A NEW AND EFFECTIVE AMINOMETHYLATION BY THE USE OF N-(p-TOLUENESULFONYLMETHYL)-p-TOLUENESULFONAMIDE AS AN EQUIVALENT OF METHANIMINE. A CONVENIENT PREPARATION OF PYRROLE COMPOUNDS

Hideki KINOSHITA,^{*} Katsuhiko INOMATA, Masatoshi HAYASHI, Takeshi KONDOH, and Hiroshi KOTAKE

Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920

Readily available N-(p-toluenesulfonylmethyl)-p-toluenesulfonamide was treated with base to generate N-methylene-p-toluenesulfonamide which reacted with a variety of nucleophiles forming the corresponding N-tosyl-aminomethylated compounds in good yields. Furthermore, the N-tosyl-aminomethylated acetals thus obtained were converted into the corresponding N-tosylpyrroles with the aid of acid catalyst in excellent yields.

Useful aminomethylating agents such as Mannich base and Eschenmoser's salt¹⁾ have been widely employed in synthetic chemistry, for instance, to introduce carbon-carbon double bond.

We now wish to report that N-(p-toluenesulfonylmethyl)-p-toluenesulfonamide $(\underline{1})^{2}$ readily derived from p-toluenesulfonamide (TsNH₂), formalin, and sodium p-toluenesulfinate·4H₂O (TsNa·4H₂O) in formic acid³) is a very versatile reagent for aminomethylation. Treatment of $\underline{1}$ with suitable base resulted in effective elimination of p-toluenesulfinic acid (TsH) to give labile N-methylene-p-toluene-sulfonamide ($\underline{2}$) which reacted with a variety of nucleophiles to afford the corresponding N-tosyl-aminomethylated compounds $\underline{3}$ in good yields as shown in Eq. 1.

$$\begin{array}{ccc} \text{TsNHCH}_2\text{Ts} & \xrightarrow{\text{Base}} & [\text{CH}_2=\text{N-Ts}] & \xrightarrow{1) & :\text{Nu}} & \text{NuCH}_2\text{NHTs} & (1) \\ \\ \underline{1} & \underline{2} & & \underline{3} \end{array}$$

At first, a solution of $\underline{1}$ in THF was added dropwise to a solution of N-(1-cyclohexenyl)pyrrolidine and 1.1 equiv. of DBU in THF at 0 °C for 20 min. After

vigorous stirring at room temperature for 2 h and acid hydrolysis, 2-(N-tosyl aminomethyl)cyclohexanone ($\underline{3a}$) was obtained in 65% yield (Entry 1). A similar reaction with N-(1-cyclopentenyl)pyrrolidine gave $\underline{3b}$ in a poor yield (Entry 2).

Next, the reaction of $\underline{1}$ with several ester-stabilized carbanions was tested. To a solution of ethyl N-(diphenylmethylene)glycinate⁴⁾ (77 mg, 0.25 mmol) and 2.5 equiv. of DBU (95 mg, 0.63 mmol) in THF (2 ml) was added a solution of 1.5 equiv. of $\underline{1}$ (124 mg, 0.37 mmol) in THF (10 ml) using mechanically driven syringe in a period of 3 h at room temperature. Then, the reaction mixture was stirred for additional 1 h. After usual work-up and separation with a preparative TLC (SiO₂, hexane:AcOEt=1:1 v/v), $\underline{3c}$ was obtained in 71% yield (80 mg). A similar reaction with diethyl malonate gave no trace of diethyl N-tosylaminomethylmalonate, but, diethyl bis(N-tosylaminomethyl)malonate, diethyl 2,4-diethoxycarbonyl-2-(N-tosylaminomethyl)glutamate, and TsNH₂ were obtained in 16%, 14%, and 45%, respectively. In the light of the above result, diethyl methylmalonate was treated with $\underline{1}$ under the same reaction conditions as Entry 3 to give the desired product $\underline{3d}$ in 83% yield. Similarly, compounds $\underline{3e-g}$ were prepared in good yields as shown in Table 1.

