

Article

Microstructure Effects on the Water Oxidation Activity of Co3O4-Porous Silica Nanocomposites

Javier Vela

ACS Catal., Just Accepted Manuscript • DOI: 10.1021/cs501650j • Publication Date (Web): 24 Dec 2014

Downloaded from http://pubs.acs.org on December 26, 2014

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Catalysis is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Microstructure Effects on the Water Oxidation Activity of Co3O4-Porous Silica Nanocomposites

Journal:	ACS Catalysis
Manuscript ID:	cs-2014-01650j.R1
Manuscript Type:	Article
Date Submitted by the Author:	24-Dec-2014
Complete List of Authors:	Lin, Chia-Cheng; Iowa State University, Chemistry Guo, Yijun; Iowa State University and Ames Laboratory, Chemistry Vela, Javier; Iowa State University, Chemistry

SCHOLARONE[™] Manuscripts

Microstructure Effects on the Water Oxidation Activity of Co₃O₄-Porous Silica Nanocomposites

Chia-Cheng Lin, Yijun Guo, Javier Vela*

Department of Chemistry, Iowa State University and Ames Laboratory, Ames, Iowa, 50011

ABSTRACT: We investigate the effect of micro structuring on the water oxidation (oxygen evolution) activity of two types of Co_3O_4 -porous silica composites: Co_3O_4 /porous-SiO₂ core/shell nanoparticles with varying shell thicknesses and surface areas, and Co_3O_4 -mesoporous silica nanocomposites with various surface functionalities. Catalytic tests in the presence of $Ru(bpy)_3^{2+}$ as a photosensitizer and $S_2O_8^{2-}$ as a sacrificial electron acceptor show that porous silica shells of up to ca. 20 nm in thickness lead to increased water oxidation activity. We attribute this effect to either or a combination of an effective increase in catalyst active area and consequent higher local concentration of $Ru(bpy)_3^{2+}$, and/or to a decrease in the permittivity of the medium surrounding the catalyst surface and a consequent increase in the rate of charge transfer. Functionalized Co_3O_4 -mesoporous silica nanocomposites show lower water oxidation activity compared to the parent non-functionalized catalyst, likely due to partial pore blocking of the silica support upon surface grafting. A more thorough understanding of the effects of microstructure and permittivity on water oxidation ability will enable the construction of next generation catalysts possessing optimal configuration and better efficiency for water splitting.

KEYWORDS. Co₃O₄/SiO₂ core/shells, nanocomposites, nanocatalysts, water oxidation, microstructure effects.

Introduction

Electrochemical and photochemical water splitting are ways to produce molecular hydrogen gas, H_2 , a potentially valuable and clean-burning fuel. Water oxidation is the most difficult half reaction in water splitting, involving the transfer of four electrons and the formation of oxygen-oxygen bonds.¹

⁴ After many studies devoted to developing more efficient and economic water oxidation catalysts,⁵ cobalt-based materials have been identified as some of the most promising due to their relative abundance, high activity, and stability.^{2,6-8}

The synthesis and size-dependent properties of cobaltbased catalysts for electrochemical oxygen evolution have been examined previously.^{9,10} A pH-dependent study of cobalt-oxide electrocatalysts in fluoride-buffer has been reported.¹¹ Cobalt oxide decorated gold¹² or graphene¹³ electrodes show some of the best catalytic performance in oxygen reduction and evolution reactions, while Co₃O₄-modified Ta₃N₅ photoanodes show enhanced performance and stability.^{14,15} Co(II)-modified, fluorine-doped tin oxide has high catalytic activity,¹⁶ as do self-repairing cobalt-phosphate films¹⁷ and diamond-supported Co₂O₃ nanoparticles.¹⁸ Co₃O₄ mesopores prepared by hard-templating methods show increased stability and electrocatalytic ability.¹⁹⁻²¹

Several metal oxide-based photocatalytic systems have been developed in which the $[Ru(bpy)_3]^{2+}$ complex cation and $S_2O_8^{2-}$ serve as photosensitizer and sacrificial electron acceptor, respectively. These include: Mn₃O₄ embedded in mesoporous silica,^{22,23} colloidal IrO₂,²⁴ MnO₂ nanotubes and wires,²⁵ amorphous manganese oxide,²⁶ MnO₂ on carbon nanotubes,²⁷ La-CoO₃, CoWO₄, NdCoO₃ and YCoO,²⁸ calcium manganese(III) oxide,²⁹ Mn-Ga-Co spinel,³⁰ cobalt/methylenediphosphonate,³¹ Li₂Co₂O₄³² and NiFe₂O₄.³³

Other than heterogeneous catalysts, homogeneous cobaltbased water oxidation catalysts that also require $[Ru(bpy)_3]^{2+}$ and $S_2O_8^{2-}$ have been developed. Carbon-free cobalt polytungstate complexes show improved stability and catalytic ability over traditional homogeneous water oxidation catalysts.³⁴⁻³⁹ Water soluble mononuclear cobalt complexes are converted into active Co(OH)_x species during photocatalysis.⁴⁰ Co(OH)₂ derived from Co(II) adsorbed on silica shows high catalytic activity and stability.⁴¹ Catalytic Co₄O₄ cubanes are known to mimic photosystem II.^{42,43}

Water oxidation over mesoporous silica-supported Co_3O_4 clusters has drawn much recent interest.⁴⁴ The photo- and electrochemical activity of ligand-free Co_3O_4 nanoparticles of different shapes on different supports have been studied.⁴⁵ $Co_3O_4/SBA-15$ catalysts show higher activity than $Co_3O_4/MCM41$ catalysts.⁴⁶ Smaller Co_3O_4 clusters and 3-D connecting pore structures lead to better performance.⁴⁷ Mndoped mesoporous Co_3O_4 performs better than pure Co_3O_4 .^{48,49} Cobalt complexes grafted on SBA-15, zeolite supported CoOx, and hollow Co_3O_4 particles were also reported.⁵⁰⁻⁵⁴ The mechanism of hole transport from $[Ru(bpy)_3]^{2+}$ to the surface of Co_3O_4 was studied using Co_3O_4/SiO_2 core/shell catalysts impregnated with organic molecules as charge transfer media.^{55,56}

Fundamental studies on the microscopic mechanism of water oxidation using both homogeneous (molecular) Co complexes⁵⁷ and heterogeneous Co_3O_4 catalysts⁵⁸ provide useful leads for new catalyst design and optimization. Theoretical calculations have described the adsorption and oxidation of water molecules on the $Co_3O_4(110)$ surface.⁵⁹ Here, we present our study on the effect of porous silica shell thickness and different surface grafted groups on the water oxidation activity of Co_3O_4/SiO_2 core/shells and Co_3O_4 -mesoporous silica composites, respectively.

