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Abstract: Some new spiro[oxindole-quinazoline/pyrimidine]ones were synthesized via a novel three-component 

Biginelli-like reaction between isatin, cyclic or acyclic 1,3-dicarbonyl compounds, and urea, N-methyl urea or thiourea in 

one pot and good yields. 
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INTRODUCTION 

Indole nucleus is probably one of the most studied 
heterocycles, a common and important feature of a variety of 
natural products and medicinal agents [1]. Compounds 
carrying the indole moiety exhibit antibacterial and 
antifungal activities [2]. Synthesis and high throughput 
screening of indoles have revealed that sharing of indole 3-
carbon atom in the formation of spiroindoline derivatives 
highly enhances their biological activities [3-5].  

Recently, 3,4-dihydropyrimidine-2(1H)-ones have attrac-
ted great attention of synthetic organic chemists due to their 
anti-hypertensive activities as well behaving as calcium 
channel blockers, -1a-antagonists and neuropeptides-Y 
antagonists [6-8]. The Biginelli reaction is one of the well 

established multicomponent reactions (MCRs) which 
frequently was employed for synthesis of 3,4-
dihydropyrimidine-2(1H)-ones (DHPMs). The traditional 
Biginelli reactions are referred to the one-pot condensations 
between a -dicarbonyl compound, an aldehyde, and urea 
under strongly acidic conditions [9]. There are a wealth of 
reports on improvements and extending of this reaction using 
new techniques, variety of catalysts and various reactants 
[10-25].

 
In recent years, several synthetic procedures for  
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preparation of DHPMs via Biginelli-like reactions have been 
reported, which remarkably have broadened the scope of 
Biginelli reactions [26-29].

 
In spite of their potential utility, 

all of the so far reported synthetic methods on Biginelli and 
Biginelli-like reactions start from substrates which are 
limited to aromatic aldehydes, acetophenone or -dicarbonyl 
compounds, and urea or thiourea.

 

As a finding of a research project in continuation of our 
previous work on the Biginelli-like reaction [30], herein we 
report, for the first time, a simple approach to novel 
spiro[oxindole-quinazoline/pyrimidine]ones via a new 
Biginelli-like reaction consisting of a three-component 
cyclocondensation of cyclic or acyclic dicarbonyl com-
pounds, urea or N-methyl urea and isatin derivatives instead 
of aromatic aldehydes. 

RESULT AND DISCUSSION 

Our preliminary experiment using isatin instead of 
aldehydes in the traditional condition of Biginelli reaction 
was successful as a mixture of isatin 1a (5 mmol), dimedone 
2a (7.5 mmol) and urea 3a (5 mmol) in the presence of a 
catalytic amount of acetic acid afforded the spiro[oxindole-
quinazolin]dione 4a in low yield (Scheme 1). Delighted by 
this result we set out to improve the yield by screening some 
possible catalysts, so we chose the condensation of 
dimedone, isatin, and urea as the model reaction being 
performed in the presence of various protic and Lewis acids. 
As is indicated in Table 1, the best yields were obtained in 
the presence of HCl. 
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Table 1. Three-Component Reaction of Isatin, Urea and 

Dimedone in the Presence of 10% mmol of Different 
Catalysts

* 

 

Entry Catalyst Yield (%) 

1 CH3COOH 52 

2 HCl 86 

3 NH4Cl 60 

4 NaHSO4 55 

5 FeCl3 47 

6 AlCl3 45 

*Isatin (5 mmol), urea (5 mmol) and dimedone (7.5 mmol) in absolute ethanol. 

 

Also, to verify the scope of substrates in this synthetic 
method, a set of reactions of isatin derivatives and urea with 
some other cyclic 1,3-dicarbonyl compounds such as 1,3-
cyclohexadione and barbituric acid were examined under the 
same conditions (Scheme 2). As was shown in Table 2, the 
results account for the viability of the reactions with all the 
selected substrates [31, 32].  

