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ABSTRACT: Atropisomeric (hetero)biaryls are motifs with 
increasing significance in ligands, natural products and 
biologically active molecules. The straightforward construction 
of the stereogenic axis by efficient C–H functionalization 
methods is extremely rare and challenging. An intermolecular 
and highly enantioselective C–H arylation of relevant 
heteroarenes providing an efficient access to atropisomeric 
(hetero)biaryls is reported. The use of a Pd(0) complex 
equipped with H8-BINAPO as chiral ligand enables the direct 
functionalization of a broad range of 1,2,3-triazoles and 
pyrazoles in excellent yields and selectivities of up to 97.5:2.5 
er. The method also allows for an atroposelective double C–H 
arylation for the construction of two stereogenic axes with 
>99.5:0.5 er. 

Atropisomerism is the time-dependent chirality arising from 
an impediment of free rotation about an axis in a molecule. 
Such axially chiral molecules are an important source of 
stereoinduction in asymmetric catalysis,1 as well abundantly 
found in natural products.2 Recently, the use of atropisomeric 
(hetero)biaryl motifs with ortho substituents to lock biaryl 
bond rotation has garnered attention and is a current trend in 
drug discovery.3 These molecules frequently display enhanced 
stereochemical recognition of biological targets compared to 
their achiral counterparts.4 Representative examples of 
atropisomeric (hetero)biaryls in ligands (StackPHOS),5 natural 
products (Rivularin D3)6 and bioactive molecules (202W92,7 
BI224368) are depicted in Figure 1A. Given the relevance of this 
motif, significant efforts have been dedicated to their 
asymmetric synthesis.9 Catalytic approaches belong to four 
strategies: (i) enantioselective de novo synthesis of an aromatic 
ring,10 (ii) central-to-axial chirality transfer,11 (iii) locking a 
pre-existing axis,12 and (iv) enantioselective formation of a 
(hetero)biaryl linkage. The asymmetric construction of the 
biaryl axis is straightforward in terms of retrosynthetic 
disconnection, but remains challenging in practice. The high 
steric demands of the substrates required to block rotation 
around the axis reduces their chemical reactivity. In this 
respect, the Suzuki–Miyaura coupling has achieved high levels 
of enantiocontrol and good reactivity.13 However, the cross-

coupling methodology requires the use and availability of two 
pre-functionalized substrates. 
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Figure 1. (A) Compounds with atropisomeric heterobiaryl C–C 
linkage. (B) Intermolecular atropo-enantioselective C–H 
functionalization approach.

Complementarily, the enantioselective direct C–H arylation of 
(hetero)arenes – while being more atom-efficient and direct – 
remains a very underdeveloped field. The underlying 
challenges become quickly apparent from the two reported 
cases proceeding both in modest yields and enantioselectivities 
(Figure 1, B). In 2012, Yamaguchi and Itami reported two 
examples of an oxidative Pd(II)-catalyzed coupling proceeding 
in 27% yield and 86:14 er.14a One year later, they reported 
another ligand and oxidant providing 61% yield and 80.5:19.5 
er for the same substrate.14b A highly atropo-enantioselective – 
but intramolecular – synthesis of axially chiral 
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dibenzazepinones by a Pd(0)-catalyzed C–H arylation was 
reported by Cramer in 2018.15 The void of efficient 
intermolecular atropo-enantioselective methods is in stark 
contrast to the rapid recent developments of asymmetric C–H 
functionalization technology.16 Given the long-standing 
interest in asymmetric C–H functionalizations of our 
laboratories,17 this challenged us to develop an intermolecular 
Pd(0)-catalyzed C–H arylation of electron-deficient 
heteroarenes constructing the heterobiaryl axis atropo-
enantioselectively.