Experimental

Materials. Cobalt acetate tetrahydrate $(Co(OAc)_2 \cdot 4H_2O)$, tetraethylorthosilicate (TEOS), Pluronic 123 (P-123, HO(CH₂CH₂O)₂₀(CH₂CH(CH₃)O)₇₀(CH₂CH₂O)₂OH), ammonium hydroxide (NH₄OH 28 %wt. aqueous solution), oxalic acid (H₂C₂O₄), cobalt(II) nitrate hexahydrate $(Co(NO_3)_2 \cdot 6H_2O)$, poly(ethylene glycol) tridecamer (HO(CH₂CH₂O)₁₃H (EG₁₃ or PEG600), M_n = 600 g/mol), aminopropyltriethoxysilane (H₂NCH₂CH₂CH₂Si(OEt)₃), trimethylsilylchloride (Me₃SiCl), tris(2,2'-bipyridyl)ruthenium(II) dichloride hexahydrate ([Ru(bpy)₃]Cl₂ · 6H₂O), and deuterium oxide (D₂O) were purchased from Sigma-Aldrich; ethanol (absolute, 200 proof), ethylene glycol (HOCH₂CH₂OH), and hydrochloric acid (HCl, concentrated) from Fisher; cetyltrimethylammonium bromide (CTAB) from Alfa Aesar; phenyltrimethoxysilane (PhSi(OMe)₃) from Gelest. All chemicals were used as received unless specified otherwise.

Synthesis. Co_3O_4 nanocrystals were prepared by a slightly modified procedure involving the thermal decomposition of cobalt(II) oxalate.⁶⁰ A solution of 0.3 M cobalt acetate in ethanol (50 mL) was heated and kept at 50 °C for 30 min, followed by quick addition of oxalic acid (1.07 g, 11.9 mmol). After 2 h at 50 °C, the cobalt(II) oxalate product was collected by concentration under vacuum at 80 °C. Heating cobalt(II) oxalate powder to 400 °C in a crucible in air for 2 h yielded Co₃O₄ nanocrystals. Co₃O₄/porous-SiO₂ core/shells. Co₃O₄ nanocrystals were coated with porous SiO₂ shells of varying thicknesses by modified literature procedures.⁶¹⁻⁶³ Co₃O₄ (50 mg, 0.21 mmol) was added to a mixture of CTAB (0.22 g, 0.60 mmol), 28 %wt. aqueous NH₄OH (4.2 mL, 62.3 mmol), and ethanol (50 mL). After 15 min sonication and 15 min vigorous stirring, TEOS (25 µL, 0.11 mmol for 3 nm shell; 150 µL, 0.67 mmol for 20 nm shell; 600 µL, 2.64 mmol for 44 nm shell) was introduced in multiple small additions (<50-100 µL/h). The solution was stirred for 19 h at room temperature (R.T.). Solids were collect by centrifugation (5,000 rpm, 10 min), and the surfactant was removed by calcination at 550 °C in air for 6 h. Co₃O₄-SBA-15 nanocomposites. SBA-15⁶⁴ and Co₃O₄-SBA-15 nanocomposites^{47,65} were prepared by a modified literature procedures. P-123 (33 g, 5.69 mmol), concentrated HCl (16.6 g, 0.17 mol), and deionized water (517 g) were mixed by stirring vigorously at 35 °C for 30 min. TEOS (62.0 g, 0.30 mol) was added. After 1 day stirring, the mixture was moved to an oven pre-heated to 90 °C and kept at this temperature for 1 day. Solids were collected by filtration and dried at 90 °C. The template was removed by calcination at 550 °C in air for 6 h. SBA-15 (0.2 g) was added to a 0.022 M cobalt(II) nitrate solution in ethanol (5 mL, 0.11 mmol), and the resulting pink slurry stirred overnight until the solvent completely evaporated. This cobalt salt-impregnated SBA-15 was heated to 400 °C in air for 3 h. For surface grafting, Co₃O₄-SBA-15 composite (0.5 g) was degassed under vacuum at 110 °C for 2 h. Toluene (100)mL) and functional silane (44 mg of H₂NCH₂CH₂CH₂Si(OEt)₃, 40 mg of PhSi(OMe)₃, or 22 mg of Me₃SiCl; 2 mmol) were added. The mixture was refluxed at 78 °C under a dry N₂ atmosphere for 6 h. Solids were collected by filtration, washed with toluene (200 mL), and dried at 90 °C.

Structural Characterization. Powder X-ray diffraction (XRD) data were recorded with a Rigaku Ultima IV diffractometer with Cu K α radiation source (40 kV, 44 mA). *Nitrogen physisorption* was measured on a Micromeritics ASAP 2020 surface area and porosimetry system. Samples were degassed at 100 °C under vacuum overnight before analysis. Surface area was calculated with the Brunauer-Emmett-Teller (BET) method in the relative pressure range of 0.005 to 0.25 of adsorption data. Pore size distribution was calculated with the Barret-Joyber-Halenda (BJH) method. *Transmission Electron Microscopy* (TEM) was measured on an FEI Tecnai G² F20 field emission scanning transmission electron microscope

(S/TEM) at 200 kV (point-to-point resolution <0.25 nm, lineto-line resolution <0.10 nm).

Spectroscopic Characterization UV-Vis absorption spectra were collected with a photodiode-array Agilent 8453 UV-Vis spectrophotometer. Pore accessibility study. Co₃O₄/porous-SiO₂ core/shell samples were examined by ¹H NMR spectroscopy using ethylene glycol (HOCH₂CH₂OH or EG) and polyethylene glycol (HO(CH_2CH_2O)₁₃H or Poly600). Experiments were conducted on a Varian MR-400 spectrometer equipped with a OneNMR pulse-field-gradient probe operating at a ¹H frequency of 399.80 MHz. EG (233 mg, 3.75 mmol) and Poly600 (317 mg, 0.53 mmol) were mixed in D₂O (5 g). A fraction of this EG-Poly600-D₂O solution (50 μ L) and a solution of Co_3O_4 /porous-SiO₂ in D₂O (0.067 mM, 450 µL; 7.5 µg or 0.03 µmol of Co₃O₄) were mixed. NMR measurements of ethylene glycol and polyethylene glycol (Poly600) proton longitudinal (T_1) relaxation were conducted using the inverse recovery pulse sequence, and the transverse relaxation (T₂) were measured using a two-pulse spin echo sequence. Solid state NMR spectra were measured with a Bruker Avance II 600 Spectrometer operating at 119.2 MHz for ²⁹Si equipped with a 4 mm Bruker MAS probe spinning at 10 KHz. ²⁹Si direct polarization magic angle spinning (DP-MAS) NMR spectra were recorded with a pulse width of 4 µs and a recycling delay of 1 min. ²⁹Si chemical shifts are referenced to TMS ($\delta =$ 0 ppm).