However, we have not determined the mechanism of 
reaction. A reasonable and more accepted one for formation 
of the spiro products 4a-h is depicted in Scheme 3. The 
process represents a typical cascade reaction in which the 
isatin 1 first condenses with urea 3 to afford the intermediate 
5. Then, the iminium intermediate 5 subjects to the 1,2-
addition of cyclic 1,3-dicarbonyl compound 2 to give the 
compound 6 followed by cyclocondensation of the amidic 
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Table 2. Synthesis of Spiro[oxindole-quinazoline/pyrrimidine]ones by the Reaction of Isatin Derivatives, Urea or N-methyl Urea or 

Thiourea and Cyclic 1,3-dicarbonyl Compounds in the Presence of a Catalytic Amount of HCl 
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(Table 2). Contd….. 
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Table 3. Synthesis of Spiro[oxindole-pyrrimidine]-2-ones by the Reaction of Isatin Derivatives, Urea or N-methyl Urea and Acyclic 

1,3-dicarbonyl Compounds in the Presence of a Catalytic Amount of HCl 
 

Products R
1
  R

2
  R

3
 X Time (h) Yield (%) Mp (

0
C) 

8a H OCH2CH3  H O 6 90 297-299 

8b Br OCH2CH3  H  O 5:30  87 293-295 

8c H OCH2CH3  CH3 O  5:30 85 248-250 

8d Br OCH2CH3  CH3 O 5 81 175-178 

8e H HNC6H5  H O 7 80 298-300 

8f H HNC6H5  CH3 O 6 88 265-268 

8g Br HNC6H5  H O  6:30 86 295-297 

8h Br OCH2CH3 H S 7 68 323-325 

8i H HNC6H5 H S 8:20 69 331-333 

 

function, with a carbonyl group of the 1,3-dicarbonyl moiety 
to form the desired products 4a-h (Scheme 3) [33]. Also, 
there is another frequently suggested mechanism which was 
based on Knoevenagel condensation between 1,3-dicarbonyl 
compounds and isatin, followed by Michael addition of urea 
to form an , -unsaturated carbonyl transient. The process 
entails with a cyclocondensation of the final intermediate to 
afford the spiro products. 

In the course of further exploring the scope of substrates, 
applicable to this synthesis, we used of ethyl acetoacetate as 
an acyclic 1,3-dicarbonyl compound (Scheme 4). Refluxing 
a solution of 5 mmol isatin 1 with 7.5 mmol ethyl 
acetoacetate 7 and 5 mmol urea 3 in ethanol, afforded 
spiro[oxindole-pyrimidine]one 8a, but the yield was not so 
high (37%) (Scheme 4). In order to increase the yield, we 
examined the effects of amount of urea and catalyst on the 
formation of 8a. Fortunately, we found that, with increasing 
the amount of urea from 5 mmol to 10 mmol and HCl from 
10% mmol to 15% mmol the yield of 8a is also increases to 
90%. 

Similarly, under the above optimized condition, the 
reaction with other acyclic 1,3-dicarbonyl compounds 
proceeded well and a variety of the desired spiro oxindole 
products 8b-i were obtained in good yields [34] (Scheme 4, 
Table 3). 

In summary, a new class of three-component Biginelli-
like reactions based on using isatin derivatives instead of 
aldehydes was introduced here. These reactions were 
successfully devised as an efficient and convenient means 
for synthesis of some novel spiro[oxindole-
pyrimidine/quinazoline]ones. This method has shown the 
ability to tolerate a reasonable variety of substituents in all 
three components; therefore we anticipate that it will be 

adopted in combinatorial chemistry to synthesize the related 
spiro oxindoles of potent biological importance for 
screening. 
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1H, NH), 9.69 (s, 1H, NH), 10.27 (s, 1H, NH); 13C NMR (75 MHz, 
DMSO-d6) : 26.7, 26.8, 28.0, 32.2, 49.7, 61.7, 105.2, 109.2, 121.4, 
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Calcd. for C17H17N3O3: C, 65.58; H, 5.50; N, 13.50. Found: C, 
65.62; H, 5.53; N, 13.35.  

