

Catalytic Asymmetric Acyloin Rearrangements of α -Ketols, α -Hydroxy Aldehydes, and α -Iminols by N,N'-Dioxide–Metal Complexes

Li Dai, Xiangqiang Li, Zi Zeng, Shunxi Dong, Yuqiao Zhou,* Xiaohua Liu, and Xiaoming Feng*

Cite This: htt	ps://dx.doi.org/10.1021/acs.orglett	.0c01626	Read Online	-		
ACCESS	III Metrics & More	🔲 🛄 Artic	le Recommendations		s) Supporting Informatic	on
ABSTRACT: All α -ketols has been been been been been been been bee	highly enantioselective acyloin en developed with a chiral	rearrangement of cy Al(III)—N.N'-dio	yclic OH or B^1 OH $A^{ }$ or S^1	c ^{III} / <i>N,N</i> '-dioxid	$\frac{1}{100}$ $\frac{1}$,+ , , , , , , , , , , , , , , , , , ,

 α -ketols has been developed with a chiral Al(III)–N,N'-dioxide complex as catalyst. This strategy provided an array of optically active 2-acyl-2-hydroxy cyclohexanones in moderate to good yields with high enantioselectivities. The asymmetric isomerizations of acyclic α -hydroxy aldehydes and α -iminols were achieved as well under modified

Letter

conditions, affording the corresponding chiral α -hydroxy ketones and α -amino ketones in moderate results. Moreover, further transformations of product to enantioenriched diols were carried out.

The acyloin rearrangement is the transformation of an α -hydroxycarbonyl compound into its structural isomer through 1,2-carbon-to-carbon migration.¹ Since the seminal report from Prins and Shoppee in 1943,² acyloin rearrangement has been gradually utilized to construct otherwise inaccessible molecular frameworks, especially for the synthesis and structural modification of natural products.³ However, the reversibility of such transformations under either acidic, basic, or thermal conditions⁴ hampered its wide application in organic synthesis. In view of the high value of the enantioenriched α -hydroxy ketones and α -amino ketones,⁵ the development of catalytic asymmetric versions of such processes was intriguing but highly challenging.

In 2003, Brunner and Kagan et al. first disclosed their efforts toward the asymmetric α -ketol rearrangement. A moderate ee value was obtained for the isomerization of 1-benzoylcyclopentanol after screening plenty of catalysts.⁶ In 2007, the Maruoka group described the asymmetric rearrangement of $\alpha_1 \alpha_2$ dialkyl- α -siloxy aldehydes to α -siloxy ketones by using a chiral aluminum catalyst (Scheme 1a, left).7 In 2014, Wulff et al. reported zirconium/VANOL complex accelerated asymmetric α -iminol rearrangements with wide substrate scope (Scheme 1a, right).⁸ Three years later, the first example of organocatalytic enantioselective acyloin rearrangement of α , α -disubstituted α hydroxy acetals was achieved by Zhu and co-workers.⁹ Very recently, the same group developed copper/Box catalyzed highly enantioselective cyclic α -hydroxy ketone rearrangement and sequential kinetic resolution processes (Scheme 1b).¹⁰ Enantioenriched 2-acyl-2-hydroxy cyclohexan-1-ones, dihydroxyhexahydro-benzofuranones, and dihydroxyhexahydro-cyclohepta-furanones were delivered in 35-99% yield with 79-98% ee. Nevertheless, this still leaves much room for improvement in terms of substrate scope and catalyst. As part of our ongoing interest in asymmetric rearrangements¹¹ and

Scheme 1. Chiral Lewis Acid Mediated Acyloin Rearrangements

a) Asymmetric Acyloin Rearrangement of Acyclic Substrates (ref. 7-9).

$$\begin{array}{c} R^{1} & OH \\ R^{2} & R^{2} \\ X = O, NAr \end{array} \xrightarrow[N +]{} A^{||||} \text{ or } Sc^{|||}/N, N-\text{dioxide} \\ Solvent \\ X = O, NAr \\ 1 - 99\% \text{ yields}, 53 - 98\% \text{ ee} \end{array} \xrightarrow[N -]{} OVClic and acyclic substrates \\ OVClic and acycl$$

intrigued by the well-established platform of chiral metal–N,N'-dioxide catalysts,¹² we envisioned that this kind of chiral Lewis acid had the potential to be effective in promoting the acyloin rearrangement of α -iminol or α -ketol through coordination and activation of vicinal difunctional groups.¹³ Herein, we wish to describe our efforts along this line. The chiral Al(III)–N,N'-dioxide complex was identified to be an efficient catalyst to promote enantioselective acyloin rearrangement of cyclic α -