Water Oxidation. A buffer solution of weakly coordinating ions was prepared from NaHCO₃ (0.353 g, 4.20 mmol) and Na₂SiF₆ (0.619 g, 3.30 mmol) in deionized water (150 mL).³¹ The pH was adjusted to 5.8 with added NaHCO₃. Buffer (20 mL), Na₂SO₄ (0.195 g, 1.37 mmol), Na₂S₂O₈ (65 mg, 0.27 mmol), [Ru(bpy)₃]Cl₂·6H₂O (22.5 mg, 0.03 mmol), and Co₃O₄-silica sample (1 mg or 4.2 µmol of Co₃O₄ for Co₃O₄/porous-SiO₂ core/shells, determined by optical density in solution; 2 mg or 8.4 µmol of Co₃O₄ for Co₃O₄-SBA-15 nanocomposites, determined by dry weight) were added to a 25 mL flask. The mixture was kept in the dark overnight, and degassed by bubbling with dry N₂. O₂ evolution was unobserved by GC prior to illumination. Water oxidation experiments were conducted inside a Rayonet photoreactor under illumination with $16 \times 575 \pm 100$ nm side-on lamps. 100 µL of headspace samples were directly analyzed each time using an Agilent 7890A GC system equipped with an HP-Molesieve column and a TCD detector.

Results and Discussion.

 Co_3O_4 /porous-SiO_2 core/shells. Co₃O_4 nanocrystals were synthesized by thermal decomposition of cobalt(II) oxalate at 400 °C in air for 2 h (see Experimental). As shown in Figure 1, the powder XRD pattern of the as-synthesized Co₃O₄ nanocrystals shows diffraction peaks that match those of the reference bulk spinel Co₃O₄ phase. In contrast, none of the experimentally observed diffraction peaks match those of bulk CoO, suggesting that the nanocrystals are made of highly phase-pure Co₃O₄. The diffuse reflectance spectrum of Co₃O₄ nanocrystals (Figure 2) shows two peaks at *ca*. 425 nm and 725 nm. This is consistent with the characteristic absorption of Co₃O₄, containing octahedral Co³⁺ and tetrahedral Co²⁺ ions.⁶⁶

58

59 60 1

2

3

4

5

6

7

8

9

10 11 12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Figure 1. Wide angle powder XRD data for 17.2 ± 3.8 nm Co_3O_4 nanocrystals (a), Co_3O_4 /porous-SiO₂ core/shell nanoparticles with different shell thicknesses of 3.1 ± 0.6 nm (b), 19.8 ± 1.4 nm (c), 44.1 ± 8.3 nm (d), and bulk Co_3O_4 (e) and CoO (f).

As shown in Figure 3, transmission electron microscopy (TEM) shows that the Co₃O₄ nanocrystals have truncated polvhedral shapes with an average size (diameter) of 17.2 ± 3.8 nm. This is consistent with the grain size of 16 nm estimated from XRD peak widths using the Scherrer equation. Nitrogen physisorption analysis shows the specific surface area of Co_3O_4 nanocrystals is 38 m²/g (Table 1, page 9), which is consistent with a surface area 49 m^2/g estimated from a spherical particle model calculation. These Co₃O₄ nanocrystals were coated with porous silica (SiO₂) shells via CTAB-templated sol-gel condensation of tetraethylorthosilicate (TEOS) with NH4OH as catalyst in ethanol solvent. TEM shows different amounts of TEOS resulted in different Co₃O₄/porous-SiO₂ core/shell nanoparticles with various shell thicknesses $(3.1 \pm$ 0.6 nm, $19.8 \pm 1.4 \text{ nm}$ and $44.1 \pm 8.3 \text{ nm}$, Figures 1 and 3, and Table 1, page 9). The organic template, CTAB was removed via calcination at 550 °C under air for 6 h.

Figure 2. Diffuse reflectance spectra of bare (uncoated) Co_3O_4 nanocrystals (a), Co_3O_4 /porous-SiO₂ core/shell nanoparticles (19.8 ± 1.4 nm shell thickness) (b) and SBA-15-Co₃O₄ nanocomposites (4.4 ± 0.8 nm Co₃O₄ particle size) (c).

Representative powder XRD, diffuse reflectance and TEM data of Co_3O_4 /porous-SiO₂ core/shell nanoparticles are summarized in Figures 1, 2 and 3. As the silica shell becomes thicker, no significant peak shifts or new peaks are observed. The XRD patterns also reveal that the phase and grain size of the Co_3O_4 nanocrystals remain the same after silica coating,

suggesting that the basic environment employed for silica coating does not affect the nanoparticles' Co_3O_4 cores. Similarly, no significant peaks appear in the low angle XRD region (data not shown) of the Co_3O_4 /porous-SiO₂ core/shell nanoparticles. This implies that the porous silica shell may not be as ordered as other reported porous silica-coated materials that also use CTAB as a template or surfactant. In agreement with these XRD observations, diffuse reflectance and TEM confirm that the optical structure and size of the Co_3O_4 nanocrystals did not change appreciably through the silica shell growth process (Figure 3).

Figure 3. TEM of 17.2 ± 3.8 nm Co₃O₄ nanocrystals (a), and Co₃O₄/porous-SiO₂ core/shell nanoparticles with different shell thicknesses of 3.1 ± 0.6 nm (b), 19.8 ± 1.4 nm (c), 44.1 ± 8.3 nm (d).

The average core size and shell thicknesses for different Co_3O_4 /porous-SiO₂ core/shell nanoparticles are summarized in Table 1 (page 9). Increasing amounts of TEOS clearly resulted in larger shell thickness. This suggests that consecutive addition of TEOS resulted in the growth of (more) silica on preexisting particles *via* heterogeneous nucleation, rather than forming new silica nuclei *via* homogeneous nucleation.