Subsequently, the reaction of <u>1</u> with the carbanion of sulfone compounds was investigated under various conditions. The following procedure was found most suitable for the preparation of <u>3h-n</u>: After the addition of MeLi (1.7 M in ether, 0.24 ml, 0.40 mmol) to a vigorously stirred solution of <u>1</u> (133 mg, 0.40 mmol) in THF (23 ml) at - 100 °C under N₂, a solution of the lithium salt prepared in another flask from the reaction of β -benzy1- β -tosylpropanal dimethyl acetal (40 mg, 0.115 mmol) with 1.1 equiv. of BuLi in THF (2 ml) at -78 °C for 1 h under N₂ was added. The reaction mixture was warmed to -78 °C and worked up in the usual way. (β -N-Tosylaminomethylated propanal <u>3h</u> was isolated in 76% yield. In a similar way, compounds <u>3i-n</u> were prepared in good yields (Entries 9-14).

In the previous papers,⁵⁾ we have reported that Y-hydroxy- β -tosylbutanal acetals were converted into furans effectively by means of acid catalyst. Therefore, compound <u>3h</u> thus prepared was allowed to reflux in benzene for 15 min in the presence of a catalytic amount of p-toluenesulfonic acid (PTSA) under N₂. After separation by a preparative TLC (SiO₂, benzene:AcOEt=90:1 v/v), N-tosyl-3-benzylpyrrole (4h) was obtained in 80% yield. Similarly, compounds 4i-n were

Entr	у	Subst	trate	1	Molar ratio o base ^{b)} / <u>1</u> /substr		Product ^{a)} (<u>3a-n</u>)		Yield/%
1		\bigcirc	}_N		1.1/1/1	\square)=0 −CH ₂ NHTs	<u>3a</u> c)	65 ^{d)}
2			≻N	\supset	1.1/1/1	\langle	L ⁰ Ch ₂ Nhts	<u>3b</u> e)	24
3	P P	h C = N + h	•сн ₂ с	0 ₂ Et	2.5/1.5/1	Ph C=1	N-C ^{CO2Et} H CH2NHT	$s^{\underline{3c}^{f}}$	71
4	C	н ₃ -сн(,co ₂ e `co ₂ e	t t	2.8/1.5/1	CH TsNHCH	H ₃ C ^{CO2Et} H ₂ C ^{CO2Et}	<u>3d</u> e)	83
5	С	н ₃ -сн(,cn `co ₂ e	t	2.8/1.5/1	CH TsNHCH	H ₃ C ^{CN} H ₂ CC ₂ Et	<u>3e</u> g)	82
6	C	H ₃ CONF	н-сн	CO ₂ Et CO ₂ Et	2.8/1.5/1	CH ₃ CON TsNHCH	NH CO ₂ Et	$\underline{3f}^{e)}$	94
7	P P	h C=N-	\bigvee_{0}	δ	2.8/1.5/1	Ph C=N TsNHCH		<u>3g</u> h)	74
		R ¹ 0 C	$\sim^{3}_{0R^{1}}$	RT			$R^3 \xrightarrow{Ts} R^4$ OR ¹ NHTs		
	R^1	R^2	R ³	R ⁴			(<u>3h-n</u>)		
8	CH ₃	Н	Н	2	3.5/3.5/1		$\frac{3h^{i}}{i}$		76
9	CH ₃	Н	Н		3.5/3.5/1		<u>3i</u> j)		74
10	CH ₃	Н	Н	$CH_3(CH_2)_1$			$\frac{3j^{e}}{k}$		59
	-(CH ₂) ₂ -	-		PhCH ₂	3.5/3.5/1		$\frac{3k^{k}}{m}$		82
	-(CH ₂) ₂ -	0			3.85/3.5/1		$\frac{31^{m}}{2}$		71
13	-(CH ₂) ₂ -	CH ₃		сн ₃ сн ₂			$\underline{3m}^{e}$		71
14	-(CH ₂) ₂ -	Н	CH ₃	CH ₃ CH ₂	3.85/3.5/1		<u>3n</u> e,n)		58

Table 1. Reaction of N-Tosylaminomethylating Agent <u>1</u> with Various Nucleophiles

a) All compounds gave satisfactory spectral data. b) DBU in Entries 1-7 and MeLi in Entries 8-14 were used as bases. c) Mp 84-86 °C (from benzene-hexane). d) 2,6-Bis(N-tosylaminomethyl)cyclohexanone was obtained in 9% yield besides 3a. e) Obtained as an oily product. f) Mp 106-107 °C (from ether). g) Mp 105.5-107 °C (from ether). h) Mp 169.5-171 °C (from ether). i) Mp 98.5-99.0 °C (from n-PrOH). j) Mp 103-103.5 °C (from n-PrOH). k) Mp 91-92 °C (from n-PrOH). m) Mp 96.5-97.5 °C (from EtOH). n) Obtained as mixture of diastereoisomers (78:22).