Received: May 12, 2020

ketols, and various 2-aryl-2-hydroxy cyclohexanones were readily afforded in moderate to good yields with high enantioselectivities. Moreover, under slightly modified conditions, the asymmetric isomerizations of acyclic α -hydroxy aldehydes and α -iminols were achieved as well.

Initially, 1-benzoylcyclopentanol 1a was selected as the model substrate to optimize the reaction conditions (Table 1).^{6,14} First,

^{*a*}Unless otherwise noted, the reactions were performed with the metal salt/ligand (1:1, 10 mol %) and **1a** (0.1 mmol) in THF (1.0 mL) at 40 °C for 24 h. ^{*b*}Yield of isolated product. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}BrCH₂CH₂Br (1.0 mL) was used as the solvent. ^{*e*}H₂O (3 μ L) was added. ^{*f*}S mol % of catalyst loading.

different metal salts were investigated in the presence of N,N'dioxide L₃-PiMe₂. It was pleasant to find that in situ formed chiral Lewis acid catalysts could promote the rearrangement of compound 1a under mild conditions,⁶ and Al(OTf)₃ gave better results than Fe(OTf)₃ and In(OTf)₃ in terms of enantioselectivity (entries 1-3, 55% ee vs 53% ee, 27% ee). To our delight, increasing the steric hindrance of the amide substituents from 2,6-Me₂C₆H₃ to 2,6-*i*Pr₂C₆H₃ resulted in higher enantioselectivity (entry 4, 87% ee vs 55% ee). Then, representative $N_i N'$ -dioxides with different skeletons were examined. L₃-PiPr₂ derived from L-pipecolinic acid was proved to be superior to L-proline-derived L₃-PrPr₂ or L-ramipril-based L₃-RaPr₂ (entries 5 and 6, 87% ee vs 85% ee, 69% ee). The subsequent survey of solvents indicated that BrCH₂CH₂Br could provide an improved yield compared to THF (entry 7, 69% yield vs 50% yield; for more details, see SI, Page 7). Interestingly, the addition of water $(3 \mu L, ca. 1.7 equiv)$ into the reaction system led to further improvement in the yield and enantiomeric excess (entry 8, 99% yield, 91% ee.).¹⁵ When the reaction was carried out with 5 mol % catalyst loading, both the vield and enantioselectivity were maintained (entry 9)

With the optimal reaction conditions in hand, the substrate scope of 1-aroylcyclopentanols was next examined (Scheme 2). It was found that the substituent pattern and the electronic property of the aryl moiety displayed a limited influence on the enantioselectivity (2a-2l, 84-92% ee). However, the strong

Scheme 2. Substrate Scope of Cyclic α -Ketols 1^{*a*}

pubs.acs.org/OrgLett

^aThe reactions were carried out with Al(OTf)₃/L₃-PiPr₂ (1:1, 5 mol %) and 1 (0.1 mmol) with H₂O (3 μ L) in BrCH₂CH₂Br (1.0 mL) at 40 °C for the indicated time. Isolated yields. Enantiomeric excess (ee) was determined by HPLC analysis on a chiral stationary phase.

electron-withdrawing group (for instance, CF₃) at the paraposition (2f) or methyl substituent at the *meta*-position (2h) in the substrate led to diminished yields (59% yield and 67% yield, respectively). To get more insight into the reaction, the product 2f was subjected to the standard reaction system, and the very trace of starting compound 1f was observed; the ee value did not change.⁴ It is worth mentioning that 2-naphthyl-containing substrate 1j proceeded the migration process smoothly under the standard conditions, affording the desired product 2j in decent yield (63%) with good enantiomeric excess (87% ee). Meanwhile, piperonyl-substituted α -hydroxy ketone was suitable as well, and the corresponding product 2k was isolated in 89% yield with 88% ee. For the reaction of 11 with the disubstituted aryl ring, elevated reaction temperature (60 °C) was necessary, and product 2l was obtained with good outcomes (97% yield, 91% ee). The absolute configurations of the products **2i** and **2l** were both determined to be (*S*) configuration by X-ray crystallography analysis, which were consistent with the configurations of chiral 2a, 2e, 2f, and 2j, by comparing the optical rotation data in the previous report.¹⁶ The configurations of other products were assigned by comparing with the CD spectrum of compound 2i.