 Spiro[4.3 ]oxindole-3,4,7,8-tetrahydro-1,7,7-trimethylquinazoline-
2,5-(1H,6H)-dione (4b): Mp 336-338 ˚C; IR (KBr) ( max cm-1): 
3220, 3200, 3082, 2935, 1732, 1685; 1H NMR (300 MHz, DMSO-
d6) : 0.97 (s, 3H, CH3), 1.03 (s, 3H, CH3), 1.93 (d, J=15.9 Hz, 1H, 
H-8a), 2.01 (d, J=15.9 Hz, 1H, H-8b), 2.47 (d, J=3.0 Hz, 1H, H-
6a), 2.50 (d, J=3.0 Hz, 1H, H-6b), 3.31 (s, 3H, CH3), 6.73-7.13 (m, 
4H, H-aromatic), 8.04 (s, 1H, NH), 10.22 (s, 1H, NH); 13C NMR 
(75 MHz, DMSO-d6) : 27.1, 27.1, 28.2, 29.2, 32.0, 48.9, 61.0, 
107.4, 109.3, 121.4, 123.0, 128.7, 133.6, 142.0, 150.7, 155.3, 
176.5, 192.3 ppm; MS (70 eV): m/z (%): 325 (5, M+), 295 (5.5), 
280 (50), 241 (100), 212 (22).  

 5 -Bromo-spiro[4.3 ]oxindole-3,4,7,8-tetrahydro-1,7,7-trimethylqu-
inazoline-2,5-(1H,6H)-dione (4c): Mp 344-346 ˚C; IR (KBr) ( max 

cm-1): 3207, 3089, 2947, 1728, 1689; 1H NMR (300 MHz, DMSO-
d6) :1.01 (s, 3H, CH3), 1.06 (s, 3H, CH3), 1.99 (d, J=9.5 Hz, 1H, 
H-8a), 2.01 (d, J=9.5 Hz, 1H, H-8b), 2.62 (d, J=9.5 Hz, 1H, H-6a), 
2.65 (d, J=9.5 Hz, 1H, H-6b), 3.32 (s, 3H, CH3), 6.72-7.33 (m, 3H, 
H-aromatic), 8.11 (s, 1H, NH), 10.39 (s, 1H, NH). 13C NMR (75 
MHz, DMSO-d6) : 28.4, 28.7, 30.2, 32.9, 49.1, 56.8, 62.1, 107.6, 
112.1, 113.8, 126.8, 132.2, 136.8, 142.3, 151.40, 156.8, 177.1, 
193.3 ppm.  

 Spiro[4.3 ]oxindole-3,4,7,8-tetrahydro quinazoline-2,5-(1H,6H)-
dione (4d): Mp 345-347 ˚C; IR (KBr) ( max cm-1): 3311, 3228, 
3118, 1712, 1695, 1631; 1H NMR (300 MHz, DMSO-d6) : 1.86-
2.15 (m, 4H, H-7,8), 2.50 (m, 2H, H-6), 6.74-7.14 (m, 4H, H-
aromatic), 7.83 (s, 1H, NH), 9.68 (s, 1H, NH), 10.25 (s, 1H, NH); 
13C NMR (75 MHz, DMSO-d6) : 21.6, 27.0, 37.2, 62.8, 107.5, 
110.1, 122.3, 124.1, 129.5, 134.5, 142.9, 151.0, 156.9, 177.5, 193.0 
ppm. Anal. Calcd. for C15H13N3O3: C, 63.60; H, 4.63; N, 14.83. 
Found: C, 63.66; H, 4.69; N, 14.76.  

 Spiro[5.3 ]oxindole-5,6-dihydropyrimido[4,5-b]pyrimidine-2,4,7-
(1H,3H,8H)-trione (4e): Mp 270-272 ˚C; IR (KBr) ( max cm-1): 
3367, 3301, 3265, 1762, 1749, 1712, 1690; 1H NMR (300 MHz, 
DMSO-d6) : 6.67-7.13 (m, 4H, H-aromatic), 10.54 (s, 1H, NH), 
11.17 (m, 4H, NH); 13C NMR (75 MHz, DMSO-d6) : 53.4, 109.4, 
121.4, 124.2, 128.0, 128.7, 143.1, 150.2, 167.4, 175.6 ppm. Anal. 
Calcd. for C13H9N5O4: C, 52.18; H, 3.03; N, 23.40. Found: C, 
52.23; H, 2.99; N, 23.44.  
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 Spiro[5.3 ]-1 -N-Methyl-oxindole-5,6-dihydropyrimido[4,5-d]pyri-
midine-2,4,7-(1H,3H,8H)-trione (4f): Mp 228-230 ˚C; IR (KBr) 
( max cm-1): 3380, 3184, 3097, 2981, 1740, 1710, 1690; 1H NMR 
(300 MHz, DMSO-d6) : 3.03 (s, 3H, CH3), 6.91-7.28 (m, 4H, H-
aromatic), 11.2 (m, 4H, NH); 13C NMR (75 MHz, DMSO-d6) : 
53.5, 56.9, 109.2, 123.0, 124.7, 128.4, 129.8, 145.4, 151.0, 168.6, 
175.1 ppm.  

