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V.  G o l u b e v a  and  V.  L e k s i n  UDC 517.986 

The object of this article is a construction of the Fock spaces and Weyl algebras associated to 
different root systems. First, a review of the recent papers devoted to the investigations of the Fock 
spaces and operator algebras associated to the physical models with groups of symmetries generated by 
reflections is given. Then the original treatment of the basic notions and operators defined for some 
vector spaces related to the irreducible root systems is presented. This t reatment  permits to obtain 
general constructions of the Fock spaces and the Heisenberg-Weyl operator algebras with symmetric 
properties for arbitrary root systems. 

Let R be a root system, R C V n, N the number of roots in R, tRt = N. For a given R, Hamiltonians 
are constructed in the vector space C N. The inverse images of these Hamiltonians with respect to the 
map h �9 V n --+ C N are Hamiltonians of Calogero-Sutherland. Representations of these Hamiltonians by 
means of the universal Dunkl operators associated to the same root system are given. A generalization 
of the Kakei conjecture about the isomorphism of operator algebras and Fock spaces associated to 
Hanfiltonians of Calogero and Sutherland and corresponding to different root systems is stated. 

The research was written in the frame the State Program of Support of Leading Scientific Schools 
and was supported by Grants RFFI-INTAS 00418 and RFFI-Germany 96-01-00008G. 

Nonrelativistic one-dimensional quantum models of rational, trigonometric, and elliptic types with 
interaction potential proportional to the inverse squares of distances, and with symmetries of different 
forms, have been investigated in a series of papers of M. A. Olshanetski, A. M. Perelomov, E. M. Opdam, 
I. V. Cherednik, A. P. Polychronakos, H. Ujino and M. Wadati, A. Veselov, V. M. Buchstaber, J. Felder 
and A. Veselov, T. Yamamoto, and others. 

These papers are mainly devoted to the investigation of the integrability of such models and to the 
construction of complete sets of their integrals. For this purpose, the Lax method of quantum (L, A)-pairs 
and the representation of Hamiltonians and integrals by means of Dunkl and Knizhnik-Zamolodchikov 
operators were exploited. 

The ground and exited states of such models were investigated, and corresponding quantum numbers 
were calculated. However, there are still many open problems concerning the representation of eigenstates 
of spin systems of particles and many related questions of construction of eigenstates of models of 
Calogero- Sutherland type and of solutions of the generalized Knizhnik-Zamolodchikov equations and 
the connection of these spaces. For example, the integral representations of fnndamental matrices of 
solutions of the generalized Knizhnik-Zamolodchikov equations for the most types of root systems either 
is not known or their construction is not certified by the corresponding verification, i.e., it is not proved 
that this construction gives the solution. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. 
Vol. 54, Functional Analysis-7, 1998. 
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Models of different types are naturally interrelated. For example, limit processes permit to obtain 
rational and trigonometric models from the elliptic one by introducing appropriate parmneters. But the 
general geometric and algebraic structures of the models mentioned above are of great interest. 

The present paper is devoted to a review of different approaches to construction and comparison of 
Heisenberg-\Veyl algebras and Fock spaces for different models of Calogero-Sutherland type, to the in- 
vestigation of the eigenstates of the corresponding Hamiltonians and the generalizations of these theories. 
The basis of eigenstates for Sutherland models wa~s described, for example, in papers of G. J. Heckman 
[1] and E. M. Opdam [2]. They constructed the orthogonal bases of eigenstates using the W-invariant 
Jacobi polynomials. A direct generalization of this method to the Calogero model is difficult since there 
exist the degenerated eigenvalues of Hamiltonians and the Gram-Schmidt orthogonalization procedure 
applied to the space of solutions of the Calogero equation does not permit to obtain the explicite formulas 
for the basis. 

Calogero Sutherland models describe one-dimensional dynmnics of many-body systems (on line, hy- 
perbola, or circle) with 1/r2-type long-range interaction. Translation invariant systems of such type 
correspond to the root system of A~-type. The necessity of consideration of the root systems differ- 
ent from An is conditioned either by constraints on moving bodies (half-line, segment), or by external 
forces, and also by effects of many-body interactions. For example, the nonrelativistic dynamics of quan- 
tum sine-Gordon solitons in presence of a boundary is described by the Sutherland model of BC~-type. 
This model is also related to the physics of the quantum electric transport in mesoscopic systems. The 
Haldane-Shastry models can be considered as dicrete version of Calogero Sutherland models (see [2 6]). 

Recently, H. Ujino and M. Wadati [7, 8] gave a construction of a basis for the Calogero model 
associated to the root system AN with harmonic oscillator, using corresponding basis for the Sutherland 
model (see also S. Kakei [9]). S. Kakei [10], T. H. Baker and P. J. Forrester [11] extended the results of 
Ujino and Wadati to other root systems, in particular, to the case of the BN Calogero systems with the 
harinonic oscillator. 

One of the objects of our paper is a review of recent papers of S. Kakei, P. Forrester, H. Ujino and 
M. Wadati, A. P. Polychronakos [12], D. Serban [13], K. Takenmra and D. Uglov [14] devoted to the 
investigation of the isomorphisms between the Calogero and Sutherland models associated to identical 
root systems. These authors considered the root systems An, B~, C~ and D~. 

Another object of the paper is an investigation of general algebraic properties of the Hamiltonians 
of the models. We will give the construction of Hamiltonians in the most universal form produced by an 
arbitrary root system corresponding to the finite symmetry group of the model. Further, for any root 
system the algebras containing the Hamiltonians and complete systems of integrals of the model and the 
Fock spaces containing all principal and excited states are introduced. By analogy with the results of 
S. Kakei [9, 10], for root systems A~-I,  B~,, C~, and D~, the isomorphism of the Fock spaces and the 
corresponding Heisenberg-Weyl algebras introduced for rational and trigonometric models for arbitrary 
root system is conjectured. 

It is necessary to note that the article abounds with nonstandard, sufficiently hard calculations. This 
is done for the convenience of the reader. 
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1. Representation for Sutherland Operators by Means of Dunkl Operators. 
Ujino-Wadati Approach 

The Sutherland model describes a system of n nonrelativistic particles on the circle (or on the 
hyperbola), interacting with inverse square law, whose Hamiltonian has the following form: 

c92 l,j~z w2/3(/3 - 1) 
Hs  = - - ~  + -2 sin[w(Oi-Oj)/2]" 

i=1  i, '=  

Different authors investigated the integrability of the Sutherland model. A complete set of n independent 
integrals, i.e., of n differential operators commuting with each other and with Hs,  was found (see [2]). 
For example, Polychronakos [12], Ujino and Wadati [7, 8], Dunkl [15], and Cherednik [16] gave the 
following characterization of the operators connected with the Sutherland model. 