Encouraged by the satisfactory results of cyclic α -ketol, we attempted to apply the current system to the rearrangement of α -hydroxy aldehydes 3 (Scheme 3). Unfortunately, only a trace amount of the desired rearranged product was afforded with 11% ee under the above optimized reaction conditions. After modification of the reaction parameters, including the use of L₃-**PiMe**₂ as the ligand and Br₂CHCHBr₂ as solvent, lower reaction temperature (30 °C), and addition of 4 Å MS (10 mg), the yield and enantioselectivity of this transformation reached a satisfactory level (54% yield, 82% ee) after 48 h (see details in

Scheme 3. Substrate Scope of Acyclic α -Hydroxy Aldehydes 3^a

^{*a*}The reactions were carried out with Al(OTf)₃/L₃-PiMe₂ (1:1, 10 mol %), **3** (0.1 mmol) with H₂O (3 μ L), and 4 Å MS (10 mg) in Br₂CHCHBr₂ (1.0 mL) at 30 °C for 48 h. Isolated yields. Enantiomeric excess (ee) was determined by HPLC analysis on a chiral stationary phase.

SI).¹⁷ Under these conditions, representative α -hydroxy aldehydes 3 were tested. Although the enantioselective control of such rearrangement was in the good level, a notable difference in the reactivity was observed. Generally, aryl-substituted alcohols with substituents at the *ortho-* or *para-*position furnished the expected products in higher yields than that with *meta-*substituted ones (4c-4e, 4i). The absolute configurations of products 4a-4g were determined to be (*R*) by comparing the optical rotation with the previous report.¹⁸

The asymmetric rearrangement of α -hydroxy aldimines was explored as well. The acyclic 1,1-diphenyl-2-(phenylimino)ethanol 5a was selected as the model substrate.^{8a} After extensive investigation, we concluded that excellent ee but moderate yield of the corresponding product 6a was obtained when the $In(OTf)_3/L_2$ -PiPr₃ complex was employed as the catalyst (41%) yield, 93% ee, see SI for details). The low yield of the In(III)mediated process resulted from the unknown side reaction. Comparatively, the use of $Sc(OTf)_3$ as the metal precursor afforded a high yield but moderate enantioselectivity (99% yield, 68% ee). Then the substrate scope of α -hydroxy aldimines was examined with Sc^{III} as the catalyst (Scheme 4; see Scheme S1 in page 13 of SI for the results of In(III)-mediated reactions). Similarly, the fluoro substituent at meta-position 5c exhibited lower reactivity than that with a para-substituted one, 5b. Of note, substrate 5d containing 2-naphthyl rings isomerized to the product 6d in good yield with excellent enantioselectivity (78% yield, 98% ee). Although high yield (99% yield) was obtained for α -hydroxy aldimine **5e** bearing an electron-rich Ar group, slightly lower enantiomeric excess (53% ee) was given. Another substituent, for example, N-MeOC₆H₄-protected aldimine, was compatible in this system, generating the desired rearranged product 6f in 97% yield with 77% ee. The absolute configurations of the products 6a, 6b, and 6f were determined

Scheme 4. Substrate Scope of Acyclic α -Hydroxy Aldimines 5^{a}

^{*a*}The reactions were carried out with $Sc(OTf)_3/L_2$ -PiPr₃ (1:1, 10 mol %) and 5 (0.1 mmol) in toluene (1.0 mL) at 40 °C for 24 h. Isolated yields. Enantiomeric excess (ee) was determined by HPLC analysis on a chiral stationary phase.

to be (R) by comparing the optical rotation with the previous report.^{8a}

To exhibit the practicability of this methodology, a gram-scale synthesis of **2a** was performed under the standard reaction conditions with 5.0 mmol of **1a**, and the corresponding product **2a** was isolated in 99% yield with 92% ee. The transformations of the product were performed as well. Treatment of the chiral compound **2a** with vinylmagnesium bromide gave rise to the diol compound 7 in 73% yield with >19:1 dr (Scheme 5).^{16b} Similarly, reduction of the compound **2a** with LiAlH₄ provided diol compound **8** in high yield with 9:1 dr and 90% ee.^{16b}