 5 -Bromo-spiro[5,3 ]oxindole-5,6-dihydropyrimido[4,5-d]pyrimi-
dine-2,4,7-(1H,3H,8H)- trione (4g): Mp 238-240 ˚C; IR (KBr) ( max 

cm-1): 3334, 3211, 3093, 1731, 1689; 1H NMR (300 MHz, DMSO-
d6) : 6.68-7.35 (m, 3H, H-aromatic), 10.74 (s, 1H, NH), 11.25 (m, 
4H, NH); 13C NMR (75 MHz, DMSO-d6) : 56.9, 112.1, 113.8, 
128.1, 131.6, 132.3, 143.6, 151.0, 168.0, 176.3 ppm.  

 5 -Bromo-spiro[5,3 ]oxindole-5,6,7,8-tetrahydro-7-thioxopyrimido 
[4,5-d]pyrimidine-2,4-(1H,3H)-dione (4h): Mp 365-367 ˚C; IR 
(KBr) ( max cm-1): 3328, 3151, 3098, 1710, 1681; 1H NMR (300 
MHz, DMSO-d6) : 6.73-8.27 (m, 3H, H-aromatic), 10.63 (s, 1H, 
NH), 11.20 (m, 2H, NH), 11.32 (m, 2H, NH); 13C NMR (75 MHz, 
DMSO-d6) : 57.3, 112.8, 112.9, 128.6, 132.1, 132.7, 143.9, 168.3, 
176.7, 178.1 ppm.  

[33] Kappe, C.O. A reexamination of the mechanism of the Biginelli 
dihydropyrimidine synthesis. Support for an N-acyliminium ion 

intermediate. J. Org. Chem. 1997, 62, 7201. 
[34] General procedure for the synthesis of spiro[oxindole-

pyrrimidine]ones 8a-i: A mixture of isatin derivative 1 (5 mmol), 
acyclic 1,3-dicarbonyl compound 7 (7.5 mmol), urea or N-methyl 
urea or thiourea 3 (10 mmol), HCl (15% mmol) and ethanol (5 mL) 
refluxed for appropriate time according to Table 3 (Scheme 4). The 
reaction after completion, as monitored by TLC on silica gel using 
ethyl acetate as eluent, was allowed to cool to room temperature. 
Then 30 mL distilled water was added to the beaker and stirred for 
10 minute. The precipitate thus obtained was filtered off. The crude 
product was purified by recrystallization from ethanol 95.5% and 
dried.  

 Spiro[4.3']oxindole-ethyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-pyri-
midine-5-carboxylate (8a): Mp 297-299 ˚C; IR (KBr) ( max cm-1): 
3436, 3201, 3089, 2970, 1716, 1664; 1H NMR (300 MHz, DMSO-
d6) : 0.80 (t, 3H, CH3 ), 2.44 (s, 3H, CH3), 3.72 (m, 2H, CH2), 
6.75-7.19 (m, 4H, H-aromatic), 7.80 (s, 1H, NH), 9.37 (s, 1H, NH), 
10.23 (s, 1H, NH); 13C NMR (75 MHz, DMSO-d6) : 14.0, 19.0, 
19.4, 63.9, 97.86, 110.2, 122.5, 124.1, 129.7, 135.1, 143.0, 150.8, 
151.3, 165.4, 178.2 ppm; MS (70 eV): m/z (%): 301 (10, M+), 272 
(64), 228 (100), 200 (34), 131 (7), 103 (10), 91 (8), 77 (8), 56 (7), 
42 (17). Anal. Calcd. for C15H15N3O4: C, 59.79; H, 5.02; N, 13.95. 
Found: C, 59.85; H, 4.86; N, 14.00.  

