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In the photosynthetic reaction center (RC), two quinones
denoted QA and QB act as electron acceptors.[1] The RC
catalyzes light-induced two-electron reduction of QB with two
protons to yield hydroquinone QBH2, which is released from
the RC and replaced by another quinone molecule from the
pool.[2] Although the first electron transfer, QAC�!QB, does
not involve direct protonation of QBC� ,[3,4] the electron
transfer (ET) is coupled with protonation of a nearby amino
acid residue through hydrogen-bond formation with QBC� .[5–7]

Specific hydrogen bonds with nearby amino acid residues
enable the quinone to perform a specific function, and hence
differences in the nature of the hydrogen-bonding interac-
tions of QA and QB have been suggested to result in their
differing functions.[8] Since hydrogen bonds are largely
electrostatic in nature,[9] protonation of amino acids that
leads to a change in fractional charge on one of the
components in a hydrogen bond will remarkably affect the
strength of hydrogen bonding. Such a change in hydrogen-
bonding strength would have a significant effect on the one-
electron reduction potential of the quinone.[10–13] Direct EPR
detection of a hydrogen-bonded complex between a semi-
quinone radical anion and a protonated amino acid would
afford valuable insight into the hydrogen-bond strength and
electronic structure of the hydrogen-bonded complex. How-
ever, protonation of singly reduced species of carbonyl
compounds acting as strong bases is generally too fast to
detect any intermediate in organic solvent in the presence of
proton donors.[14]

We report herein the first successful EPR detection of a
hydrogen-bonded complex between a semiquinone radical
anion and protonated histidine (His·2H+)[15] using 1-(p-
tolylsulfinyl)-2,5-benzoquinone (TolSQ). Effects of hydrogen
bonding between TolSQC� and His·2H+ on the one-electron
reduction potential of TolSQ and the rate of ET reduction
were examined to reveal how the ET rate is controlled by
hydrogen bonding.

The EPR spectrum of a hydrogen-bonded complex of a
semiquinone radical anion with protonated histidine
(TolSQC�/His·2H+) was detected in photoinduced ET from
10,10’-dimethyl-9,9’-biacridine [(AcrH)2] to TolSQ in the
presence of His·2HClO4 in MeCN at 298 K [Eq. (1); see
experimental details in the Supporting Information].[16]

Biacridine (AcrH)2 is known to act as a two electron donor
to produce two equivalents of the radical anion of an electron
acceptor.[17] Since the TolSQC�/His·2H+ complex is unstable,
the EPR spectrum of a solution of (AcrH)2 (1.6 @ 10�2

m) and
TolSQ (4.0 @ 10�3

m) in MeCN in the presence of His·2H+

(4.0 @ 10�3
m) was measured under steady-state photoirradia-

tion (Figure 1a). The EPR spectrum is well reproduced by a
simulated spectrum with hfc values of a(3H)= 0.88, 5.31, and
6.08 G and superhyperfine splitting due to one nitrogen atom
and three equivalent protons [a(N)= 1.35 G and a(3H)=
2.97 G] of His·2H+ (Figure 1b). The complete agreement of
the observed EPR spectrum (Figure 1a) with the simulated
spectrum (Figure 1b) clearly indicates formation of the
TolSQC�/His·2H+ complex. The g value (2.0026) and the hfc
values [a(3H)= 0.88, 5.31, and 6.08 G] of TolSQC�/His·2H+

are drastically changed from those of TolSQC� in the absence
of His·2H+, which are g= 2.0057 and a(3H)= 2.00, 2.20, and
3.35 G.[18,19]

The optimized structure of TolSQC�/His·2H+ was obtained
by density functional calculations with the BLYP/6-31G**
basis set (see experimental details in the Supporting Infor-
mation).[20] Hydrogen bonds are found between the C=O
oxygen atom of TolSQC� and the COOH proton as well as the
NH3

+ protons of His·2H+, and also between the S=O oxygen
atom of TolSQC� and the NH+ proton of the imidazole ring of
His·2H+ (Figure 1c; for hydrogen-bond lengths, see the
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Supporting Information).[21] Such
multiple hydrogen bonding
between TolSQC� and His·2H+ may
stabilize TolSQC�/His·2H+. The hfc
values calculated with the opti-
mized structure are given in paren-
theses in Figure 1c. The superhy-
perfine coupling due to the hydro-
gen-bonded NH3

+ proton of
His·2H+ is estimated as 6.61 G.
The average of the calculated hfc
values (2.20 G) due to the three
NH3

+ protons agrees with the
observed value.[22] This indicates
that the hydrogen-bonded proton
is rapidly exchanged among the
NH3

+ protons on the EPR time-
scale. The existence of superhyper-
fine coupling due to the hydrogen-
bonded protons and nitrogen atoms
of NH3

+ (Figure 1) strongly sup-
ports the presence of a strong hydrogen bond.

When TolSQ is replaced by p-benzoquinone (Q), only the
protonated species (semiquinone radical QHC) is detected by
EPR in photoinduced ET from (AcrH)2 to Q in the presence
of His·2H+ (see the Supporting Information). Thus, the S=O
oxygen atom in TolSQ plays a crucial role in multiple
hydrogen bonding between TolSQC� and His·2H+.