Scheme 5. Gram-Scale Synthesis of 2a and Its Further Transformations

In summary, we have realized the acyloin rearrangements of cyclic α -ketols, as well as α -hydroxy aldehydes and aldimines, with chiral N,N'-dioxide complexes of Al(III) or Sc(III) salts under mild reaction conditions. The corresponding chiral α -hydroxy ketones and α -amino ketones were produced in moderate to good yields with high enantioselectivities. Further studies on other asymmetric rearrangement reactions are underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c01626.

Experiment procedures, full spectroscopic data for all new compounds, and copies of ${}^{1}H$, ${}^{13}C{}^{1}H$, ${}^{19}F{}^{1}H$ NMR, and HPLC spectra (PDF)

Accession Codes

CCDC 1951895 and 1954319 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Yuqiao Zhou – Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; Email: yuqiao.zhou@scu.edu.cn

Xiaoming Feng – Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; orcid.org/ 0000-0003-4507-0478; Email: xmfeng@scu.edu.cn

Authors

- Li Dai Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Xiangqiang Li Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Zi Zeng Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Shunxi Dong Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; Orcid.org/ 0000-0002-3018-3085
- Xiaohua Liu Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China; ◎ orcid.org/0000-0001-9555-0555

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c01626

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the National Natural Science Foundation of China (Nos. 21890723 and 21801175) and the Fundamental Research Fund for the Central Universities for financial support.

REFERENCES

 (1) For books on acyloin rearrangement, see: (a) Mundy, B. P.; Ellerd, M. G.; Favaloro, F. G., Jr. Name Reactions and Reagents in Organic Synthesis, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005.
(b) Wang, Z. Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, NJ, 2009.

(2) (a) Shoppee, C. W.; Prins, D. A. Über Bestandteile der Nebennierenrinde und verwandte Stoffe. 57. Mitteilung. 17-Oxy-20keto-steroide und der Mechanismus ihrer Umlagerung zu Polyhydrochrysen-Derivaten. *Helv. Chim. Acta* **1943**, *26*, 185. For selected early studies, see: (b) Nye, M. J.; Tang, W. P. Molecular Rearrangements Yielding Δ^2 -Pyrazolin-5-ones: Acyloin Rearrangement. *J. Chem.* Soc. D 1971, 1394. (c) Nishinaga, A.; Itahara, T.; Matsuura, T.; Berger, S.; Henes, G.; Rieker, A. Baseninduzierte Acyloin-Umlagerung sterisch gehinderter *p*-Chinole. *Chem. Ber.* 1976, *109*, 1530. (d) Gokel, G. W.; Gerdes, H. W. Sulfur Heterocycles. II. The Hydroxyoxathiolane to Acyloin Rearrangement. *Tetrahedron Lett.* 1979, *20*, 3379. (e) Clemens, A. H.; Hartshorn, M. P.; Richards, K. E.; Robinson, W. T.; Sutton, K. H.; Vaughan, J.; Wright, G. J. Nitrations of 3,5-Dichloro-2,4,6-trimethylphenol and 1,3,5-Trichloro-2,4,6-trimethyl-benzene; Acyloin Rearrangement Studies of Some 2,5-Dinitrocyclohex-3-enones; X-ray Crystal Structure of 1-Acetyl-3,t-5-dichloro-c-2,4-dimethyl-2,5-dinitrocyclopent-3-en-r-1-ol. *Aust. J. Chem.* 1983, *36*, 67.