 5 -Bromo-spiro[4.3']oxindole-ethyl-1,2,3,4-tetrahydro-6-methyl-2-
oxo-pyrimidine-5-carboxylate (8b): Mp 293-295 ˚C; IR (KBr) ( max 

cm-1): 3420, 3310, 3145, 1730, 1705, 1640; 1H NMR (300 MHz, 
DMSO-d6) : 0.85 (t, 3H, CH3), 2.24 (s, 3H, CH3), 3.76 (m, 2H, 
CH2), 6.71-7.37 (m, 3H, H-aromatic), 7.87 (s, 1H, NH), 9.44 (s, 
1H, NH), 10.39 (s, 1H, NH); 13C NMR (75 MHz, DMSO-d6) : 
14.0, 19.0, 19.1, 64.0, 97.0, 112.2, 113.9, 126.9, 132.4, 142.3, 
151.0, 151.7, 165.2, 177.9 ppm; MS (70 eV): m/z (%): 379 (14, 
M+), 350 (75), 306 (100), 278 (19), 263 (12), 210 (11), 131 (12), 
103 (14), 91 (10), 77 (9), 42 (43). 

 Spiro[4.3']oxindole-ethyl-1,2,3,4-tetrahydro-1,6-dimethyl-2-oxo-
pyrimidine-5-arboxylate (8c): Mp 248-250 ˚C; IR (KBr) ( max cm-

1): 3320, 3259, 1735, 1710, 1664; 1H NMR (300 MHz, DMSO-d6) 
: 0.78 (t, 3H, CH3), 2.43 (s, 3H, CH3), 3.17 (s, 3H, CH3), 3.69 (m, 

2H, CH2), 6.75-7.20 (m, 4H, H-aromatic), 7.93 (s, 1H, NH), 10.25 
(s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) : 13.8, 17.3, 30.2, 
60.2, 62.8, 101.0, 110.3, 122.5, 124.1, 129.9, 134.4, 143.0, 151.7, 
152.3, 165.8, 178.0 ppm; MS (70 eV): m/z (%): 315 (16, M+), 286 
(90), 242 (100), 214 (35), 199 (13), 103 (9), 91 (7), 77 (9), 56 (70), 
42 (8). 

 5 -Bromo-spiro[4.3']oxindole-ethyl-1,2,3,4-tetrahydro-1,6-dimethyl-
2-oxo-pyrimidine-5-carboxylate (8d): Mp 175-178 ˚C; IR (KBr) 
( max cm-1): 3452, 3217, 1740, 1712, 1649. 1H NMR (300 MHz, 
DMSO-d6) : 0.64 (t, 3H, CH3), 2.27 (s, 3H, CH3), 3.01 (s, 3H, 
CH3), 3.59 (m, 2H, CH2), 6.46-7.13 (m, 3H, H-aromatic), 7.29 (s, 
1H, NH), 9.80 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) : 13.5, 
14.4, 17.3, 60.3, 63.0, 100.2, 111.8, 114.5, 126.9, 132.2, 135.9, 
141.3, 151.9, 152.0, 165.3, 177.9 ppm. MS (70 eV): m/z (%): 393 
(6, M+), 364 (40), 320 (38), 292 (12), 277 (8), 103(8), 91 (7), 77 
(7), 56 (100), 42 (15).  

 Spiro[4.3']oxindole-N-Phenyl-1,2,3,4-tetrahydro-6-methyl-2-oxo-
pyrimidine-5-carboxamide (8e): Mp 298-300 ˚C; IR (KBr) ( max 

cm-1): 3400, 3298, 1722, 1700. 1H NMR (300 MHz, DMSO-d6) : 
2.01 (s, 3H, CH3), 6.69-7.38 (m, 9H, H-aromatic), 7.56 (s, 1H, 
NH), 8.92 (s, 1H, NH), 9.69 (s, 1H, NH), 10.13 (s, 1H, NH). 13C 
NMR (75 MHz, DMSO-d6) : 18.3, 64.2, 105.3, 110.3, 120.0, 
122.3, 123.9, 124.7, 129.3, 133.2, 139.7, 139.8, 143.3, 152.8, 
165.0, 178.3 ppm. Anal. Calcd. for C19H16N4O3: C, 65.51; H, 4.63; 
N, 16.08. Found: C, 65.46; H, 4.55; N, 16.12.  