Let 

V j  - Oxj ~ x j -  xk 
kCj 

be the Dunkl operator of rational type. Here sij, 1 <_ i < j <_ n, act on a fimction as operators of 
permutation of variables. Denote 

sj_  _-_ 1 
Aj = E X j  --  :C k " 

k 

Then we have 

V j = Oj - / 3 A j .  

It was shown that the algebra generated by x • Vj and sij is isomorphic to the double affine Hecke 
algebra. The structure of this algebra is characterized by the following assertion. 

Assertion 1 ([7 10]). The following commutation relations hold: 

(1) [Vi, V j ] = 0 ,  i , j = l , 2 , . . . , n ,  

(2 )  S i j V j  : V i S i j ,  

(3) s i jVk = V~si j ,  k e l ,  j, 

(4) [ V i ' x j ] = S i J  ( l + f l E s i k )  - ( l - 5 i j ) / % i j ' k # i  

Proof. Prove tile property (1). Let i • j .  We have 

2 [Vi, Vj] = [Oi - / 3 A i ,  Oj - /3A j ]  = [0~, Oj] -/3([0~, Aj] - [Oj, AiD +/3 [Ai, Aj], 

Evidently, [0,~, cOj] = 0. Further we obtain 

[Oi, Aj] = OiAj - A jOi  = Oi (Aj )  + ~ O,;(sj~, - 1) 
k :~J - -  x k  

Using the relations 8 i j X  j = X i S i j  and sijOj = (OiSij, we obtain 

S~J]~----! (~i ~- 8 j i  - -  1 y.  + 
X j  - -  X k  X j  - -  Xi  

k kr 

Oj - AjOi - [Oi, Aj] = sji - -  1 

( x j - x i )  2 

Aj Oi. 

S j i  - -  i 

( x j  - -  x i )  2 

8ji -- I 
+ - -  

xj -- xi 
@ - o d .  
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We see that on the right-hand side we obtain a flmction symmetric with respect to i and j .  Hence, the 
commutator [Oj, A~] is equal to the above expression. Consequently, the term of [V~, Vj] in parentheses, 
following the coefficient 9, is equal to zero. 

Compute the commutator [Ai, Aj]. We have 

8 i r a  

X i - -  2g m 

Keeping in mind that sire - 1 and 

we obtain 

~r \ [ xi - xj 

x i -- X m 

kT~J X j  - -  X k  J 

commute with the term 8 j k  - -  1 
x j  - x k 

for i 7~ j , k  and m r j , k ,  

+ , ' + . . . . .  , . 
X j  - -  X k [22 i - -  X k X j  - -  X i  J X i - -  X k X j  - -  X k  J 

Obviously, we have 8ij = 8ji. Introducing the notations 

W = 8 i j S j k  ~-  8 i k S i j  ~ 8 j k S i k  , W 1 ~-  8 j k S i j  ~ 8 j i S z k  ~-- 8 i k S j k  , 

we can rewrite the last expression in the form 

{[1(1 1) 1(1 
[A~, A3.] ~ x~ xj  xi  xk x j  - z~  xi  x~ x j  xk 

+ 

+ 

xt: xj  xj X i  X k  X j  - -  X k  X i  - -  X k  

(X ) 1 ( 1 i i i + 

xj x i j xk xi -- Xk xi -- xk xi xj 

X i x j  X i  - -  x k  X j  X k  X j  X k X i - -  X k 

I 1 ( 1 1 ) 1 ( 1  _ 

X i  - -  X k  a j  x k x j  - -  X i  x j  x i x j  x k 

x k  - -  x j  x i x j  x i  - -  X k  x j  - -  x k x i  x j  

1) 
xj xi 

1 x j )  
X i - -  

x~ - xj  (wl + 1)] 

x i  - x j  ( s i j  + $jk) 

X i  X k  

X j  - -  X k 

Direct verification shows that the coefficients at (w + 1) and (wt + 1) are equal to zero. Further, simul- 
taneous reduction of similar terms in last three lines shows that the coefficients at sij, sjt~, sik are equal 
to zero as well. Hence, we obtain [A~, Aj] = 0 and the proof of (1) is finished. 

Now we prove (4). We have 

;f, i - -  X k 
k 

X i - -  32 k 
k 

kT~i 

Using in the third term of this sum the following well known formula of reflection, 

( s ~ x ) j  = x j  - - - = -  a j ,  
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we obtain 

IVy, ~ ]  = ~ j  + x~O~ - /3  ~ [(*j  - ( ~  - ~, , )(5~5 - ~ , ~ ) . ~  - x j ]  

= 5~j 

= 5~j 

= 5~j 

Here we have used the relation 

The proof is finished. 

- -  Xj V i  
k Xi -- x k  

k~i 

. . . . . .  + ~ ~ ( ~ j  - ~kj)s~k -- x j v ~  
k Xz Xk ] k 

/ 

kr kr 

~-~5~jsik = ~ sij if i C j ,  
k ( 0 if  i = j .  

kr 

[] 

Consider the family of commuting operators (see [16]) 

Vy = xj V 5 +/3 ~ sj~. 
k<j 

R e m a r k .  Vi can be represented in the form 

Xk Xj 
X j~ j  + / 3  (sj~ - 1) - /3 

k<j lc>j 

The following assertion holds. 

- - ( s j ~ : -  1) - /3 ( j -  1). 

Asser t ion  2. The operators V j  satisfy the following commutation relations: 

(1) [~7~, Vj] = [xi,xy] = O, 

2 1, = (2) si = sisi+ls~ s~+ls~s~+l, 

(3) [si, s j ] = 0 ,  ] i - j l # l ,  

(4) xisij  = s i jx j ,  xisjk = sj~xi, i # j , k ,  

(5) r  - s jr  =/3, , s~r  - 9 j s j  =/3, 

(6) [s~, %] = 0, j r i, i + 1, 

(7) xj] 
k>i 

-/3xis,~j, i < j. 

Here we use the notation s~ = si#+~, i = 1 , . . . , n .  The equations (2) (4) and (6) are either well 
known or easily verified. The basic relations are (1), (5), and (7). The proof of (7) is very similar to 
that of (4) in Assertion 1. We verify (t) and (5). 
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P r o o f  o f  (1).  Let i < j .  We have 

[%%]= [~v~+gZ s,~,.~,v, +gZsj~ 

k < j  m < i  J k k<j 

Further,  we obtain 

[xW~, x j V j ]  = xW~x3Vj  - x a V j x W ~  = x~xoVWj - x j x W j V ~  + x~[V~, xj]V3- + xj  [Vj,  xdV~.  

