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ON THE STABILITY OF CHARACTERIZATION BY THE DISTRIBUTION
OF ANY ORDER STATISTIC*

A. P. Ushakova and V. G. Ushakov (Chernogolovka, Russia) UDC 519.2

Some upper and lower estimates of stability of characterization of distribution by the distribution of any order
statistic are obtained.

1. Introduction

Let Xj,..., X, be independent and identically distributed random variables. Let X/ denote the rth order statistic.
Johnson and Kotz [1] showed that the distribution of X/, characterizes (uniquely determines) the distribution of X.
In this paper, we prove that this characterization is stable in the uniform metric and obtain some lower and upper
estimates of stability.

Let X4,...,X, and Z,,..., Z, be two groups of independent random variables identically distributed in each group,
1<r<n,and X/ and Z.. be the corresponding rth order statistics. Denote the cumulative distribution functions
of X;, Z;, X'.., and Z'., respectively, by F(z), G(z), F"(z), and G")(z).

rn rn

2. Auxiliary Results

First we prove some elementary estimates connected with the integral of the form
/t"l(l —t)*"dt, 1<r<n

Below we use the following notations:

Yy
§4O) =/t"1(1 ~ )" dt (1)
0
and
1
18 = /t"“(l—t)""dt, 2)
1-y

where 0 < y < 1.
LEMMA 1. For any0 <y <1landallr=1,2,... n, the following inequalities hold:

y > [PIV, (3)
y > [(n—r+ I/, ()

If, in addition, 2 <r <n -1, then
y21-(1=-nIf)/", i=1,2 (5)
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Proof. We have v
s [ria=ty,
, T
0

which implies (3), and, analogously,

"(.22 < /(1 _ t)n—r dt = — 1 n—r+l,

which implies (4).
Now suppose that 2 < # < n — 1. Let us prove (5) for i = 1 (for ¢ = 2 the proof is similar). Set

n-—1 n—1
r—1’ n-r

p:

then 1/p + 1/q, and, due to the Holder inequality,

d Y ey ¥ 1/q
151%2- = /tr—l(l - t)n—r dt < [/ tn—l dt] [/(1 _ t)n—l dt] = n—l/P(yn)I/Pn—l/'Z(l _ (1 _ y)n)l/Q_
0 0 0
This implies that either
nl{) <
or
nI) <1-(1-y)™ (6)

Since y™ <1 — (1 — )", we come to the conclusion that (6) holds anyway; (5) is a simple consequence of (G).

LEMMA 2. If0 <y <1/2, then '
y < p/ran=n/r @O =12, (7

If1/2<y <1, then
y < 2(r—1)/(n—r+1)(n —r4+ 1)1/(n—r+l)[If(::lll/(n-r+l)’ i=1,2. (8)

Proof. Let 0 < y < 1/2; then

Yy
1 11
I > Fnr /tr—] dt =~

0
which implies (7) for ¢ = 1, and, analogously,

1

1 . 11 .
1z [rta=loca-a-w,

1-y

which implies (7) for i = 2.
Now let 1/2 < y < 1; then

y
1 1
(1) > ""dt—— /t"_"dt=—1— 1—gy)» ",
Lrz 2r-1/ 2r—1 =T+ =)™
0

l1-y
which implies (8) for ¢ = 1, and, analogously,
1

Y
1 1 1
(2) > 1—-t""dt=—/t""'dt=-——————-—— noril
Lr2 55 / (1-1) or—1 T in-r+1)7

0

1~y
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which implies (8) for i = 2.
LemMma 3. Let f(z), 0 < = < 1, be a nonnegative integrable function. If f(z) is unimodal, i.e., there exists

z¢ € [0,1] such that f(z) increases for 0 < z < zo and decreases for zo < ¢ < 1, then

b-a 1

b
,,/ f(z)dmzmn{ / t@ds, [ foas) (9)

1=(b—a)

forany0<a<b<1.
Proof. Without loss of generality, suppose that f(z) is continuous. Set

z+b—a
F(z)= / ft)ydt, 0<z<1~(b-a).

Then F(z) is a differentiable function and
F'(a) = f(z+b—a) - f(2).

Let us consider two cases: (1) b—a £ zo and (2) b~ a > zo.