Despite being a common motif in biologically active 
compounds and usage as bioisostere and pharmacophore,18 the 
atropisomeric behavior of 1,2,3-triazoles is rarely 
investigated.19 Therefore, we selected 1-methyl-4-phenyl-1H-
1,2,3-triazole (1a) and 1-bromo-2-methoxynaphthalene (2a) 
as suitable model substrates. 1,2,3-Triazoles are readily 
accessible by Cu-catalyzed azide-alkyne cycloadditions20 and 
non-stereoselective Pd(0)-catalyzed C–H arylations have been 
reported.21 The racemization barrier (ΔG‡

enant)22 of 3aa was 
measured to be 32.4 kcal/mol in MeCN (see SI for details). This 
provides sufficient stability for the coupling products bearing 
four ortho-substituents around the heterobiaryl axis to 
withstand prolonged periods of heating at 80–100°C without 
significant racemization (Eq 1). 
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A brief initial screening revealed that Pd(dba)2 with MOP 
(L1)23 as ligand and pivalic acid as co-catalyst provided a very 
reactive catalytic system giving 3aa in an excellent 95% yield 
and a proof of principle enantioselectivity of 67.5:32.5 (Table 
1, Entry 1). Efforts to increase the sterics of L1 replacing phenyl 
with 3,5-xylyl groups as well as exchanging methoxy for 
isopropoxy (L2) had virtually no effect on the 
enantioselectivity of 3aa (entry 2). Variations of the dihedral 
angle of the ligand backbone, represented by L313c and L4, 
marginally improved the selectivity for L3 (Entry 3) but largely 
reduced it for L4 (Entry 4). A bifunctional phosphine ligand 
with an attached carboxylic acid group (L5) developed by 
Baudoin24 slightly improved the enantioselectivity to 73:27 
(Entry 3). BINAPO (L6) improved the enantioselectivity for 
3aa to 78.5:21.5 albeit with a reduced yield of 36% (Entry 6). 
A switch to acetonitrile as solvent further improved the er to 
85.5:14.5 with a significantly increased yield of 65% (Entry 7). 
Different bisphosphine monoxides (BPMOs)25 such as 
SEGPHOSO (L7), SYNPHOSO (L8), DIFLUORPHOSO (L9), 
MeOBIPHEPO (L10) and H8-BINAPO (L11) were prepared 
through a modified Grushin protocol in a single step.26 Notably, 
the BPMO ligand type preferentially provided the opposite 
enantiomer compared to the MOP ligands. The 
enantioselectivity of 3aa progressively improved from L7 to 
L11 (Entries 7–12). H8-BINAPO (L11) performed best in terms 
of selectivity (95:5 er) and reactivity (79% yield) (Entry 12). 
This finding correlates with the very recently reported results 
from Larrosa on Pd(0)-catalyzed arylations of (η6-
arene)chromium complexes.27 The observed enantioselectivity 
roughly correlates to the dihedral angle θ of the ligand, with a 
larger θ providing a higher enantioselectivity (Figure S1). 
Subsequent optimizations confirmed acetonitrile as the best 
solvent and Cs2CO3 outperformed other carbonates (entries 

13–18). Notably, a broad screen of carboxylic acid additives 
revealed that they have a negligible impact on the 
enantioselectivity of this transformation (see SI). An increased 
concentration (0.67 M) improved the isolated yield of 3aa to 
93% keeping the er at 95:5 (Entry 19). The absolute 
configuration of product 3aa was determined by X-ray 
crystallography to be P (Scheme 1).28

Table 1. Optimization of the Intermolecular 
Atroposelective C–H Arylationa

N
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OMe
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10 mol% Pd(dba)2
20 mol% L*

PivOH, Cs2CO3
Solvent, 80°C, 40 h

OR
PAr2

L1 (R=Me, Ar=Ph)
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OMe
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1a 2a 3aa

O
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L5
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entry L* solvent conc. 
[M] % yieldb % erc