TEM reveals a foam-like surface structure is present atop the Co₃O₄/porous-SiO₂ core/shell nanoparticles (Figures 3b-d). Nitrogen physisorption experiments were also performed in order to characterize the pore structure and surface area of the Co₃O₄/porous-SiO₂ particles and their shells. The particles with 19.8 ± 1.4 nm and 44.1 ± 8.3 nm silica shells have a calculated pore size of 3.8 nm and 3.9 nm, respectively, as obtained by the BJH method (see Experimental, and Table 1, page 9). Core/shell particles with thinner silica layers did not show significant peaks by the BJH method. Across all samples studied, the specific surface area increased as the shell thickness increased. The pores in the silica shell are produced after the removal of CTAB molecules; the diameter of the pores is thus dictated by the size of the CTAB micelles formed during the sol gel process. Since the concentrations of CTAB, EtOH and H₂O were the same in each run, the increase in surface area is consistent with increasing shell thickness while the pore size remains constant.

Probing pore accessibility by NMR. We then turned our attention to assessing the accessibility of the catalytically active Co₃O₄ surface to small molecules. Infrared spectroscopy provides one way to assess the degree of surface coverage by a silica shell.^{67,68} We specifically sought to probe pore accessibility using nuclear magnetic resonance (NMR). NMR measurements of two chemically related molecules with very different sizes, ethylene glycol (EG) and polyethylene glycol tridecamer (EG₁₃ or Poly600), were used in order to examine the pore accessibility of the Co₃O₄/porous-SiO₂ core/shell nanoparticles. For all measurements, the concentration of ethoxyl protons (-OCH2CH2O-) in both EG and Poly600 were kept the same (confirmed by chemical integration), as was the concentration of (bare or coated) Co₃O₄ nanocrystals (confirmed by Co₃O₄ optical density or absorbance). Thus, only the thickness of the porous silica shells varied in different specimens.

Figure 4. Longitudinal (T₁) (a) and transverse (T₂) (b, c, d) relaxation times for the ethoxyl protons ($-OCH_2CH_2O$ -) in EG (HOCH₂CH₂OH) and Poly600 (HO(CH₂CH₂O)₁₃H) in the absence or presence of Co₃O₄/porous-SiO₂ core/shell nanoparticles with different shell thicknesses in D₂O (T_{2free} = T₂ in the complete absence of Co₃O₄).

Figure 4 shows the longitudinal (T₁) and transverse (T₂) relaxation times for the ethoxyl protons ($-OCH_2CH_2O_-$) in EG (HOCH₂CH₂OH) and Poly600 (HO(CH₂CH₂O)₁₃H) in the absence and presence of Co₃O₄/porous-SiO₂ core/shells. As expected, the T₁ values of EG and Poly600 do not change significantly with added Co₃O₄/porous-SiO₂, regardless of the thickness of the silica shell (Figure 4a). However, the T₂ values for both EG and Poly600 progressively increase with increasing shell thickness (Figure 4b). Magnetic particles have been shown to be T₂ relaxers.⁶⁹ Studies with Fe₂O₃/SiO₂ core/shells showed that the thinnest shells have the strongest T₂ shortening effect.⁷⁰ A polymer coated Fe₂O₃ composite shows enhanced T₂ shortening near the particle surface.⁷¹

Naturally, this shortening of the T_2 suggests that the magnetic Co_3O_4 core has a much larger influence on helping relax those protons that can get closer to the magnetic surface. It follows that thicker silica shells should increasingly separate and minimize the magnetic screening of protons by the magnetic Co_3O_4 core. Because the silica shells have a definite pore size (*ca.* 4 nm), we hypothesized that the smaller EG monomer

molecules should be able to penetrate the shell and continue to be impacted to a greater degree compared to the much larger Poly600 tridecamer molecules. To investigate this idea, the measured T_2 values were parametrized by dividing them over the unaffected, natural T_2 values (T_{2free}) of EG and Poly600 (measured in the absence of Co₃O₄; T_2/T_{2free} and $1 - T_2/T_{2free}$ in Figures 4c and 4d, respectively). After parametrization, it is clear that while the protons in both EG and Poly are relaxed by Co₃O₄, those in Poly600 are much more sensitive to the thickness of the silica shell.

We explain these observations as follows: With a hydrodynamic diameter of ~1 nm,^{72,73} the larger Poly600 molecules have much greater difficulty diffusing through the longe, more tortuous pathway needed to reach the magnetic Co_3O_4 core surface as the SiO₂ shell increases. In contrast, because the EG molecules are much smaller than the SiO₂ pores, thicker SiO₂ shells only slightly hinder the diffusion of EG molecules closer to the core. This results in a stronger T₂ shortening effect for EG.

Shorter diffusion pathways in Co_3O_4 /porous-SiO₂ particles with thinner shells allow molecular probes to move closer to the magnetic core. For the thinnest shells and the bare (uncoated) Co_3O_4 nanocrystals, small and large molecules are able to reach the magnetic surface and are affected equally. Together with the physisorption and TEM measurements presented above, these NMR experiments strongly suggest that that the surface of Co_3O_4 nanocrystals is accessible by small molecular substrates and reagents through a vast network of well defined, *ca.* 4 nm pores. In contrast, the diffusion of large molecules such as Poly600 into the core region is hindered as their size becomes comparable with that of the pores. The porous silica shell thus serves as sieve or filter for larger molecules.

 Co_3O_4 -SBA-15 nanocomposites. Co₃O₄-SBA-15 nanocomposites were prepared by the sol-gel reaction between TEOS and H₂O, using HCl as catalyst, and the block copolymer P123 as a structure-directing agent. The organic template was removed by calcination at 550 °C under air. Wet impregnation of cobalt(II) nitrate and calcination at 400 °C in air yielded Co₃O₄-SBA-15 nanocomposites with a nominal Co₃O₄ loading of 4 wt.%. Further modification of the silica surface was conducted by post-grafting with various functional silanes (see Experimental).

Low-angle XRD measurements show three peaks at 1.03°, 1.77° and 2.01° corresponding to the (100), (110) and (200) planes in 2-D hexagonally packed SBA-15, respectively (Figure 5). The intensity of these three peaks remained unchanged after introduction of cobalt oxide, which suggests that the mesostructure of the SBA-15 support remained mostly intact. Wide-angle XRD measurements show that all modified (surface grafted) and unmodified Co₃O₄-SBA-15 nanocomposites contain standard spinel Co₃O₄ nanocrystals with a similar Scherrer particle size of 4.4 ± 0.8 nm (figure 5). Nitrogen physisorption measurements show that, after the introduction of Co₃O₄, the surface area of Co₃O₄-SBA-15 nanocomposites dropped from 734 m^2/g to 570 m^2/g , while the pore size remained nearly identical from 6.5 nm to 6.4 nm. Post-synthetic grafting with silanes slightly decreased the surface area, and also the pore size of the composites, by up to 140 m^2/g and 0.6 nm, respectively (Table 2). It is noteworthy that the most dramatic decrease in surface area, pore size and pore volume occurred in the amino (-CH₂CH₂CH₂NH₂) modified specimen. However, no other significant changes in pore structure were observed in these surface modified Co₃O₄-SBA-15 composites. DP-MAS ²⁹Si NMR measurements were conducted to confirm the surface modification (Figure 6). New T bands (T³ and T²) are observed for sites derived from NH₂CH₂CH₂CH₂Si(OSi)₃/NH₂CH₂CH₂CH₂Si(OH)(OSi)₂ and PhSi(OSi)₃/PhSi(OH)(OSi)₂ groups. A peak at *ca.* 15 ppm is observed for Me₃Si(OSi)₃ groups.⁷⁴⁻⁷⁶