(1) b—a < zo. It is easy to see that, in this case, F'(z) > 0for 0 < z < 7y — (b — a) and F'(x) < 0 for
zg £ ¢ £1— (b~ a). Consider the interval (zo — (b — a),zo). In this interval, f(z + b — a) decreases and f(z)
increases; therefore, there exists z; € (zg — (b — a), Zo) such that F'(z) > 0 for zo — (b—a)<z<zyand F'(z) <0
for z; < z < zo. Thus, the function F(z) increases for 0 < x < x; and decreases for z; <z < 1 — (b —a), i.e., F(z) is
unimodal in the interval (0,1 — (b - a)): This obviously implies that

F(z) > min{F(0), F(1 - (b— a))}

for all z € (0,1 — (b — a)). Putting = = a, we obtain (9).
(2) b~ a > xo. In this case, f(x + b~ a) < f(z) and, therefore, F(z) decreases for = € (0,1 — (b — a)), i.e.,

F(z)> F(1 - (b—a)).
Putting z = a, we obtain
b
[t@az [ i@,
a 1—(b—a)
which implies (9).

3. Upper Estimates

In this section, we obtain some upper estimates of stability of characterization by the distribution of any order
statistics.

THEOREM 1. If
sup |F(7(z) - G(z)| <e <1, (10)

then
sup |F(z) — G(z)| < ¢(n,r)el/ max(rn-r+l) (11)

where ¢(n,t) is a constant, depending only on n and r.
Proof. We have (see [2|)
F(z)
T(n+1) / - _
(r) - AT tr 1 — """ d
Fr@) = totm=r 7D (1 —gyrt
)
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and an analogous representation for G{")(z); therefore,

G(z)

/ i1 -t dt

z)

IFO)g) - G (@) e D) . 12)

(r(n—r+1)
F

Let us fix an arbitrary z. It is easy to see that the function f(t) = t"~!(1 — t)~" is unimodal in the interval [0, 1];
hence, from Lemma 3 and (12) we obtain

{F(z)=G(=)| 1

. - - _ - T(r)T(n—-r+1)
r=1(1 — )" dt, / il -rTdEy < e 13
mm{ / 11— )T dt (1-1) d}__ e (13)
1-|F(z)-G(=)|
If {F(z) — G(z)| € 1/2, then, due to (7) of Lemma 2, (13) implies that
] o\
|F(z) - G(z)| < [’"("n—,’)] oln=r)/rel/r, (14)
If |[F(z) — G(z)| > 1/2, then, due to (8) of Lemma 2, (13) implies that
— 1\ _ 1 1/(n—r+1)
IF(IE) _ G(I)l < [(T 1) (Z' T+ 1):| 2(r—1)/(nfr+1)51/(n—r+l)_ (15)

Since z is arbitrary, (14) and (15) imply (11).
Remark. In Theorem 1, one can take

¢(n,r) = max(cy (n, ), ca(n, 7)),
where

1 PRV 1/r
ci(n,r) = [—T' (nn' T)'] oln=r)/r

and
o(r=1)/(n=r+1)_

(r =1l (n—r+ 1)1/
n!

extmr) = |

From Theorem 1 the following uniform (not depending on r) estimate can be derived.

COROLLARY. If
sup |[F()(z) - G(z)| e <11,
x

then
sup |[F(z) — G(z)| < 2" tel/™,

4. Lower Estimates

In this section, we derive some lower estimates of stability of characterization of a continuous distribution by the
distribution of any order statistic. Let us introduce the following notations. Denote the set of all continuous cumulative
distribution functions by A. Let F(z) € A. Denote the set of all continuous cumulative distribution functions G(z)
satisfying the condition

sup |F7(z) - G(z)| < ¢
x

by A.(F,¢).
THEOREM 2. For any F(z) € A the following estimate holds:
sup  sup|F(z) — G(z)] > coln, r)et/ maxtrin=r+1) (16)
GeA.(Fe) =
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where co(n,T) is a constant depending only on r and n.
Proof. Let F(z) € A. Without loss of generality, suppose that & < 1/2. Denote by z{) and z¥ points of the real
line such that
FO@E®)=¢,  FO®)=1-¢