	$\mathbb{R}^{1} \xrightarrow{0}_{OR} \mathbb{R}^{1} \xrightarrow{R^{3}}_{NHTs} \mathbb{R}^{4}$		PTSA in benzene reflux <u>A</u>		$ \begin{array}{c c} R^{2} \\ R^{2} \\ R^{2} \\ N \\ Ts \\ \underline{4h-n} \\\underline{B} \\ \end{array} $ $ \begin{array}{c} 2M \text{ KOH} \\ \underline{in \text{ MeOH}} \\ \text{reflux} \\ \underline{B} \\ \end{array} $		$ \begin{array}{c} \text{KOH} \\ \text{MeOH} \\ \text{flux} \\ \text{HeOH} \\$	$\rightarrow R^{2} \swarrow_{N}^{R^{3}} \bigvee_{H}^{R^{4}}$	
	Star	ateri	al	Reaction	time	Yiel	Yield/%		
	R^1	R^2	R ³	R ⁴	A	B	$4h-n^{a}$	<u>5h-n</u> a,b)	
3h	CH ₃	Н	Н	PhCH ₂	15 min	2 h	80 ^c)	quant.	
3i	CH ₃	Н	Н	PhCH ₂ CH ₂	5 min	2.5 h	83d)	quant.	
3j	CH ₃	Н	Н	$CH_3(CH_2)_{10}$	5 min	2 h	quant. ^{b)}	quant.	
3k	-(CH ₂) ₂ -	CH ₃	Н	PhCH ₂	5 min	2 h	quant. ^{b)}	quant.	
31	-(CH ₂) ₂ -	CH ₃	Н	PhCH ₂ CH ₂	10 min	6.5 h	94 ^{b)}	92	
3m	-(CH ₂) ₂ -	CH ₃	Н	сн ₃ сн ₂	10 min	6.5 h	80 ^{b)}	88	
3n	-(CH ₂) ₂ -	Н	CH ₃	CH ₃ CH ₂	10 min	4 h	quant. ^{e)}	94	

Table 2. Conversion of N-Tosylaminomethylated Acetal Derivatives into Pyrroles

a) All compounds gave satisfactory spectral data. b) Obtained as an oily pro-c) Mp 91.5-92.0 °C (from hexane). d) Mp 93.5-94.0 °C (from heptane). e) Mp 52.5-53.0 °C (from hexane). b) Obtained as an oily product.

prepared in high yields as shown in Table 2. On treatment of 4h-n with 2 M KOH in refluxing MeOH.⁶⁾ detosylation reaction proceeded very smoothly to afford $\frac{5h-n}{2}$ in quantitative yields as shown in Table 2.

As mentioned above, the readily available compound 1 proved to be a very useful reagent for aminomethylation.

Further studies on the scope and limitation of this reagent 1 in organic synthesis are now undergoing.

References

- J. Schreiber, H. Maag, N. Hashimoto, and A. Eschenmoser, Angew. Chem., Int. Ed. Engl., <u>10</u>, 330(1971).
- Engl., <u>10</u>, 330(1971).
 2) The reagent <u>1</u> was prepared as follows: A solution of TsNH₂ (855 mg, 5 mmol), TsNa·4H₂O (1.25 g, 5 mmol), and 0.5 ml of formalin in 1 ml of HCO₂H and 5 ml of H₂O was warmed at 80 °C for 2 h. Recrystallization from EtOH gave pure <u>1</u> in 86% yield (Mp 163-163.5 °C). Found: C, 53.02; H, 5.06; N, 4.07%. Calcd for C₁₅H₁₇NO₄S₂: C, 53.08; H, 5.05; N, 4.13%.
 3) A. M. Van. Leusen and J. Strating, Org. Synth., <u>57</u>, 95(1977).
 4) M. J. O'Donnell and R. L. Polt, J. Org. Chem., <u>47</u>, 2663(1982).
 5) H. Kotake, K. Inomata, H. Kinoshita, S. Aoyama, and Y. Sakamoto, Heterocycles, <u>10</u>, 105(1978), K. Inomata, Y. Nakayama, M. Tsutsumi, and H. Kotake, ibid., <u>12</u>, 1467(1980).

- $\frac{12}{12}$, 1467(1980). 6) W. G. Terry, A. H. Jackson, G. W. Kenner, and G. Kornis, J. Chem. Soc., <u>1965</u>,
- 4389.

(Received March 31, 1986)