The first and the second terms in the  last equality cancel out, and we have 

[x~V,~, x~V:] = x~( - ;~s~ j )v j  - x a ( - ~ s ~ ) v ~  = -~x~V,~s~ + 3x~V~s~j = r - x~Vds~.  

Now, all terms of ~ sak commute wi th  x~Vi excluding sij, and all terms of ~ si,~ commute  with xaVj  
k < j  m < i  

since i < j .  Hence we have 

k < j mm< i 

Consequently, the difference of commuta to r s  cancels out  with the precceding commuta to r  [x~Vi, xyVj l .  
For the last commuta to r  

we have 

Taking into account the equations 

+ 
] 

Z 

Sire,  8 j i ]  --~ 8 i m S j i  --  8 j i S i m  ~ 8 j m S i r n  --  8 j i S i m  

which are the consequences of the re la t ion 

8c~8~ = 8s~[3Sa ,  

we see tha t  the ruth terms of two sums of tile computed commutator  cancel, and we obtain 

The proof of (1) is finished. 

P r o o f  o f  (5).  We have to establish 

~T j+l sa - sj fT j =/3, 
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where sj = 8j,j+l. We have 

(( 
k < j + i  

/ 

= ~j+~v~+~sj - x~§ + 9 ( ~  

= r  = Zs~,j+~ = Z. 

The proof of the second equation of (5) is similar. 

8j4-1,~:Sj -F 8j--1,jSj -- k<jE 8J+l'kSJ) 

[] 

Let now Res P be the restriction of the operator P on the space of symmetric fimctions. Concerning 
the properties of operators Vi, we have the following important 

A s s e r t i o n  3 ([8, 12]). The set of commuting operators 
n 

[ k = R e s E ( V i )  k, k : l , . . . , n ,  
i : l  

constitute the set of integrals of the Sutherland model. 

Remark. It is necessary to note that the operator 2/2 is conjugate to the Hamiltonian Hs by means of 

the ground state flmction of the Hainiltonian Hs considered in coordinates xj = exp[2iOj], j = i,..., n. 

Consider now the properties of the Sutherland operator Hs. Making the change of variables xj = e i~ 

(the trigonometric case) we obtain 

n 2xjxk 
Hs = ~(x~Oy- - ~(9 - i) ~ (xj - x~): 

i=1 j<k 

Indeed, we have 

and 

0 
i x jO~  - OOj 

sin2 0i -- Oj _ l ( z i - - x j )  2 

2 4 XiX j 

Further, let Hs be the operator of the form 

9 (   nl/) 2 
Hs = Res ~Tj _ ~ 

i : 1  

Recall that 

r x~ (~_I)+~Z~ ~ 
~<j k ;rj - -  X k k<j 

k#j 

x_k_ x ~ - - - J ( s j k  -- 1) + ~(j  - 1). 
= zjOj - / 3 E  xj - :rk  (sjk - 1) - / 3 E  xj - x k  

k<j k>j 

Tile following two assertions describe the properties of tile operator / ts .  

A s s e r t i o n  4. The operator Hs has the foTw~ 
n 2 

x j  + z~; . _(xsO ~ _ xkOk). -- ~ 
- i ~ . ~ ( n -  - 1). t?s = Z(xJ~ + 9 ~  xj xk 

i=1  j < k  
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P r o o f .  Introduce the opera tors  

x/~ (1_ sj~)+f ie xj (1-- s&), 
k<j k>j 

j = 1 , . . .  , n, which vanish on symmetric functions, i.e., Res B j  = O, j = 1 , . . .  , n.  

We have 

/2/s = Res x j  C~j -t- Bj  + fl 2.? 2 
j = l  

= aes  [~j=~ [(x~Oj) ~ + xjOjS~ + 9(2j - n -  1)s~ + B~ 

] + B j x j O j  + 9(2j  - ~ - 1) . joo + 7 ( ~ j  - ~ - 1) ~ 

n n ~ 2  n 

: E(~,o~)2 + E (~,~,oj + ~I(~- , ) -  (n- ~)l~o,) + v ~ E ( ~ - ~ - , ) 2  
j= l  j= l  j=~ 

_-- E ( x j O j ) 2  + / 3 E  Xl~Txl~ ( 1 -  s j k ) +  1 xjOj 
j = l  j = l  

x~ ( 1 - s j k ) - i  .joj + ( 2 j - ~ - 1 )  2 
+ . xj  - x~, -T  

Two double sums, over j = 1 , . . . , n  and over k < j or j < k, can be rewri t ten  as a sum in all pairs 

l < k < j < _ n o r  l < _ j < k < _ n ,  

?% 

i=1  k<j k<j j<k  

/~2 n Xj 
XkOk + v - , .  _~..,(2j - n - 1) 2. 

j<k i=1  

Grouping pairwise the sums (the second and the fourth, tile third and the fifth), and making the change 

j ~ k in the fourth and fifth stuns, we obtain 

i=l k<j 

Xk :ljkO9 k -4- E -  2gJOqJ -~- E ( 2 j - - 7 7 , - -  1) 2 
- ~  xy - :c~, x~, - x 5 7 k<j i=1  

n _ _  / ~ 2  n 

i=1  /c<j  k < j  i=1 

n /32 n 
= Z ( ~ J o ~ )  2 + Z Z  ~ + z~ ( . j o j  - x~o~) + ~ ( 2 j  - n -  1) 2. 

i = 1  k<j Xj -- X k T i=1  

n- 1) 2 
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77 

Using the  forlnula ~ (2j - n - 1) 2 - - -  
j = l  

.(.,-~-1) , we obtain  

?% 

j=l 

The proof of asserion 4 is finished. 

~2 
x j  +_ xk (xjOj - xkO~) + ~ n ( n  2 - 1). 

E xj xk 
l < j < k < _ n  

[] 

Let r  be the function 
n 

__~ n_-- i 

p 

j < k  j = l  

The following assertion characterizes the conjugation of the operator H s  by the function Cs- 

A s s e r t i o n  5 .  
~ - - 1  

r = H s .  