The strong hydrogen bonding between TolSQC� and
His·2H+ is expected to increase the electron-acceptor ability
of TolSQ.[11] The positive shift of the one-electron reduction
potential Ered of TolSQ in the presence of His·2H+ (5.0 @
10�2

m) was verified by electrochemical measurements. The
cyclic voltammogram of TolSQ exhibits a reversible redox
wave (Figure 2a). In contrast, the cyclic voltammogram of
TolSQ in the presence of His·2H+ exhibits an irreversible
cathodic wave due to the instability of the TolSQC�/His·2H+

complex (Figure 2b). Thus, the Ered value of TolSQ in the
presence of His·2H+ was determined by second-harmonic
alternating-current voltammetry (Figure 2c). The Ered value
of TolSQ [�0.26 V vs saturated calomel electrode (SCE)] is
shifted to 0.29 V versus SCE in the presence of 5.0 @ 10�2

m of
His·2H+. In contrast to the strong hydrogen bonding between
TolSQC� and His·2H+, there is virtually no interaction

between neutral TolSQ and His·2H+. In such a case, the
positive shift in the one-electron reduction potential of TolSQ
in the presence of His·2H+ is expressed by Equation (2),

Ered ¼ E0
red þ ð2:3RT=FÞlog fKred½His 	 2Hþ
g ð2Þ

where E0
red is the reduction potential of TolSQ in the absence

of His·2H+, and Kred the formation constant of the TolSQC�/
His·2H+ complex. The Kred value was determined as 4.2 @
1010

m
�1 from the Ered value of TolSQ in the presence of 5.0 @

10�2
m of His·2H+. Such a large Kred value of the TolSQC�/

His·2H+ complex clearly indicates strong hydrogen bonding
between TolSQC� and His·2H+.

The positive shift of the Ered value of TolSQ should
enhance ET from an electron donor to TolSQ.[12, 13] This was
confirmed by ET from 1,1’-dimethylferrocene (Me2Fc) to
TolSQ in the presence of His·2H+. No ET from Me2Fc (Eox=

0.26 V vs SCE) to TolSQ (Ered=�0.26 V vs SCE) occurs,
because the free-energy change of ET is highly endergonic
(DGet= 0.52 eV). In the presence of 5.0 @ 10�2

m of His·2H+,
however, efficient ET from Me2Fc to TolSQ occurs to yield
Me2Fc

+ [Eq. (3)], as expected from the negative free-energy
change of electron transfer (DGet=�0.03 eV).

Figure 1. a) EPR spectrum of TolSQC�/His·2H+ produced by photoinduced ET from (AcrH)2 (1.6D10�2
m) to TolSQ (4.0D10�3

m) in the presence
of His (4.0D10�3

m) and HClO4 (8.0D10
�3
m) in deaerated MeCN at 298 K. b) Spectrum simulated with the hfc values of TolSQC�/His·2H+.

DHmsl(maximum slope linewidth)=30 G. c) Optimized structure of TolSQC�/His·2H+ calculated by DFT at the BLYP/6-31G** level (calculated hfc
values are given in parentheses).

Figure 2. a) Cyclic voltammogram of TolSQ (1.0D10�2
m) in the absence of His·2H+. b) Cyclic

voltammogram and c) second-harmonic alternating-current voltammogram of TolSQ (5.0D10�3
m)

in the presence of His·2H+ (5.0D10�2
m) in deaerated MeCN containing tetrabutylammonium

perchlorate (TBAP, 0.10m) with a Pt working electrode at 298 K. d) Dependence of ket on [His·2H+]
for ET from Me2Fc (1.0D10�4

m) to TolSQ in the presence of His·2H+ in deaerated MeCN at 298 K.
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Me2Fcþ TolSQþHis 	 2Hþ ket
�!Me2Fc

þ þ TolSQC�=His 	 2Hþ ð3Þ

The ET rates obeyed pseudo-first-order kinetics in the
presence of a large excess TolSQ and His·2H+ relative to the
concentration of Me2Fc (see the first-order plot in the
Supporting Information). The observed pseudo-first-order
rate constant kobs increases proportionally with increasing
TolSQ concentration. The second-order rate constant ket also
increases linearly with [His·2H+] (Figure 2d).

Since His·2H+ has no effect on the oxidation potential of
Me2Fc, the free-energy change of ET from Me2Fc to TolSQ in
the presence of His·2H+ (DGet) can be expressed by
Equation (4), where DG0

et is the free-energy change in the

DGet ¼ DG0
et�ð2:3RT=FÞlog fKred½His 	 2Hþ
g ð4Þ

absence of His·2H+. Such a change in DGet has previously
been reported for metal-ion-promoted ET from Fc to the
naphthoquinone (NQ) moiety of a ferrocene–naphthoqui-
none (Fc–NQ) linked dyad.[23] The dependence of ket of
metal-ion-promoted ET on driving force is well evaluated in
terms of theMarcus theory of electron transfer[24] when the ket

value increases linearly with increasing metal ion concen-
tration.[23] In the case of His·2H+ too, the ket value increases
linearly with [His·2H+] (Figure 2d).

In summary, we have detected a hydrogen-bonded com-
plex of a semiquinone radical anion with protonated histidine
(TolSQC�/His·2H+) by EPR, which reveals strong hydrogen
bonding between TolSQC� and His·2H+. This finding provides
valuable insight into the specific function of quinones in the
photosynthetic RC. Strong hydrogen bonding between semi-
quinone radical anion and protonated amino acid residues
would result in a positive shift in the one-electron reduction
potential of quinones and facilitate the ET reduction of
quinones in the RC.
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