Figure 5. Low-angle (top) and wide-angle (bottom) powder XRD data for Co_3O_4 -SBA-15 nanocomposites (4.4 ± 0.8 nm Co_3O_4 particle size): Co_3O_4 -SBA-15-SiPh (a), Co_3O_4 -SBA-15-SiCH₂CH₂CH₂NH₂ (b), Co_3O_4 -SBA-15-SiMe₃ (c), Co_3O_4 -SBA-15 (d), and SBA-15 (e). Bulk Co_3O_4 (f) and CoO (g) are shown for reference.

Figure 6. DP-MAS ²⁹Si NMR spectra of Co_3O_4 -SBA-15 nanocomposites before (a), and after surface functionalization (by grafting) with -(CH₂)₃NH₂ (b), -Ph (c) and -SiMe₃ (d) groups.

Effect of catalyst microstructure on water oxidation. The catalytic activity of Co_3O_4 /porous-SiO₂ core/shell nanoparticles toward water oxidation reaction was measured using a photosensitizer (Ru[(bpy)₃]Cl₂·6H₂O), a sacrificial electron acceptor (Na₂S₂O₈-Na₂SO₄), and an aqueous buffer (pH 5.8, NaSiF₆-NaHCO₃) medium. Reactions were conducted under continuous irradiation by 575 ± 100 nm lamps, and taking aliquots of the headspace and injecting them into a GC equipped with a TCD detector to measure the oxygen (O₂) produced. Our setup (septum, etc.) was independently tested under similar conditions to ensure that there was no leakage or other non-catalytic sources of O₂.

The overall cycle for water oxidation under these conditions is shown in Scheme 1. Ru(bpy)_3^{2+} is first excited by the incident radiation to form an excited state, Ru(bpy)_3^{2+*} . Subsequent electron transfer from Ru(bpy)_3^{2+*} to $\text{S}_2\text{O}_8^{2-}$ yields Ru(bpy)_3^{3+} and SO_4 . SO_4 . further oxidizes another equivalent of Ru(bpy)_3^{2+} to Ru(bpy)_3^{3+} . This Ru(bpy)_3^{3+} reacts with water and oxidizes it on the surface of the Co_3O_4 catalyst, producing molecular oxygen (O₂). The free energy of the full process is calculated to be negative (exergonic or "downhill") and equal to -280 kJ/mol.

$$\begin{array}{lll} 2H_2O \rightarrow O_2 + 4H^+ + 4e^- & E_{red} = -1.23 \ V \\ S_2O_8^{2^-} + 4e^- \rightarrow 2SO_4^{2^-} & E_{ox} = 1.96 \ V \\ 2H_2O + 2S_2O_8^{2^-} \rightarrow O_2 + 4H^+ + 4SO_4^{2^-} & E_{rxn} = 0.73 \ V \\ \Delta G^\circ = \ -nFE = -4 \times 96485 \ C/mol \times 0.73 \ V = -280 \ kJ/mol \end{array}$$

Scheme 1. Water oxidation by $S_2O_8^{2-}$ catalyzed by Co_3O_4/SiO_2 and $Ru(bpy)_3^{2+}$ (chloride salt) as photosensitizer.

Figure 7 and Table 3 show the experimentally observed oxygen evolution activities of different Co₃O₄/porous-SiO₂ nanocatalysts. In all cases, the amount of O_2 in the reactor headspace increased until reaching a plateau after 40-90 min. We interpret this plateau as the point at which the maximum yield of O₂ production in each case was achieved. Among the Co₃O₄/porous-SiO₂ nanocatalysts studied, the bare, uncoated Co_3O_4 had the lowest activity. O_2 production then increased with increasing silica shell thickness, up to a point; activity reached a maximum for Co_3O_4 /porous-SiO₂ with a 19.8 ± 1.4 nm shell, then decreased with a thicker shell (O₂ production activity was negligible in the absence of the nanocatalyst). We speculatively attribute this behavior to either one or both of two possible factors: (i) The positively charged $Ru(bpy)_3^2$ photosensitizer may have a high affinity toward the negatively polarized SiO₂ surface. Thicker shells provide for a much larger SiO₂ surface (Table 1, page 9), increasing the effective concentration (and activity) of Ru(bpy)₃²⁺ near or at the catalytically active Co₃O₄ surface. (ii) The porous silica coating could increase the effectiveness (rate of) electron transfer steps necessary for catalysis due to the lower permittivity (dielectric constant) of silica (3.9) compared to pure water (80). The lower permittivity could decrease the reorganizational energy term as described by Marcus theory, increasing the overall rate of electron transfer. The carrier mobility in 1-D and 2-D semiconductor nanostructures is sensitive to permittivity,⁷⁷ as is that of single-layer graphene transistors in different dielectric environments.⁷⁸

The catalytic activities of surface modified and unmodified Co₃O₄/SBA-15 nanocomposites were also measured for comparison (Figure 8 and Table 3). The concentration of O_2 produced using Co₃O₄-SBA-15 nanocomposites reached a maximum yield within 50-60 min, which is consistent with the afore-mentioned and with prior reports.22,44 Interestingly, among the composite catalysts it is the unmodified sample that possesses the best performance, while the other three modified samples possessed lower, similar activities. The composites containing the most hydrophobic surface groups (-SiPh and -SiMe₃) and thus, a low permittivity, show relatively low activity, arguing against factor (ii) above. More generally however, we believe that the decrease in activity in the surface grafted composites is most likely attributable to a decrease in the SiO₂ surface available for binding by the Ru(bpy)₃²⁺ photosensitizer (roughly opposite to factor (i) mentioned above), as indicated by physisorption measurements (Table 2, page 9). Albeit, this could be compensated somewhat by the introduction of surface -NH₂ groups in one of the nanocomposites.