P r o o f .  Indeed, we have 

Since 

we have 

) r  = r  ( ~ j O ~ ) ~ + Z ~ i + X ~ ( x g j _ x ~ O k ) + Z  - 2 i) r  
kj=l j<k x~ - xk 12 n(n  - 

n f12 2 
= Z(~Jr162  ~ + 9 Z  ~ + ~ (zJ(r162 ~) - z~r162 1) + ]~n(~ - ~) 

j = l  j < k  x i  - -  x k  

1 + G i n -  1 1 

k k#j 

x j  Z n  - 1 
xjCs%r 1 z j% - 9 ~ ,  .~J _ x~ 

k 
k r  

Subst i tu t ing this expression into the first term of the sum Cs/c/sr 1 and continuing the calculation, we 
obtain 

r  = x j O j  - fl x~ - x k  
j = l  k 

j < k  :Ei - -  :~k x j  - -  X k 
z;j 

j<tr X i  X k  

- -  + ~ n ( n -  - 1) 
X k - -  ;l;rn 

m#k  

I ( ) 2 x j  /3 2 
- -  + - 4 - ( n -  1) 2 = (xgj)~ + 9 2 ~ . ~ j -  x,~ 

J=~ k~d 
..i 

_f12 ( . , _  1) ~ xj - xk xj ~ xk xj - ~k 
k r  k ~ j  k C j  ] 
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j < k  Xi  Xk j < k  Xi  -- x k  

zjx~ ~ 

j = l  j = l  k j=l 
kCj 

X j  X k , X k --  X m 
lCj mr 

2 

~J xj x~ 

n n 

-2/~ E E x] xiOj _/~2( n _ 1 ) E  E - -  
j = l  k x j  --  x k j = l  k 

k ~ j  kT~j 

x j  

x j  - -  Xk 

(E xj - -  x l 
lCj 

xj + xk 
"~ +- ~ (xjO~ - x~O~) - ~ ~ x~ - x ~  x~ x~ 

+~ 
j<tr j < k  

Grouping the terms containing XyOj and x~Ok, we obtain 

-I- 

~2 2 
+~n(n  --1) 

~ n ( n  - 1) 2 

n 

+ G(n- 1) ~ xjOj 
j=l 

Z k - -  X 1 
l r  

/ ~ 2  2 
+ ~ n ( n  - 1). 

?% n 

xj + x~ (xjOj  - xkOk) x-----~-J x j O j + / 3 ( n - 1 ) E x j O J + / 3 E x j  xk x -xk 
j = l  k j = l  j < k  

s (~k ) n Xj I)XjOj 
= - f l  xj - x~ xj - x~ 

j = l  k j = l  k 
k < j  k > j  k C j  

~J xjOj - ~ ~ :~:J ~joj 
j < k  X j  -- 2~ k k<j k>j 

- ~ Z  x~ .~oj + Z xk xjoj + ~  - (~o~ - xko~) 
j = l  X j  -- X k X j  -- X k X j  Xk  

k > j  j < k  

xj x~Oj - 9 ~_, x~ ~.~joj - 9 Z x~, .~oj V" 
X j  ~- X k X j  - -  X k X j  - -  X k k < j  k > j  k < j  

xj - xk xj -- x k 
k > j  j < k  

Substituting j ++ k in the first and the third sums and grouping the first and the fourth sums, and also 

the second and the third sums,  we obtain 

- g Z - -  
k 

j < k  

Hence, we have, 

xj - xk k k 
j < k  j < k  

:~3 + xk  ( x j %  -- xkO~.) + ~ "~j + - -  :~' (xjO~ -- x~Ok) = O. 
- -  X j  - -  Xk X j  Xk 

k k 
j < k  j < k  

~ - 1  CsIisCs = 

X j  /~2 X j  xjxk /32(n- 1) E E xj -- xa xj 
j = l  j = l  k~jk j = l  kCjk j = l  k ~ j  
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. . . . .  + - -6 -n (n -  1 ) ( 2 n -  1) 
�9 xj xk x j - x ~  x ~ - x ~  

x j x ~ :rq_x• 

j=~ j=i k 
k~ j  k>j 

- f l 2 ( n  1) x j  xJ q- fl2 
- -  - -  -Jc E :l;j - -  X k  2;j Z X k  

j = l  k<j Xj -- X k k>jk j = l  kT~J 

-~" Z ~j _ ~ x~ - x~ ~ - x~ + - ~ ( n -  O ( 2 n -  1). 

Substituting j +4 k in the second sum in the bracket at fl and in the second sum in the bracket at 
-b~ 2), we obtain 

7'~ n 

- - ~ =  ~ ( ~ j o j )  -~ 29 x s ~  
j = l  j = l  k 

j < k  

+f12 ~ xj 
j = l  Xj -- Xk 

kr 

_ f12 ~ xj - x~ 
j<k 

lCj 

x j  

x j  -- x l  

Note that the third summand is equal to _f12 n ( n -  1, -9) 
2 

x j  -- X k 
f l 2 ( n -  1) E xj xk 

k<j 

x~ + _ d _ n ( ~  ~ _ 

Xk -- ~l 
1~2k 

n 

- - - 1 =  E ( X j O j ) 2  [32jX__k 
r162 + 2Z ~ (x~ - x~): 

j = l  j<k  

Hence we have 

2 

xj ) + f12 ~ xj xk 
j----1 k ; j  

1)(2n - 1). 

_f12 ~ xj - x~ 
j < k  

Compute the following difference: 

2 

Xj -- Xk j----1 
k#j 

x j  E xk  
x j  -- X I 1 xk  -- xl  

l#k 

/ 
x j  ~- Xk I~-~ 

x j  - -  x k  j<k  
l# j  

/ 

j = l  k,rn, j<k 1 
k , rrz ~ j l :fi j 

Ij~<k XjXk 

- F_, (~  _ x~)(xj - x~) 
l 

l#j 

f12 - -  - - ( n ( , ~ -  1 ) ( ~ -  2).  

Xj -- X l l Xk -- 22l 
l#k 

:4 ) 

j < k  1 

\ 

;gj Xk I ] j<k l tCk 

301 



Substituting j ++ k in the third and the  fifth sums, we obtain 

n 2 , . 2  2 

x, + E E  xj - Z Z (xj - x~)(<~ - ~,) (~. - ~ ) ( . j  - x,) 
j = l  k,m k<j l 

k,rn#j l/:j l#j  

l k<j 1 ~#j zr 

It is easy to see tha t  the  stun of the first, the second, and the third  summands is equal to zero. Hence 

we have 

xjxk xjxk 

j = l  k l j = l  k l 
k>j Ir k<j lr  

_ XjXk XjX k 
- - ('5 - .~)(xj  - ~ )  + ~ ~ Z ( . j  _ ~ ) ( ~ j  _ .~) 