(3) For selected examples, see: (a) Proteau, P. J.; Li, Y. F.; Chen, J.; Williamson, R. T.; Gould, S. J.; Laufer, R. S.; Dmitrienko, G. I. Isoprekinamycin Is a Diazobenzo[a]fluorene Rather than a Diazobenzo[b]fluorene. J. Am. Chem. Soc. 2000, 122, 8325. (b) Liu, Y. H.; McWhorter, W. W.; Hadden, C. E. Novel Rearrangement of a 2-Aryl-3-alkyl-3H-indol-3-ol to a 1,4,5,6-Tetrahydro-2,6-methano-1benzazocin-3(2H)-one with Implications for the Biosynthesis of Aspernomine. Org. Lett. 2003, 5, 333. (c) Liu, Y. H.; McWhorter, W. W. Synthesis of 8-Desbromohinckdentine A¹. J. Am. Chem. Soc. 2003, 125, 4240. (d) Katayama, S.; Yamauchi, M. Base-promoted Acyloin Rearrangement of 1,8-Di-tert-butyldimethylsilyloxybicyclo[2.2.2]oct-5-en-2-ones. Chem. Pharm. Bull. 2005, 53, 666. (e) Fujii, H.; Ogawa, R.; Ohata, K.; Nemoto, T.; Nakajima, M.; Hasebe, K.; Mochizuki, H.; Nagase, H. Aerobic Oxidation of Indolomorphinan without the 4,5-Epoxy Bridge and Subsequent Rearrangement of the Oxidation Product to Spiroindolinonyl-C-normorphinan Derivative. Bioorg. Med. Chem. 2009, 17, 5983. (f) Han, S.; Movassaghi, M. Concise Total Synthesis and Stereochemical Revision of all (-)-Trigonoliimines. J. Am. Chem. Soc. 2011, 133, 10768. (g) Qi, X. B.; Bao, H. L.; Tambar, U. K. Total Synthesis of (\pm) -Trigonoliimine C *via* Oxidative Rearrangement of an Unsymmetrical Bis-Tryptamine. J. Am. Chem. Soc. 2011, 133, 10050. (h) Liu, S.; Hao, X. J. A Biomimetic Synthesis of the Skeleton of Trigonoliimine C. Tetrahedron Lett. 2011, 52, 5640. (i) Liu, S.; Scotti, J. S.; Kozmin, S. A. Emulating the Logic of Monoterpenoid Alkaloid Biogenesis to Access a Skeletally Diverse Chemical Library. J. Org. Chem. 2013, 78, 8645. (j) Kawamura, M.; Kamo, S.; Azuma, S.; Kubo, K.; Sasamori, T.; Tokitoh, N.; Kuramochi, K.; Tsubaki, K. Skeletal Rearrangements of Polycyclic α -Ketols. Org. Lett. 2017, 19, 301. (k) Eugui, M.; Rasquin, K.; Radcenco, A. L.; Suescun, L.; Moyna, G. A Diels-Alder reaction/oxa-Michael Addition/Acyloin Rearrangement Cascade on Tropolonic Substrates. Tetrahedron Lett. 2018, 59, 1560. (1) Li, G.; Piemontesi, C.; Wang, Q.; Zhu, J. P. Stereoselective Total Synthesis of Eburnane-Type Alkaloids Enabled by Conformation-Directed Cyclization and Rearrangement. Angew. Chem., Int. Ed. 2019, 58, 2870.

(4) (a) Lee, S. D.; Chan, T. H.; Kwon, K. S. Rearrangement of α -Acyloxyacetates into 2-Hydroxy-3-ketoesters. *Tetrahedron Lett.* **1984**, 25, 3399. (b) Rubin, M. B.; Inbar, S. Equilibria among Anions of.alpha.-Hydroxy.beta.-Diketones and.alpha.-Ketol Esters. *J. Org. Chem.* **1988**, 53, 3355. (c) Brunner, H.; Stöhr, F. Metal-Catalyzed Enantioselective α -Ketol Rearrangements. *Eur. J. Org. Chem.* **2000**, 2000, 2777.

(5) For selected examples, see: (a) Janey, J. M. Recent Advances in Catalytic, Enantioselective α Aminations and α Oxygenations of Carbonyl Compounds. Angew. Chem., Int. Ed. 2005, 44, 4292. (b) Plietker, B. New oxidative pathways for the synthesis of α -hydroxy ketones—the α -hydroxylation and ketohydroxylation. *Tetrahedron:* Asymmetry 2005, 16, 3453. (c) Concellón, J. M.; Rodríguez-Solla, H. Synthesis and Synthetic Applications of α -Amino Ketones Derived from Natural α -Amino Acids. Curr. Org. Chem. 2008, 12, 524. (d) Smith, A. M. R.; Hii, K. K.; Mimi. Transition Metal Catalyzed Enantioselective α -Heterofunctionalization of Carbonyl Compounds. Chem. Rev. 2011, 111, 1637. (e) Palomo, C.; Oiarbide, M.; García, J. M. α -Hydroxy Ketones as Useful Templates in Asymmetric Reactions. Chem. Soc. Rev. 2012, 41, 4150. (f) Streuff, J. An Update on Catalytic Strategies for the Synthesis of α -Hydroxyketones. Synlett **2013**, 24, 276. (g) Chun, S. W.; Narayan, A. R. Biocatalytic Synthesis of a-Amino Ketones. Synlett 2019, 30, 1269.