1 L1 dioxane 0.33 95 67.5:32.5

2 L2 dioxane 0.33 76 67.5:32.5

3 L3 dioxane 0.33 98 71.5:28.5

4 L4 dioxane 0.33 91 53.5:46.5

5d L5 dioxane 0.33 88 73:27

6 L6 dioxane 0.33 36 78.5:21.5

7 L6 MeCN 0.33 65 85.5:14.5

8 L7 MeCN 0.33 57 12.5:87.5

9 L8 MeCN 0.33 34 12:88

10 L9 MeCN 0.33 26 10.5:89.5

11 L10 MeCN 0.33 62 10:90

12 L11 MeCN 0.33 79 95:5

13 L11 EtCN 0.33 59 94.5:5.5

14 L11 DME 0.33 53 92.5:7.5

15 L11 tBuOMe 0.33 48 92:8

16 L11 2-MeTHF 0.33 40 89.5:10.5

17 L11 dioxane 0.33 33 90:10

18e L11 MeCN 0.33 <5 -

19f L11 MeCN 0.67 93g 95:5

a50 μmol 1, 75 μmol 2, 5 μmol Pd(dba)2, 10 μmol L*, 15 μmol 
PivOH, 75 μmol Cs2CO3. bDetermined by 1H-NMR with 
trichloroethene as internal standard. cDetermined by HPLC 
with a chiral stationary phase. dWithout PivOH. eWith K2CO3. 
fDouble scale. gIsolated yield. hCalculated biaryl dihedral angle 
θ of L* in DFT-optimized PdCl2L* complexes (see SI for details).
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With the aforementioned conditions, the scope of the 
transformation was investigated (Scheme 1). We first focused 
on different bromonaphthalenes. Variation of the alkoxy group 
OR3 ortho to the stereogenic axis of the products had little effect 
on both the reactivity and the enantioselectivity of the reaction 
(3aa–3ad). Bulkier groups (OiPr and OBn) required higher 
reaction temperature (90°C) and extended reaction times to 
retain high yields. The selectivity of 3ae remained very high 
(95.5:4.5 er), whereas it dropped to 91.5:8.5 er for 3af due to a 
slow racemization at 90°C. The introduction of a further 
substituent at C6 of the naphthalene (3ag–3ai) had little 
influence on the reactivity and the stereoselectivity of the 
process. Noteworthily, the naphthalene ring is not required for 
the enantioselectivity. Indeed, tetrahydrobromonaphthalene 
2j and bromocresol derivative 2k delivered coupling products 
3aj and 3ak in good yield and excellent enantioselectivity. 
Moreover, bromopyridine 2l was well arylated giving 3al in 
good yield albeit a reduced 80:20 er. We next investigated the 
scope for the 1,2,3-triazole coupling partner 2y. Modifications 
of the aryl substituent of the 1,2,3-triazole were well tolerated 
and delivered coupling products 3xa and 3xe in consistently 
good yield and high atropo-enantioselectivity. The exceptions 
were the o-tolyl (1b) and 1-naphthyl groups (1j) where the 
increased steric demand of the substituent lowered the 
enantioselectivity of products 3ba, 3be and 3je. In contrast, 
triazoles bearing a 2-naphthyl (1i) or thienyl unit (1k) reacted 
smoothly, with usual excellent atroposelectivity (3ie, 3ke). 
Replacing the aryl substituent of the triazole by an aliphatic 
group (iPr) had no influence on the reactivity and resulted in 
the formation of 3la in 77% yield albeit with a reduced er of 
82.5:17.5. Product 3na, bearing a methyl group at the C4 
position of the triazole was formed with similar enantiomeric 
ratio. Increasing the size of the nitrogen substituent (Me to Bn) 
did not impact the enantiomeric ratio, forming 3ma in 93:7 er 
with 62% yield. X-ray crystallographic analysis of 3la and 3ma 
confirmed the absolute configurations of these two cases to be 
P.28 Moreover, conducting the reaction with 1a and 2a at 10-
fold scale provided 3aa in 72% yield and 93.5:6.5 er.

Scheme 1. Scope for Atroposelective Intermolecular 
1,2,3-Triazole Arylationa
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a0.1 mmol 1x, 0.15 mmol 2y, 10 mol% Pd(dba)2, 20 mol% (S)-
H8-BINAPO, 30 mol% PivOH, 150 mol% Cs2CO3, MeCN (0.67 M), 
80°C, 40 h; isolated yield. bOn a 1.0 mmol scale of 1. c90°C, 60 h. 
d ent-L11 was employed. Absolute configurations assigned by 
analogy to 3la and 3ma.

The applicability of the transformation was challenged with 
related azoles (Scheme 2). We turned towards pyrazoles 
representing important building blocks for pharmaceuticals 
and agrochemicals.29 Pleasingly, pyrazoles with electron-
withdrawing groups at the 3-position underwent smooth and 
highly enantioselective C–H arylation. 3-Carbonitrile pyrazole 
1p was smoothly arylated with bromonaphthalene 2a and 
bromocresol 2k, forming 3pa and 3pk in excellent yields and 
enantioselectivities. The high atroposelectivity was maintained 
with an ester or a CF3 group on the pyrazole instead of the 
nitrile substituent (3oa, 3qa). Moreover, the arylation of 2-
phenylimidazo[1,2-a]pyrimidine (1r), conducted at 100°C in 
dioxane, resulted in formation of the desired coupling product 
3qa in 50% yield and 68:32 er. Isomeric arylation product 3qa’ 
was detected in low levels and as racemic mixture. While the 
general feasibility of atroposelective C–H arylation of 
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heteroaromatics is herein proven with triazoles and pyrazoles, 
this example indicates that further tailored ligand and catalyst 
systems are required for other cases.