\ -- k>j lCj,k j = l  k / k<j lCj,k 

5 jS_~ x j x ~ 

j = l  k j = l  k 
k>j k<j 

XjXk 
= _ ~ (~j - ~ j  - : ~ )  - -  (~j - ..)~ 

xs~ 

j,k,l j<k 
jr 

Note that  the summat ion  in tile first sum is done over all ordered triples (j, k, l) of pairwise distinct 

natural  numbers (j, k, l = 1 , . . .  , n). Grouping by six summands  corresponding to all permuta t ions  of the 

triples (j, k, l), and using for any given triple (j, k, l) the identi ty 

n(~-1)(~-2) terms of the stun, each of them equal to -1 .  Substi tuting this expression we obtain C~ a - 6 

into the last result for - -1 CsHsCs , we obtain 

n 

r 1 6 2  E ? xj:lJk /~2 E ?X.-.~ j22k 
~=~ J<~ (~j  - x~)~  ( x j  - x k )  ~ j<ta 

6 6 
n 

= Z ( . g j )  2 + ; 3 ~  2:,,jx~ ~ 2xjx~ 
(~;-E)2 ~ (xj_x~)2 

j = l  j < k  j < k  

n 
2xjxk 

= ~ ( x s O j )  ~ - ; 3 ( z -  ~) ~ ( ~  _ x~)2  
j=l  j<k 

Assertion 5 is proved. 

Consider the Calogero operator  in the field of a harmonic oscillator 

1 n 
H ~  : H~ + ~ Z ~, 

[] 
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where 

H e -  
1 n 2 . . . .  2E0~ +F~ z(z- ~) 

i : 1  {<J (Xj - -  X-~ 2" 

Introduce the operators 

1 v ;  - ~(-vj + ~j), 

The commutator of V]- and V?  has the following form: 

Let 

where 

V• v ~ ( ~ )  : ~ j ~ ,  

r : II m -  .~j?- 
i< j  

k xj  - -  x k ]  
k#j 

It is easy to see that 

where 

1 v? - ~ ( v j  + xj). 

(1 - & j f l % .  

-JF Xj. : ::}=Vj (C) @ Xj, 

vj(c) =0j_~ z s~,: 
k xj -- xk 

k#j 

Now we shall show that for Ho we have the following representadon: 

n 

j : l  

Indeed, 

j = l  

1 n 1 n n 2 

j = l  j = i  j = l  j = l  

n n 

= -2 E v~(~) + 2 E 4.  
j = l  j = l  

n 

Hence the equation ~ V~ = Hc implies tile desired assertion. 
j--1 
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2. Fock Spaces of Calogero and Sutherland Models 

Consider now tile spaces of eigenstates of the Sutherland model and the Calogero model with har- 
monic oscillator. More exactly, we describe the eigenfnnctions of tile Hamiltonian 

~ 0 2  1 w2f ( f  - 1) 
Hs = - ~ + ~ E s i n ~  --0-~/21 

i = 1  ' i , j=l  

We have defined the algebra 9as = C [Vj, xj, sij, i , j  = 1, . . .  , n], associated to the Sutherland model. Let 
V- ,  V + be the operators 

1 1 
v ;  = v ~ ( - v j  + xj), v + - ~ ( v j  + x~). 

Introduce the algebra 9dc = C[V~-,V}-,sij, i , j  = 1, . . .  ,n]. The algebras 9ds and 92c are called 
Heisenberg-Weyl algebras. 

It is easy to show that the operators V - ,  V +, sij satisfy the same commutation relations as the 
operators Vj,  xj, sij, i.e., 

(1) [V~,V~]=0,  c= : t : ,  i , j = l , . . . , n ,  

c [5,iy(1 + f i e  sjk)-(1-Sij)/~Siy], (a) [V~,xjl = 

(4) IV;,  v~+] = [v~,xj]. 

Let ~lc be the algebra isomorphic to 9,1c and generated by the operators conjugate to the operators 
n 

V~, sij through the operator of multiplication by the function q~c = I-I exp(-x~/2) .  In other words, ~lc 
i = 1  

is generated by the operators 

The homomorphism p : 9,Is -+ ~lc is defined by the following rules: 

Consider now the images of operators Vj = xjVj  +/3 ~ si~, i = 1,. . .  , n, under homomorphism p. The 
tr 

resulting operators will be denoted by ]zj; 

~j = p(%) = v ; v ~  + f }_2,~,  i = 1 , . . . , ~ .  
ta<j 

The operators hj,j  = 1 , . . . ,  n commute pairwise. This correspondence and the commuting set of oper- 
ators ~.j was considered for the first time by A. Polichronakos [12]. 

In algebra ~lc consider the operator 

It has the form 

/2/c = Res 
/ 1 

i~j - ~ . , ( . , -  1). 
V =~ / 

n 

1 1 ok). 

j = l  j<k  
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Consider the operator 

/2/~ = r  o/2/c o r  1 , 

conjugate to the opera tor / i / c  through the operator of multiplication by the symmetric function 
n 

r = I-I  [xj -- xl,,I r I I  exp(--x~/2). 
j<[r j = l  

The operator /2/~ coincides with the Hamiltonian of the Calogero model in the field of the harmonic 
oscillator H c  , 

n ~t 
1 1 2 

H h _ - - ~ c 3 ~ + ~ ( / ~ - l ) ~ ( x j _ x k )  2 § ~ x j "  
j = l  j<k  j = l  

The expressions for H c  and the coincidence H b = H~ can be obtained as above (for / t s  and 

H's = O  sCsl = Hs) .  
Following Kakei [9, 10], define tile Fock spaces for the Calogero operator with harmonic potential 

and the Sutherland operator. These spaces define linear representations of the algebras 9.1s and P.lc. 

Def in i t ion .  The Fock space ~s of the Sutherland model is the linear space over C which is a one- 
dimensional module over the algebra 9Xs with the generating "vacuum vector" v ~ identically equal to 
1. 

Note that we have 

Similarly define the Fock space ~ c  for Calogero model as a one-dimensional module over tile algebra 91c 
with generating :'vacuum vector" 

n 

: l-I e x p ( - 4 / 2 )  
j--1 

Evidently, we have 

Define a linear map 

4- 0 8 i jV  0 V j v C = O, = v ~  

p~ : ~s -o ~c 

as a map of one-dimensional modules satisfying the following rules: 

p (v ~ = v0 
C, 

va  j(av ) = 

It is ea~sy to verify that for any elements v E ~'s and a E 9.1s we have 

j ( a v ) = p ( a ) p ~ ( v ) .  