(if these points are nonunique, then any of them can be taken). Set

(D

0 forz <z,
(r) -
H(z) = -F—LE— for a:gl) <z< zﬁ”,
1-—2¢
1 for z > :::9).
It is easy to see that
sup |He(z) - F(’)(a:)| =e. (17
Indeed,
sup |He(e) = F)(2)| = FO(al) = ¢,
z<x,
sup |He(z) ~ FO(z)| =1 - FO(l) = ¢,
z>z£2)
and

sup  |He(z) - F){z)| =

2 <rgal®

I3
2FMN(z) — 1] <
-5 2F (@) -l <,

because ¢ < F(")(z) <1 —¢ for ! < z < ¢® and, hence, —(1—2¢) < 2FU)N(z) —1 <1~ 2¢ for these z.
Let us consider the following equation with respect to the variable z:

I'(n+1)

r=1 _ $\n—r =
TTn—rsn )t (-0 d=a
0

The solution of this equation exists for any a € {0, 1]. In addition, if z; and z, are two solutions corresponding to
the right-hand sides a; and a, respectively, and a; < a3, then z, < z,. This implies that there exists a cumulative
distribution function G(z) such that

G(z)
___T+y iy gy
HA) = ore gy [ CT 0

0

for all . In other words, H.(z) = G (z).
Since
He(z") =0, He () =1,

we obtain
Gz =0, G@EP)=1,

which implies
sup [F(z) ~ G(z)| 2 max{|F(z{) - G(z{V)],|1F(z{) - G(z{)]} = max{F(z{"),1 - F(z{)}. (18)
We have

F(z{!)
e=F(z) - c0(E) = F(«lV) = ﬁ)—ff(’,’f—)ﬂ) / i1 - )"t
0

therefore, due to (3) of Lemma 1,

n!

1/r
F(zgl)) > [L("___T)'] el/r (19)
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and, analogously,
£ =GM() - F (@) =1 - FO(zf)

1 1

T(n+1) / o1 — T(n+1) / 1 _
. N t 1 A rdt —_———— T _— n—r
I'(r)f'(n—-r+1) ( ) T(r)T(n—-r+1) ) at,
Fa) 1-(1-F(=))

which, due to (4) of Lemma 1, implies that

El/(n—r-f-l)' (20)

(r-1)(n-r+ 1)1] V(n=r+1)

(2)
1- F(z®) > [ -

Then (18)-(20) imply that

/r n—r+1)
SUPIF(I)—G(I)Imec{[r!(nn,_r)!]] 51,,’[(r_l)!(:'—rﬂ)!]‘” o 51,(,,-,“)}

> Co(n, r)el/max(r,n—r+1)’ (21)

where one can take

i (n - r)!]l/r, [(r —)n-r+ 1)!} ‘“""*1)}_

n! n!

o) = i |

From (17) and (21) we finally obtain (16).
Using (5) of Lemma 1 instead of (3) and (4), we obtain the following estimates, which have worse order with respect
to € than estimates given by Theorem 2 but better constants and, therefore, are sometimes more accurate.

TreEoREM 3. For any F(x) € A the following estimate holds:

- (1o =D = N
ceil:?;‘,e)s:plp(x) Gl 21 <1 (n—1)! ~> '

5. Conclusions

We have proved (and estimated) the stability of characterization for a certain metric (uniform metric for distribution
functions). If we take other metrics, the stability can fail. For instance, “local” stability (stability for density functions)
does not hold. More exactly, for any € > 0 and any M > 0 there exist two probability density functions f(z) and g(z)
such that

sup |f(z) ~ ¢(z)| < €

but
sgplf(r) —g{z)| > M.

Let us construct the corresponding example:

flz)=g(x) =0, z<-~1;  f(x)=g(z), z2ne""';

2-n

€ €
= 0<r<ne 1 = 1<z <ne"l
f(z) — <z <ne"T g(z) TomeT’ 1<z <ne
Then
sup|f™)(z) ~ g™ ()| <
but

sup |f(z) — g(z)| > M(n)e*™,
x
The right-hand side of the estimate given by Theorem 1 rapidly becomes close to 1 when n increases. On the other
hand, Theorem 2 shows that this estimate is sharp (up to the constant in front of !/ m3x(rn=r+1)) for any distribution.

This means that, although the distribution of any order statistic uniquely determines the distribution of a sample,
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it always “forgets” the latter very fast when the size of the sample increases. Thus, in speaking of applications, one
should keep in mind that extremal values of samples carry “essential” information about the distribution of samples
only if the samples are “small.”
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