Scheme 2. Atroposelective Arylation of Pyrazoles and 
Imidazo[1,2-a]pyrimidinea
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H

 a0.1 mmol 1, 0.15 mmol 2, 10 μmol Pd(dba)2, 20 μmol L11, 30 
μmol PivOH, 0.15 mmol Cs2CO3, 0.67 M in MeCN at 80 °C for 40 
h; isolated yield. b90°C for 60 h. c100°C for 40 h in dioxane. 
Absolute configurations assigned by analogy to 3la and 3ma.

To probe the limits of the transformation, a double 
atroposelective13f C–H arylation of 1,5-dibromo-2,6-
dimethoxynaphthalene 2m and triazole 1a was performed 
(Scheme 3). The reaction cleanly proceeded at 80°C, delivering 
the double C–H activation product 3am possessing two 
stereogenic axes30 in 76% yield (based on limiting 2m) with an 
outstanding enantioselectivity of >99.5:0.5. Notably, no meso-
isomer was observed, but compound 3ag arising from one C–H 
arylation event and hydrodebromination of the second C–Br 
bond was formed in 14% yield and 93:7 er. X-ray analysis of 
3am allowed determination of the configuration of the axes to 
be M,M,28 consistent with the fact that ent-L11 was used for this 
reaction. 

Scheme 3. Double Intermolecular Atroposelective C–H 
Arylation
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To obtain further insights on the reaction mechanism and the 
critical steps of the catalytic cycle, the initial reaction rates (0–
4 h reaction time) of protiated (1a) and deuterated (1a-D1) 
triazole substrates were compared (Scheme 4). Independent 
experiments performed with ligand L1 provided a kH/kD value 
of 1.8. This value indicates that the C–H bond cleavage is the 
rate-limiting step of this reaction.31 In addition, the structure of 
the carboxylic acid co-catalyst had an influence on the rate (the 
reaction was ca. 4 x faster with PivOH) but not on the 
enantioselectivity (Table S1). Taken together, these results 
indicate that the C–H activation step mainly operates through 
the concerted metallation-deprotonation mechanism and is 
rate-limiting.32,33 Moreover, the effect of the ligand dihedral 
angle on the enantioselectivity tends to indicate that reductive 
elimination is the enantio-determining step of the reaction.

Scheme 4. Deuterium Kinetic Isotope Effect

Pd(dba)2/L1 cat.
30 mol% CsOPiv, Cs2CO3

CH3CN (1a) or CD3CN (1a-D1)
90 °C, 0-3 h

N
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Me Ph
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OiPr

N
N N

Me Ph

3ae
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OiPr

N
N N

Me Ph

3ae

In conclusion, we report a highly enantioselective 
intermolecular C–H arylation of medicinally relevant 
heteroarenes providing an efficient access to atropisomeric 
(hetero)biaryls. A Pd(0) complex equipped with H8-BINAPO as 
chiral ligand enabled the arylation of a broad range of 1,2,3-
triazoles in excellent yields and selectivities of up to 97:3 er. 
Besides triazoles, pyrazoles were arylated in high yields and 
excellent atropo-enantioselectivity. Moreover, the method was 
equally well suited for a stereoselective double arylation 
allowing the construction of two stereogenic axes with 
>99.5:0.5 er. The level of enantiocontrol seemed to be linked to 
the biaryl dihedral angle of the employed bisphosphine 
monoxide ligand. Mechanistic investigations indicated C–H 
activation as the rate-determining but not enantio-determining 
step. This provides a foundation to identify the origin of the 
selectivity in this process and to further extend the application 
potential of atroposelective C–H functionalization.
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POPh2
PPh2  33 examples

 up to 97%
 up to 97.5:2.5 er

N
N X

R1 R2

R3

N
N X

R1 R2

+

R3

Br
H L*

cat. Pd0(dba)2, PivOH
Cs2CO3, CH3CN, 80 °C
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