Considering the actions of algebras 9.is and 9.1c (and their conjugates by means of the function r we 
can, roughly speaking, consider that the Hamiltonian Hs transforms under the homomorphism p into tile 
operator H~, and the map p~ converts tile eigenflmctions of tile first Hamiltonian to the eigenfunctions 
of the second one. The spaces ~:s and 8 c  are spaces of polynomials in variables x l , . . .  , x~, investigated 
in sufficiently broad classes of models. It is nesessary to note that the action of Hmniltonians H s  and 
H~ can be transferred to the spaces of polynonfials ~s and ~c  by conjugation through functions of their 
"ground states." 

Define now nonsymmetric Jack polynomials E~(x) E C Ix] by following two conditions: 

(1) E~(x) are eigenfunctions of commuting operators Vj, j = 1 , . . .  , n; 
(2) the set of E,i(x) constitute the basis in C [x]. 
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More exactly, Jack polynomials are indexed by partitions A = (,~,,... , In) ,  that is, by the sets of 
nonincreasing nonpositive numbers (,~, >_ . . .  > A~) and by the elements of the permutation group 
w E E~. On the pairs (A, w) the lexicographical order is introduced [14]. We say that (p, w') -< (,~, w) if 
# < A with respect to the order of domination of partitions, and in case p = A, if w' <B w with respect 
to the Bruhat order�9 

, Ew(x) ,  where A = (A1,. . . ,  An) is a partition Def in i t ion  ([1, 2. 17]). Nonsymmetric Jack polynomial 
and w E Y;n, is defined by following two properties: 

)~ A / ~  q . #  A ____ T A 1  + E where : ~ w w ' ~ w  '~ X w  ' w ( l ) '  " " " ' 
(~,~,')-<(~,~) 

(2) E~(x) is the common eigenfunction of operators VO" 

Consider now the symmetric Jack polynomials. 

Def in i t ion .  Symmetric Jack polynomials J),(x) are defined by the two following conditions: 

(1) J~(x) = m,x(x) + ~ u~,,.,.,m,(x), where rex(x) is the symmetrization of the monomial x a = x a* , 
(~,,.) 

� 9  ~ X )'*~ ; 

(2) Jx(x) is the eigenfunction of the operator/2/s. 

The fact that the operator /7/s is conjugate to the operator H s  (through the principal state qSs of 
Hs)  has a consequence that the symmetric Jack polynomials describe the exited states of theoperator 
Hs.  It was shown that  the symmetrical Jack polynomials define the orthogonal eigenbasis in the space 
of states of the operator Hs [1, 14] with respect to the scalar product 

( f ( x ) ,g (x ) )a  = f f ( x ) g ( x - 1 ) ~ s ( x ) r  -1) dx l . . . x~n  

i = 1  

where T n = S t • . . .  • S 1 is the n-dimensional toms. 

The isomorphism p of Fock spaces defined above transforms Jack polynomials to the eigenflmctions 
of Calogero operator which are called hidden Jack polynomials or Hermite polynomials. S. Kakei has 
shown that these polynomials generate orthogonal basis with respect to scalar product 

ift  ,,g/xt/H= / / tx/g/x// c/2 xl 
- - O O  - - O O  

S. Kakei constructed the analogs of homomorphism p for Calogero and Sutherland models, associated 
to the root systems Bn, C~, D,, [10], and defined the analogs of Laguerre polynomials which, as Hermite 
polynomials, are the images of Jack polynomials. 

We shall not give the corresponding Kakei construction for classical root systems and consider further 
technical propositions for construction of a p-homomorphism which is suitable for arbitrary root system. 
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3. Universal Spaces, Quadratic Forms, and Laplasians Associated to the Root Systems 

The aim of this section is to recall principal definitions and to investigate properties of differential 
operators defined by means of a nondegenerate positive symmetric bilinear form (see Bourbaki) associated 

to the root system. 

Let R be a reduced and irreducible root system in a n-dimensional real vector space V. Let R+ be 
the set of positive roots, R0 = { ( ~ , . . . ,  c~,~} the set of simple roots, Ro C R+, W(R) the Weyl group 
of R. For a given root system, a unique nondegenerate positive symmetric  bilinear form FR(x, y) on V, 
invariant under W(R),  can be constructed. The form satisfies the condition 

FR(x,y) = E FR(x,a)FR(o~,y). 
o~E R 

From now on we will denote by the same characters V, F, s~ E W(R), the complexifications V | C and 

the natural  extensions of F ,  s~ to V | C. 

Let e~ , . . . ,  en be an or thonormal  basis in V with respect to F .  Any vector x ~ V can be represented 
in the form 

?z 

x = Z r (x ,  
i=1  

Then, by the bilinearity of F ,  we have 

n 

i=1  

Let IRI = N be the number  of roots in the root system R, C N be the complex space associated with 
R. Let {u~, c~ E R} be coordinates in C N ordered by some order chosen on R. For example, c~ >-/3 if 
c~ - / 3  E P+,  where P+  is the positive part  of the root lattice. Define on C g the quadratic form 

a,f~ER 

and its polar symmetric bifinear form 

c ~ , ~ R  

The following lemma holds. 

Lemma 1. Let 

Then we have 

a E R  

2, 
"yCR 

Q(u, v) = ~ LT(u)LT(v ). 
7 E R  

C o r o l l a r y .  The restriction of Q to R N C C N is a nonnegative fozw~. 

The proof is immediate.  

Define the action of the Weyl group W(R) on C N by the rule 

Define an action of W(R) on the space of complex-valued functions on C g 

~f(u) = f(wu) = f ( u ~ ) ,  o~ E R. 
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We have 

Indeed, 

WL.r(u ) = L~.,r(U ). 

Denote cqa - Oua" 

WL~/(u) : ~ F ( ' 7 ' ~  -- E F ( ' 7 ' w - l ~  
aCl{ a'~R 

: E F(w"7, a')u~,, = L~,r(U ). 
a '~R  

Introduce now the Laplacians and define some maps for rational, trigonometric, and elliptic cases. 
0 

Consider the differential operator of the first order (momentum operator) 

Dr  : E F("7, a)0~. 
c~ER 

For the differential operator of the second order 

Z p( ,9)o o9, 
a,~ER 

using Lemma 1 and commutativity of 0c~ and 0~, we obtain 

~ 2 A1 = ~ D r. 
"/ER 

This operator, naturally, is called Laplacian for the rational case. 

Similarly, for trigonometric case we have the momentum operator 

o~ER 

Using Lemma 1 and commutativity of 0~ and 0n, we obtain for the differential operator of the second 
order 

s = Z F(oe,/3)(uaO~)(u;~cg/J = ~ D.r.- 2 
a,/~E R rE R 

This operator is called Laplacian for trigonometric case. 