Figure 7. Oxygen evolution (a) and maximum O_2 yields (measured between 90-120 min, b) from the reaction of water with persulfate in the presence of $[Ru(bpy)_3]Cl_2$ sensitizer and Co_3O_4/SiO_2 core/shells under 575 ± 100 nm lamp illumination (the total Co_3O_4 loading and concentration was maintained constant).

ACS Catalysis

Figure 8. Oxygen evolution (a) and maximum O_2 yields (measured between 60-120 min, b) from the reaction of water with persulfate in the presence of [Ru(bpy)₃]Cl₂ sensitizer and Co_3O_4 -SBA-15 nanocomposites under 575 ± 100 nm lamp illumination (the total Co₃O₄ loading and concentration was maintained constant).

Conclusion

We have prepared several Co₃O₄-porous silica nanocomposites to investigate the effect of catalyst microstructure and its local environment on water oxidation activity. We have also utilized NMR relaxation time measurements of two different probe molecules (EG and Poly600) to study the pore accessibility of Co₃O₄/porous-SiO₂ core/shell nanoparticles with different shell thicknesses (but similar pore size and structure).

In our study of catalytic activity of Co₃O₄/porous-SiO₂ core/shell nanoparticles toward water oxidation (oxygen evolution reaction), the catalyst with a 19.8 ± 1.4 nm shell had superior activity over the uncoated, thinner and thicker silica shell catalysts due to two possible factors: First, the higher surface area of the thicker porous silica shell helps to increase the local $Ru(bpy)_3^{2+}$ concentration near the active Co_3O_4 surface. Second, the reduced reorganization energy due to the lower dielectric constant of silica might also facilitate the charge transfer rate. Increasing shell thicknesses were detrimental to catalytic activity, possibly due to slower diffusion of reactant molecules in and out of the SiO2 pores.

In the case of Co₃O₄/SBA-15 nanocomposites, the unmodified sample possesses better activity than the modified samples. Surface modified composites (e.g., -SiPh and -SiMe₃) have relative low local surface permittivity compared to the unmodified composites. However, the loss of possible $Ru(bpy)_{3}^{2+}$ binding sites (hydroxyl group) and a measurable amount of pore blocking upon surface grafting results in the loss of reactivity. A more thorough understanding of the effects of microstructure and permittivity on water oxidation ability will enable the construction of next generation catalysts possessing optimal configuration and better efficiency for water oxidation and water splitting.

Supporting Information

Absorption and irradiance profiles of catalyst, sensitizer, and lamp. ICP-MS and colorimetric analyses of Co content in all materials studied. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* vela@iastate.edu

ACKNOWLEDGMENT

J. Vela gratefully acknowledges the National Science Foundation for funding of this work through the Division of Materials Research, Solid State and Materials Chemistry program (NSF-DMR-1309510). The authors thank Sarah Cady for assistance with NMR, Jenee Jacobs and Sam Houk for assistance with ICP-MS, and Michelle Thompson for comments.

REFERENCES

- ¹ Yan, Y.; Xia, B. Y.; Xu, Z.; Wang, X. ACS Catal. 2014, 4, 1693-1705
- ² Deng, X.; Tuysuz, H. ACS Catal. 2014, 4, 3701–3714.
- ³ Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655-2661.
- Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets,
- T. S.; Nocera, D. G. Chem. Rev. 2010, 110, 6474-6502.
- Inoue, H.; Shimada, T.; Kou, Y.; Nabetani, Y.; Masui, D.; Takagi,
- S.; Tachibana, H. ChemSusChem 2011, 4, 173-179. ⁶ Nocera, D. G. Acc. Chem. Res. 2012, 45, 767–776.
- ⁷ Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Science 2011, 334, 645-648.
- Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem., Int. Ed. 2011, 50, 7238-7266.
- 9 Chou, N. H.; Ross, P. N.; Bell, A. T.; Tilley, T. D. ChemSusChem 2011, 4, 1566-1569.
- ¹⁰ Esswein, J.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley, T. D. J. Phys. Chem. C 2009, 113, 15068-15072.
- Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 14431-14442.
- ¹² Yeo, B. S.; Bell, A. T. J. Am. Chem. Soc. 2011, 133, 5587–5593.
- 13 Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat. Mater. 2011, 10, 780-786.
- 14 Liao, M.; Feng, J.; Luo, W.; Wang, Z.; Zhang, J.; Li, Z.; Yu, T.; Zou, Z. Adv. Funct. Mater. 2012, 22, 3066–3074.
- Hou, J.; Wang, Z.; Yang, C.; Cheng, H.; Jiao, S.; Zhu, H. Energy Environ. Sci. 2013, 6, 3322-3330.
- ¹⁶ Kent, C. A.; Conception, J. J.; Dares, C. J.; Torelli, D. A.; Rieth, A. J.; Miller, A. S.; Hoertz, P. G.; Meyer, T. J. J. Am. Chem. Soc. 2013, 135, 8432-8435.
- ¹⁷ Surendranath, Y.; Lutterman, D. A.; Liu, Y.; Nocera, D. G. J. Am. Chem. Soc. 2012, 134, 6326-6336.
- ¹⁸ Wee, T. L.; Sherman, B. D.; Gust, D.; Moore, A. L.; Moore, T. A.; Liu, Y.; Scaiano, J. C. J. Am. Chem. Soc. 2011, 133, 16742-16745.
- ¹⁹ Sa, Y. J.; Kwon, K.; Cheon, J. Y.; Kleitz, F.; Joo, S. H. J. Mater. *Chem. A* **2013**, *1*, 9992–10001. ²⁰ Grewe, T.; Deng, X.; Weidenthaler, C.; Schüth, F. *Chem. Mater.*
- 2013, 25, 4926-4935.
- Grewe, T.; Deng, X.; Tüysüz, H. Chem. Mater. 2014, 26, 3162–3168. ²² Jiao, F.; Frei, H. *Chem. Commun.* **2010**, *46*, 2920–2922.
- ²³ Jiao, F.; Frei, H. *Energy Environ. Sci.*, **2010**, *3*, 1018–1027.
- ²⁴ Hara, M.; Waraksa, C. C., Lean, J. T.; Lewis, B. A.; Mallouk, T. E.
- J. Phys. Chem. A 2000, 104, 5275-5280.