(6) (a) Brunner, H.; Kagan, H. B.; Kreutzer, G. Asymmetric Catalysis. Part 137: Nickel Catalysed Enantioselective α -Ketol Rearrangement of 1-Benzoylcycloalkanols. *Tetrahedron: Asymmetry* **2001**, *12*, 497. (b) Brunner, H.; Kagan, H. B.; Kreutzer, G. Asymmetric Catalysis. Part 153: Metal-Catalysed Enantioselective α -Ketol Rearrangement. *Tetrahedron: Asymmetry* **2003**, *14*, 2177.

(7) Ooi, T.; Ohmatsu, K.; Maruoka, K. Catalytic Asymmetric Rearrangement of α , α -Disubstituted α -Siloxy Aldehydes to Optically Active Acyloins Using Axially Chiral Organoaluminum Lewis Acids. *J. Am. Chem. Soc.* **2007**, *129*, 2410.

(8) (a) Zhang, X.; Staples, R. J.; Rheingold, A. L.; Wulff, W. D. Catalytic Asymmetric α -Iminol Rearrangement: New Chiral Platforms. *J. Am. Chem. Soc.* **2014**, *136*, 13971. (b) Zhang, X.; Dai, Y. J.; Wulff, W. D. The Acceleration of the Rearrangement of α -Hydroxy Aldimines by Lewis or Brønsted Acids. *Synlett* **2018**, *29*, 2015.

(9) Wu, H.; Wang, Q.; Zhu, J. P. Organocatalytic Enantioselective Acyloin Rearrangement of α -Hydroxy Acetals to α -Alkoxy Ketones. *Angew. Chem., Int. Ed.* **2017**, *56*, 5858.

(10) Wu, H.; Andres, R.; Wang, Q.; Zhu, J. P. Catalytic Enantioselective α -Ketol Rearrangement. *Angew. Chem., Int. Ed.* **2019**, 58, 499.

(11) For selected examples, see: (a) Xu, X.; Zhang, J. L.; Dong, S. X.; Lin, L. L.; Lin, X. B.; Liu, X. H.; Feng, X. M. Nickel(II)-Catalyzed Asymmetric Propargyl [2,3] Wittig Rearrangement of Oxindole Derivatives: A Chiral Amplification Effect. Angew. Chem., Int. Ed. 2018, 57, 8734. (b) Chen, Y. S.; Dong, S. X.; Xu, X.; Liu, X. H.; Feng, X. M. Bimetallic Rhodium(II)/Indium(III) Relay Catalysis for Tandem Insertion/Asymmetric Claisen Rearrangement. Angew. Chem., Int. Ed. 2018, 57, 16554. (c) Lin, X. B.; Tang, Y.; Yang, W.; Tan, F.; Lin, L. L.; Liu, X. H.; Feng, X. M. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α -Diazo Pyrazoleamides. J. Am. Chem. Soc. 2018, 140, 3299. (d) Tang, Q.; Fu, K.; Ruan, P. R.; Dong, S. X.; Su, Z. S.; Liu, X. H.; Feng, X. M. Asymmetric Catalytic Formal 1,4-Allylation of β , γ -Unsaturated α -Ketoesters: Allylboration/ Oxy-Cope Rearrangement. Angew. Chem., Int. Ed. 2019, 58, 11846. (e) Lin, Q. C.; Hu, B. W.; Xu, X.; Dong, S. X.; Liu, X. H.; Feng, X. M. Chiral *N*,*N*'-dioxide/Mg(OTf)₂ Complex-catalyzed Asymmetric [2,3]-Rearrangement of in situ Generated Ammonium Salts. Chem. Sci. 2020, 11, 3068.