For the elliptic case we have the momentmn operator 

Dr = Z F(%/3)u~u_,~c%, 
o~E R 

and the Laplacian 
~2 

?,3 = Z Z hr. 
a,~CR rCR 

The following assertion is an easy consequence of the W(R)-invariancy of F(a,/3) and of the equation 

w o 0"7 = &L,r o w.  

Proposition 1. The families of operators c9~, D r and D r are equivariant with respect to th, e action of 
the Weyl group W(R),  'i.e., 

wO r = O~rw, wD~ = D wrw, w a r  = D ~ w ,  

and the operators A1 and A2 are invariant with respect to W(R), 

woA1 = Al ow, w oA2 = A2 ow. 
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The proof of the first group of equations follows easily from the fact that  F(c~, fl) is W(R)-invariant. 

The proof of the  second group of equations is sufficient to carry out for the generators s~, a E R, of 

2 1), and we have s~ o 0~ 05 o s~. W(R). Indeed, if s~7 = 6, then s~4 = ~ (since s~ = = 

Z F( , ) oOo09 

= 

~,fl6R c~,fl6R 

o w : f l o w .  

Let h : M --> N be the map of smooth  manifolds, and fM and FN be the spaces of functions on M 

and N respectively. Let, further, D be a differential operator on FN. 

D e f i n i t i o n .  The differential operator  on FM, which makes the following diagram commutative: 

h ~ 
FM ~ - -  FN 

I I 
i D 

h* 
FM ~ - -  FN, 

is called the inverse image h*D of the differential operator D. 

Define the following maps from V = V <9 C to C N- 

u : v ~ c  ~, ~ ~ U ( ~ ) = b ~ ( x ) = Y ( ~ , : ~ ) , ~ R } ,  

E: V -+C N, x--+ E(x)= {ua(x)=expF(c~,x) ,a6 R}. 

We prove the following proposition. 

7% 

P r o p o s i t i o n  2. The Laplace operator on V A = ~ O~ is the inverse image of the operators A1 and 
i = l  

A2 under the maps U and E, respectively. 

P r o o f .  We have 

O<f(U(x)) = E O ~ f a ~  x) - E F(c~,e{)O~f, 
o~C R ozC R 

\ c ~ 6 R  a 6 R  t i E R  

O~f(U(x)) = 

i=i 

Tile equation A _-- E*A 2 can be proved similarly. 

Hint: use the equations 

oga(x) O exp F(a, x) 
Ox~ Oxi 

F(~, e0F(Z, eOGO,3f(U(:~)), 
a, /36 R 

E EF(ct'eJF(fl'e'~)O~cg~'f(U(x)) = 

c~,flER i=i 
E 

a,fl E R 

F(~,  [3)O~Ozf(U(x)) = Aff(U(x)). 

= F ( . ,  e~) exp Y ( . ,  x)  = F ( . ,  ~,:)u~(~). 
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4. Universal Dunkl Operators and Hamiltonians. 
The Bethe-Dunkl Varieties 

Let c~ --+ ka, c~ ~ R, be the W(R)-invariant function on R and Av and By, ~ ~ R, the operators of 
the form 

A~ ~ ~(~'~)~ ~ + ~-~ 
o ~  R+ ~t~ - -  ~t--c~ o ~  R+ 

These operators generate equivariant families of operators, that is, for A~ we have 

w o A~ = A ~  ow. 

Indeed, 

w A ~ w  E F(7'~)k~ ~ ( F(7'~)k~ ) 

( F(%w-~E)k~-~' ) 
cd ~ R+ Uc~' --  %t--ed 

The case of B~ is considered similarly. 
Introduce the "universal" Dunkl operators 

V ~ , = - D  r + A ~ ,  V ~ = - / ) ~ + B ~ ,  

for 7 ~ R. Each of the introduced families of operators is equivariant. 

W 

- - - - -  s~, w = AwffW. 
cd ~ R +  ~ c J  --  U - c d  

v~ = V~eL~(~) 

Proposition 3. The following commutation relations hold: 

(1) [V,~,V5]= Z { Z 
wGW(R) a,fl~R+ 

8c~813=W 

(2) 

(3) 

(n) 

(~) 

[%,%]= ~ { 
~w(~)  

[D~, Ls] = F(7,6), 

~.k9 (F(% ~)F(~, 9 ) -  F(% 9)F(< ~)) ] 
(Tj-  ~_--~) (--~-~ - ~_,) ] ~' 

w h e F e  

Z kakZ(F(7'a)F(&/3) - F(7,/3)F(&a))~ +--u-~ 
~t--ot 

cq f lCR+ 
Sc~8~=W 

[Vz, Ls] = - F ( 7 , 6 ) -  2 Z 
c~ER+ 

F(% oOF(5, oOk~L~(u)s~ 

- 4  Z F(~ '~176 ( F ( 7 , ~ ) V , -  F(6,~)Vz) , 

uz § u_z [w, 
J ufl - u_;~ 

c~ER+ 

Iil the equations above, the terms related to w E W(R) that cannot be represented in the form of 
the product s~s/) are supposed to be zero. 

Proof. For the first equation we have 

[V~, Va] = [-D.y + A~,-Da § Aa] = [D~,Da] - ([Dz, Aa]-  [Da, A~]) + [A~,Aa]. 
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Evident ly  tile first bracket  is equal to zero since the  operators  D5 and D~ are sums of coInmut ing  

differential operators  0~ and,  hence, commute.  

Fur the r  we have 

k~F(6.  ~)s~ D~,~ - A~D~,. [D~,A5] = D.~ o A5 - A5 o D.~ : D.~(A5) + E 
~t--a) Ucz I 

Using the  equat ion  

we obta in  

s~7 = 7 - 2 F(c~, c~) ~' 

c~ER+ c~ER+ 

F(7,  c~)F(5, c~)k~D~ 
= D ~ ( A ~ )  + A~D.~ - ~ 

~en+ F(o~,a)(u~ - u - s )  - A5D.~ 

k~F( 7, a )F( 5, o~)s~ F(7  , o~)F( 5, c~ )k~D~ 
=-2 }2 

aER+ a~R+ 

It is easy to see tha t  this expression is symmet r ic  wi th  respect to "y and  5. Hence, the c o m m u t a t o r  
[D5, A~] is equal to the same expression, and we ob ta in  

[V.~, Us] = [A.~,A5]. 