²⁵ Boppana, V. B. R.; Jiao, F. Chem. Commun. **2011**, 47, 8973–8975.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

- ²⁶ Iyer, A.; Del-Pilar, J.; King'ondu, K. C.; Kissel, E.; Garces, F. H.;
- Huang, H.; El-Sawy, M. A.; Dutta, K. P.; Suib, L. S. *J. Phys. Chem. C* **2012**, *116*, 6474–6483.
- **2012**, *116*, 6474–6483. ²⁷ Wei, J.; Liu, Y.; Ding, Y.; Luo, C.; Du, X.; Lin, J. Chem. Commun. **2014**, *50*, 11938–11941.
- ²⁸ Yamada, Y.; Yano, K.; Hong, D.; Fukuzumi, S. *Phys. Chem. Chem. Phys.* **2012**, *14*, 5753–5760.
- ²⁹ Najafpour, M. M.; Ehrenberg, T.; Wiechen, M.; Kurz, P. *Angew. Chem., Int. Ed.* **2010**, *49*, 2233–2237.
- ³⁰ Conrad, F.; Bauer, M.; Sheptyakov, D.; Weyeneth, S.; Jaeger, D.; Hamataar, K.; Car, P. F.; Patachaidan, L. Cristhur, D.; Patal, C. P.
- Hametner, K.; Car, P.-E.; Patscheider, J.; Günther, D.; Patzke, G. R. *RSC Adv.* **2012**, *2*, 3076–3082.
- ³¹ Shevchenko, D.; Anderlund, M. F.; Thapper, A.; Styring, S. *Energy Environ. Sci.* **2011**, *4*, 1284–1287.
 - ³² Gardner, G. P.; Go, Y. B.; Robinson, D. M.; Smith, P. F.; Hadermann, J.; Abakumov, A.; Greenblatt, M.; Dismukes, G. C. *Angew. Chem., Int. Ed.* **2012**, *51*, 1616–1619.
 - ³³ Hong, D.; Yamada, Y.; Nagatomi, T.; Takai, Y.; Fukuzumi, S. J. Am. Chem. Soc. **2012**, *134*, 19572–19575.
 - ³⁴ Yin, Q.; Tan, J. M.; Besson, C.; Geletti, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. *Science* 2010, *328*, 342–345.
 - ³⁵ Huang, Z.; Luo, Z.; Geletii, Y. V.; Vickers, J. W.; Yin, Q.; Wu, D.; Hou, Y.; Ding, Y.; Song, J.; Musaev, D. G.; Hill, C. L.; Lian, T. J. Am. Chem. Soc. **2011**, 133, 2068–2071.
 - ³⁶ Vickers, J. W.; Lv, H.; Sumliner, J. M.; Zhu, G.; Luo, G.; Musaev, D. G.; Geletii, Y. V.; Hill, C. L. J. Am. Chem. Soc. **2013**, 135, 14110–14118.
 - ³⁷ Lv, H.; Song, J.; Geletii, Y. V.; Vickers, J. W.; Sumliner, J. M.;
- Musaev, D. G.; Kögerler, P.; Zhuk, P. F.; Bacsa, J.; Zhu, G.; Hill, G. L. J. Am. Chem. Soc. **2014**, *136*, 9268–9271.
- ³⁸ Stracke, J. J.; Finke, R. G. J. Am. Chem. Soc. **2011**, 133, 14872–14875.
 - ³⁹ Stracke, J. J.; Finke, R. G. ACS Catal. **2014**, *4*, 79–85.
- ⁴⁰ Hong, D.; Jung, J.; Park, J.; Yamada, Y.; Suenobu, T.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. *Energy Environ. Sci.* **2012**, *5*, 7606–7616.
- ⁴¹ Zidki, T.; Zhang, L.; Shafirovich, V.; Lymar, S. V. J. Am. Chem. Soc. **2012**, *134*, 14275–14278.
- ⁴² McCool, N. S.; Robinson, D. M.; Sheats, J. E.; Dismukes, G. C. *J. Am. Chem. Soc.* **2011**, *133*, 11446–11449.
- ⁴³ Berardi, S.; La Ganga, G.; Natali, M.; Bazzan, I.; Puntoriero, F.; Sartorel, A.; Scandola, F.; Campagna, S.; Bonchio, M. J. Am. Chem. Soc. **2012**, 134, 11104–11107.
- ⁴⁴ Jiao, F.; Frei, H. Angew. Chem., Int. Ed. 2009, 48, 1841–1844.
- ⁴⁵ Grzelczak, M.; Zhang, J.; Pfrommer, J.; Hartmann, J.; Driess, M.; Antonietti, M.; Wang, X. ACS Catal. **2013**, *3*, 383–388.
- ⁴⁶ Yang, C.-C.; Eggenhusien, T. M.; Wolters, M.; Agiral, A.; Frei, H.; de Jongh, P. E. Mul, G. *ChemCatChem* **2013**, *5*, 550–556.
- ⁴⁷ Yusuf, S.; Jiao, F. ACS Catal. **2012**, *2*, 2753–2760.
- ⁴⁸ Rosen, J.; Hutchings, G. S.; Jiao, F. J. Am. Chem. Soc. **2013**, 135, 4516–4521.
- ⁴⁹ Zhang, Y.; Rosen, J.; Hutchings, G. S. Jiao, F. *Catal. Today* **2014**, 225, 171–176.
- ⁵⁰ Hyun, S. A.; Yano, J.; Tilley, T. D. *Energy Environ. Sci.* **2013**, *6*, 3080–3087.
- ⁵¹ Del Pilar Albaladejo, J.; Dutta, P. D. ACS Catal. **2014**, 4, 9–15.