 Spiro[4.3']oxindole-N-Phenyl-1,2,3,4-tetrahydro-1,6-dimethyl-2-
oxo-pyrimidine-5-carboxamide (8f): Mp 265-268 ˚C; IR (KBr) 
( max cm-1): 3410, 3298, 1718, 1700. 1H NMR (300 MHz, DMSO-
d6) : 2.16 (s, 3H, CH3), 3.15 (s, 3H, CH3), 6.69-7.36 (m, 9H, H-
aromatic), 7.72 (s, 1H, NH), 9.91 (s, 1H, NH), 10.16 (s, 1H, NH). 
13C NMR (75 MHz, DMSO-d6) : 18.3, 30.0, 63.1, 107.8, 110.3, 
120.2, 122.3, 124.0, 125.0, 129.3, 130.0, 132.4, 139.6, 140.5, 
143.2, 153.6, 165.3, 178.0 ppm. 

 5 -Bromo-spiro[4.3']oxindole-N-Phenyl-1,2,3,4-tetrahydro-6-met-
hyl-2-oxo-pyrimidine-5-carboxamide (8g): Mp 295-297 ˚C; IR 
(KBr) ( max cm-1): 3405, 3220, 1712, 1690. 1H NMR (300 MHz, 
DMSO-d6) : 2.02 (s, 3H, CH3), 6.67-7.39 (m , 8H, H-aromatic), 
7.67 (s, 1H, NH), 9.01 (s, 1H, NH), 9.74 (s, 1H, NH), 10.30 (s, 1H, 
NH). 13C NMR (75 MHz, DMSO-d6) : 18.4, 64.3, 104.6, 112.3, 
113.7, 120.0, 120.2, 124.0, 127.5, 129.4, 132.6, 135.8, 139.6, 
140.5, 142.6, 152.5, 164.9, 177.8 ppm.  

 5 -Bromo-spiro[4.3']oxindole-ethyl-1,2,3,4-tetrahydro-6-methyl-2-
thio-pyrimidine-5-carboxylate (8h): Mp 323-325 ˚C; IR (KBr) ( max 

cm-1): 3407, 3315, 3132, 1715, 1709; 1H NMR (300 MHz, DMSO-
d6) : 0.88 (t, 3H, CH3), 2.35 (s, 3H, CH3), 3.78 (m, 2H, CH2), 
6.46-7.13 (m, 3H, H-aromatic), 7.76 (s, 1H, NH), 9.54 (s, 1H, NH), 
10.48 (s, 1H, NH); 13C NMR (75 MHz, DMSO-d6) : 15.1, 20.4, 
20.9, 69.7, 100.6, 114.1, 115.8, 127.6, 132.1, 141.9, 151.3, 165.4, 
174.7, 178.1 ppm. 

 Spiro[4.3']oxindole-N-Phenyl-1,2,3,4-tetrahydro-6-methyl-2-thio-
pyrimidine-5-carboxamide (8i): Mp 331-333 ˚C; IR (KBr) ( max  

cm-1): 3408, 3301, 1718, 1703. 1H NMR (300 MHz, DMSO-d6) : 
2.08 (s, 3H, CH3), 6.72-7.43 (m, 9H, H-aromatic), 7.50 (s, 1H, 
NH), 9.01 (s, 1H, NH), 9.73 (s, 1H, NH), 10.53 (s, 1H, NH). 13C 
NMR (75 MHz, DMSO-d6) : 19.3, 64.8, 106.3, 111.2, 119.8, 
122.7, 124.1, 124.9, 130.2, 133.1, 139.9, 140.0, 143.9, 165.9, 
175.6, 177.1 ppm.  

 


