. Zhang, R. Xu, Z. Chen, J. Catal. 342 (2016) 55-62.

[11] X. Du, J. Wan, J. Jia, C. Pan, X.Y. Hu, J. Fan, E.Z. Liu, Mater. Design 119 (2017) 113-123.

[12] F. Chen, Q. Yang, X.M. Li, G.M. Zeng, D.B. Wang, C.G. Niu, J.W. Zhao, H.X. An, Y.C. Deng, Appl. Catal. B: Environ. 200 (2017) 330-342.

- [13] N. Shao, J.N. Wang, D.D. Wang, P. Corvini, Appl. Catal. B: Environ. 203 (2017) 964-978.
- [14] L. Zhou, W. Zhang, L. Chen, H.P. Deng, J. Colloid Interf. Sci. 487 (2017) 410-417.
- [15] T. Ohno, T. Higo, H. Saito, S.S. Yuajn, Z.Y. Jin, Y. Yang, T. Tsubota, J. Mol. Catal. A-Chem. 396 (2015) 261-267.

[16] C.N. Tang, E.Z. Liu, J. Wan, X.Y. Hu, J. Fan, Appl. Catal. B: Environ. 181 (2016) 707-715.

[17] L. Liu, Y.H. Qi, J.R. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, Appl. Catal. B: Environ. 183 (2016) 133-141.

Acceletic [18] R.Q. Ye, H.B. Fang, Y.Z. Zheng, N. Li, Y. Wang, X. Tao, ACS Appl. Mater. Interfaces 8 (2016) 13879-13889.

Highlights

- TiO₂-Ag₃PO₄ nanorods are fabricated by loading Ag₃PO₄ on brookite TiO₂ nanorods.
- The loading amount of Ag₃PO₄ nanoparticles is rationally optimized.
- e contraction of the second se •Hybrid TiO₂-Ag₃PO₄ exhibits large surface area and enhanced visible light absorption.