- ⁵² Armandi, M.; Hernandez, S.; Vankova, S.; Zaranilli, S.; Boneli, B.;
- Garrone, E. ACS Catal. 2013, 3, 1272–1278.
- ⁵³ Zhao, J.; Zou, Y.; Zou, X.; Bai, T.; Liu, Y.; Gao, R.; Wang, D.; Li, G.-D. *Nanoscale* **2014**, *6*, 7255–7262.
- ⁵⁴ Zhou, L.-J.; Zou, Y.; Li, G.-D.; Zou, X.; Zhao, J.; Fan, M.; Liu, Y.; Wang, D. *RSC Adv.* **2014**, *4*, 22951–22954.
- ⁵⁵ Soo, H. S.; Agiral, A.; Bachmeier, A.; Frei, H. J. Am. Chem. Soc. **2012**, *134*, 17104–17116.
- ⁵⁶ Agiral, A.; Soo, H. S.; Frei, H. *Chem. Mater.* **2013**, *25*, 2264–2273.
- ^M Mavros, M. G.; Tsuchimochi, T.; Kowalczyk, T.; McIsaac, A.;
- Wang, L.-P.; Van Voorhis, T. *Inorg. Chem.* **2014**, *53*, 6386–6397. ⁵⁸ Kwapien, K.; Piccinin, S.; Fabris, S. *J. Phys. Chem. Lett.* **2013**, *4*,
- Kwapien, K., Fieldin, S., Fabris, S. J. Fhys. Chem. Lett. 2013, 4, 4223–4230.
- ⁵⁹ Chen, J.; Selloni, A. J. Phys. Chem. Lett. **2012**, *3*, 2808–2814.
- ⁶⁰ Luisetto, I.; Pepe, F.; Bemporad, E. J. Nanopart. Res. **2008**, 10, 59–67.
- ⁶¹ Meng, Y.; Chen, D.; Jiao, X. J. Phys. Chem. B **2006**, 110, 15212–15217.
- ⁶² Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. *J. Am. Chem. Soc.* **2008**, *130*, 28–29.
- ⁶³ Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. J. Am. Chem. Soc. **2010**, 132, 8466–8473.
- ⁶⁴ Choi, M.; Heo, W.; Kleitz, F.; Ryoo, R. *Chem. Commun.* **2003**, 1340–1341.
- ⁶⁵ Sharma, K. K.; Buckley, R. P.; Asefa, T. *Langmuir* **2008**, 24, 14306–14320.
- 66 Xu, R.; Zeng, H. C. Langmuir 2004, 20, 9780-9790.
- ⁶⁷ Olguin, G.; Yacou, C.; Smart, S.; da Costa, J. C. D. Sci. Rep. **2013**, 3, 2449-1–5.
- ⁶⁸ Khodakov, A. Y.; Chu, W.; Fongarland, P. *Chem. Rev.* **2007**, *107*, 1692–1744.
- ⁶⁹ Gillis, P.; Moiny, F.; Brooks, A. R. Magn. Reson. Med. 2002, 47, 257–263.
- ⁷⁰ Pinho, S. L. C.; Pereira, G. A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J. A.; Carlos, L.; Mornet, S.; Geraldes, C. F.
- G. C.; Rocha, J.; Delville, M.-H. ACS Nano 2010, 4, 5339-5349.
- ⁷¹ Paquet, C.; de Haan, H. W.; Leek, D. M.; Lin, H.-Y.; Xiang, B.; Tian, G.; Kell, A.; Simard, B. *ACS Nano* **2011**, *5*, 3104–3112.
- ⁷² Armstrong, J. K.; Wenby, R. B.; Meiselman, H. J.; Fisher, T. C. Biophys. J. 2004, 87, 4259–4270.
- ⁷³ Dohmen, M. P. J.; Pereira, A. M.; Timmer, J. M. K.; Benes, N. E.; Keurentjes, J. T. F. *J. Chem. Eng. Data* **2008**, *53*, 63–65.
- ⁷⁴ Díaz, U.; García, T.; Velty, A.; Corma, A. J. Mater. Chem. 2009, 19, 5970–5979.
- ⁷⁵ Williams, E. A. In *The Chemistry of Organic Silicon Compounds*;
 Patai, S., Rappoport, Z., Eds.; John Willey & Sons: New York, 1989;
 pp. 511.
 ⁷⁶ Uhlig F.: Maramarr. H. C. In *College Conduction* Silicon Compounds;
- ⁷⁶ Uhlig, F.; Marsmann, H. C. In *Gelest Catalog: Silicon Compounds, Silanes & Silicones,* 2nd ed.; Arkles, B., Larson, G., Eds.; Gelest: Morrisville, PA, 2008; pp. 208.
- ⁷⁷ Jena, D.; Konar, A. Phys. Rev. Lett. 2007, 98, 136805.
- ⁷⁸ Konar, A.; Fang, T.; Jena, D. *Phys. Rev. B* **2010**, *82*, 115452.
- ⁷⁹ Hollander, M. J.; LaBella, M.; Hughes, Z. R.; Zhu, M.; Trumbull,
- K. A.; Cavalero, R.; Snyder, D. W.; Wang, X. J.; Hwang, E.; Datta,
- S.; Robinson, J. A. Nano Lett. 2011, 11, 3601-3607.

ACS Catalysis

Table 1. Structural parameters of Co₃O₄/SiO₂ core/shell nanoparticles with different shell thicknesses.

	Sample	Core size $(nm)^a$	Shell thickness (nm) ^a	$S_{\rm BET} \left({\rm m}^2/{\rm g}\right)^b$	Pore size $(nm)^c$	Pore volume (cm^3/g)
	Co ₃ O ₄	17.2 ± 3.8	0	38	N/A	0.15
	Co ₃ O ₄ /SiO ₂ (3 nm)	19.1 ± 3.1	3.1 ± 0.6	130	N/A	0.15
	Co ₃ O ₄ /SiO ₂ (20 nm)	19.9 ± 3.0	19.8 ± 1.4	210	3.8	0.15
_	Co ₃ O ₄ / SiO ₂ (44 nm)	24.1 ± 3.5	44.1 ± 8.3	390	3.9	0.22

^aDetermined by TEM. ^bObtained by the BET method. ^cObtained by the BJH method.

Table 2. Structural data of SBA-15 and Co₃O₄-SBA-15 nanocomposites.

Sample	$S_{\rm BET} ({\rm m^2/g})$	Pore size $(nm)^a$	Pore volume (cm^3/g)
SBA-15	730	6.5	0.95
Co ₃ O ₄ -SBA-15	570	6.4	0.91
Co ₃ O ₄ -SBA-15-SiMe ₃	550	6.3	0.79
Co ₃ O ₄ -SBA-15-SiCH ₂ CH ₂ CH ₂ NH ₂	430	5.8	0.70
Co ₃ O ₄ -SBA-15-SiPh	520	6.4	0.74

^{*a*}Obtained by the BJH method.

Table 3. Maximum oxygen evolution performance of Co₃O₄-porous SiO₂ nanocatalysts.

Sample	Oxygen evolved (µmol)	Yield (%)
Co ₃ O ₄	5.2	3.8
$Co_3O_4/SiO_2 (3 \text{ nm})^a$	8.7	6.4
$Co_3O_4/SiO_2 (20 \text{ nm})^a$	26.7	19.6
$Co_3O_4/SiO_2 (44 \text{ nm})^a$	19.8	14.5
Co ₃ O ₄ -SBA-15	28.5	20.8
Co ₃ O ₄ -SBA-15-SiMe ₃	20.4	15.0
Co ₃ O ₄ -SBA-15-SiCH ₂ CH ₂ CH ₂ NH ₂	15.4	11.3
Co ₃ O ₄ -SBA-15-SiPh	19.4	14.2

^{*a*}Approximate shell thickness (as in Table 1).