(12) For selected reviews of *N*,*N*'-dioxide, see: (a) Liu, X. H.; Lin, L. L.; Feng, X. M. Chiral *N*,*N*'-Dioxides: New Ligands and Organocatalysts for Catalytic Asymmetric Reactions. *Acc. Chem. Res.* **2011**, *44*, 574. (b) Liu, X. H.; Lin, L. L.; Feng, X. M. Chiral *N*,*N*'-Dioxide Ligands: Synthesis, Coordination Chemistry and Asymmetric Catalysis. *Org. Chem. Front.* **2014**, *1*, 298. (c) Liu, X. H.; Zheng, H. F.; Xia, Y.; Lin, L. L.; Feng, X. M. Asymmetric Cycloaddition and Cyclization Reactions Catalyzed by Chiral *N*,*N*'-Dioxide—Metal Complexes. *Acc. Chem. Res.* **2017**, *50*, 2621. (d) Liu, X. H.; Dong, S. X.; Lin, L. L.; Feng, X. M. Chiral Amino Acids-Derived Catalysts and Ligands. *Chin. J. Chem.* **2018**, *36*, 791. (e) Wang, Z.; Liu, X. H.; Feng, X. M. Asymmetric Catalysis Enabled by Chiral *N*,*N*'-Dioxide—Nickel(II) Complexes. *Aldrichimica Acta* **2020**, *53*, 3.

(13) For selected examples, see: (a) Xie, M. S.; Chen, X. H.; Zhu, Y.; Gao, B.; Lin, L. L.; Liu, X. H.; Feng, X. M. Asymmetric Three-Component Inverse Electron-Demand Aza-Diels-Alder Reaction: Efficient Synthesis of Ring-Fused Tetrahydroquinolines. *Angew. Chem., Int. Ed.* **2010**, *49*, 3799. (b) Zhao, J. N.; Liu, X. H.; Luo, W. W.; Xie, M. S.; Lin, L. L.; Feng, X. M. Asymmetric Synthesis of β -Amino Nitriles through a Sc^{III}-catalyzed Three-Component Mannich Reaction of Silyl Ketene Imines. *Angew. Chem., Int. Ed.* **2013**, *52*, 3473. (c) Zou, S. J.; Li, W. W.; Fu, K.; Cao, W. D.; Lin, L. L.; Feng, X. M. Chiral N,N'-Dioxide/Tm(OTf)₃ Complex–Catalyzed Asymmetric Bisvinylogous Mannich Reaction of Silyl Ketene Acetal with Aldimines. *Adv. Synth. Catal.* **2019**, *361*, 2295.

(14) In Zhu's work (ref 10), they declared that the α -dicarbonyl group was essential for high ee.

(15) In order to probe the role of water in this system, we tried to get the crystals of the Al(III)-N,N'-dioxide complex in the presence of water. However, we have not gotten the suitable crystals yet for X-ray

crystal structure analysis. We speculate that water might assist proton transfer in the rearrangement process.

(16) (a) Kassin, V.-E. H.; Gérardy, R.; Toupy, T.; Collin, D.; Salvadeo, E.; Toussaint, F.; Van Hecke, K.; Monbaliu, J.-C. M. Expedient Preparation of Active Pharmaceutical Ingredient Ketamine under Sustainable Continuous Flow Conditions. *Green Chem.* **2019**, *21*, 2952. (b) Shevchenko, G. A.; Pupo, G.; List, B. Direct Asymmetric α -Hydroxylation of Cyclic α -Branched Ketones through Enol Catalysis. *Synlett* **2019**, *30*, 49.

(17) The yield of the reaction did not increase with extended reaction time. Although higher yield (75%) was given when the reaction was performed at elevated temperature (80 $^{\circ}$ C), a significant drop of enantioselectivity was observed (racemic vs 52% ee). For more details, see the SI, page 7.

(18) (a) Soeta, T.; Tabatake, Y.; Inomata, K.; Ukaji, Y. Asymmetric Benzoin Condensation Promoted by Chiral Triazolium Precatalyst Bearing a Pyridine Moiety. *Tetrahedron* **2012**, *68*, 894. (b) Dhayalan, V.; Gadekar, S. C.; Alassad, Z.; Milo, A. Unravelling Mechanistic Features of Organocatalysis with *in situ* Modifications at the Secondary Sphere. *Nat. Chem.* **2019**, *11*, 543 and references therein.