C o m p u t a t i o n  of the last c o m m u t a t o r  gives 

~ ' ~ r ( 7 '  a )F(5 '  ~) s~s~. [A~,A~] y "  

~-, ( ~  - ~ _ ~ ) ( ~ , o ,  - ~_~o,) 

Let fl' = e~(sz)sc~fl = !sa i l ,  fl' E R+. We obtain,  further ,  

a,~r 

E 

(~ - ~ - ~ ) ( ~ s ~ ,  - u - ~ 9 )  ~ , ~ 9  

( ~  - ~ - ~ ) ( ~ 9 '  - ' ~ - ~ , )  ~ 9 '  

= E E k~k~(F(7'~ F(7'f3)F(~'~ 
(~ _ ~_~)(~,_  ~_,) ~- 

wcW(R) c~,ZER+ 
8 o ~ 8 ~ W  

The  first equat ion  is proved. 

The  o ther  equat ions are proved similarly. [] 

Now we will prove the  analogs of Propos i t ion  2 for t r igonometric  case. We have the following 
operators:  

czER c~cR+ 

U-c~) + 
( ~  _ ~ _ ~ ) s ~ ,  

c~CR+ 

V.y = - b . f  + B.y. 
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Proposition 4. 

w h e r e  

Th, e .following commutation relations hold: 

[ % , % ]  = ~ a-r,a(~,/3) 

c~y~ 

a-r,a(~,/3) = ~ ( F ( v ,  ~)~(a,/3) - F(V,/3)~(a, ~,)). 

P r o o f .  In the equation 

[%, Ca] = [ b >  ba]  - ( [ b >  ~a] - Ibm, ~-r]) + [~-r, ~a]  

we have [/)~,/)a] = 0. 

Find the commuta tor  [/)-r, B~]. We obtain 

[b-r,Ba] = b-ro~-~b-r= b-r(s~)+ ~ ~(~,~)~ (u~ +~D~o~ 
eer R+ ( Uc~ -- 

. ( - 4 u ~ u _ a )  _2F(%oz)F(5, ee) ( - 4 u a u _ ~ )  saF~" -BaD'r= E F(~/'~176163 ~ F(oe, ct) (ua-'u_~) 
c~  tg+ o~ R+ 

We see that  the indices ~/ and c$ are contained in the commutator  [/)-r, Ba] in a symmetric way. This 
gives 

([&, ~] - [&, B-r]) = 0. 

Hence, 

[%,%1 = [B>Ba]. 

Compute now the commuta to r  [By, Ba]. 

Let e('u~)= (~'~+~* ~) We obtain (~,~-,~_~) �9 

~,~R+ 

Further we have 

[e(~)s~, 4'a~))s~] = e(~))~(~))~ - c('~))~(~))~ 

= ~(~)~(~)~s~ - ~(~)e(~)~; 

[B-r, B a ] =  E k~k~F(%~162 

- ~ ~ k ~ F ( % ~ ) F ( a , ~ ) 4 ~ ) 4 ~ ) , ~ . ~ .  
c~,/3ER+ 

Making tile change /3' = -+-s~/3 and ct' = • supposing that  k~ are W-invariant, and using the 
properties of tile form F(ct,/3) with respect to the reflections s~, we obtain  

[B-r, B a ] =  ~ k~k;~,F(%ct)F(s~&/3)c(u~)e('a~,)s/3,s~ 

- ~ k,~,kev(.~9%~')v(a,/3)4~,)4~e)s~,.~ 

= ~ ~ g F ( % ~ ) F ( a , / 3 ) 4 ~ > . ( ~ ) . ~  
c~,flc._ R+ 
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E 
a,/3E R+ 

+2 ~ 

~ ~ F(,~, ~)E(5, ~)~(u~) e(~,)~ s~ 

F(% cJF(c~' ~)F(5' cO c(,u~)c(u~)s/~s~ 
kc~k~ F(ct, c~) 

r(v, 8)F(~, ~)r(a, ~) e (~ )e (~e )~e .  ~ ' ~  F(;~,/~) 

Substituting the indices c~ ++/3, we se that the third and the fourth summands cancel out, and the first 
two give the following expression for the cominutator [B~, Ba]: 

[B~,B~] = ~ k~k,(F(~,~)F(5,~)- F(~,~)F(5,~))c(u~)c(u,)s~s, 
ct,C~ER+ 

: ~ ~ c~,~(~,~) ~ -  + ~-~ ~ -  + ~-~w. 
w~W(R) ~,~t~+ uc~ u-a u~ u_~ 

8oeSU~-W 

Introduce the "universal" Hamiltonians of Calogero-Sutherland type 

Hc = -A~ + Z 
c~C R+ 

Hs = -A2 + Z 
a E R +  

Hg = Hc + O(~). 

F(oq oO(k~2 - 2kasa) 
*tot - -  ~t_ct)  2 

F(~, ~)+.~_~(k~ 2 - k ~ )  
'/Zce - -  ~_c~)  2 

It is easy to verify that these Hamiltonians are W-invariant, i.e., 

wHo = Hc~, ~H~ = H'~w w c w ( m .  

[] 

P r o p o s i t i o n  5. The following representations hold: 

k~k~F(~, 9) } 
~ v ~  
~/ER wEW(R) c~,~ER+ 

8c~Sf3~W 

~2  Z 
~/E R 

v;v~  + 
"TE/{ 

Proof .  

= - H  S - 

weW(R) a,~eR+ 

~," /ER c~ER+ t ta  - -  ~/'-(~ 

Prove of the first of these equations. We have 

2 

7 E R  

c~ER+ 

E ( - D , ~  + A,O 2 = E ( D ~ 2 - ( D v o A , ~  + A~D~) + A.~ 2) 
"TcR ~/CR 

2 2 

~ E R  "TER "yER 
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Earlier it was shown that A~ = ~ D 2. Furter we compute 

Further, 

D~ 

~o~ - -  ~t--o~ 

: - E  E 
F( a, a )kotsot k ~ s ~ D ~  

a~R+ ot~R+ 

o~R+ ot~tg+ ~tot -- ~_ot  

E A~D~, 
,,/~ R 

: X;  -~~ X; ~(~,~)D~ : ~tot - -  ~t_c~ 

We see that 

o A,~. We have 

kaSot 

k~s~ D~. 
'X.tot -- ~--oe ot~ R+ 

F ( c G  O~)kotSc~ 

Compute now ~ A 2. We have 
-y~R 

~/ER "~CR c~ER+ 

=E 
c~ER+ 

E F(7, o~)D~ 
7 E R  

~tot - -  U _  a Ufl - -  U _ f l  
t iER+ 

2 2 

a , f lCR+ 

= + 

c~ER+ c~,flER+ 

_ _ ~ (~ot - ~_~)~ 
a ~ R +  

The proof of the first assertion of Proposition 3 is finished. 

k J ~ F ( ~ , , o t / ~ ' )  , 
( ~ -  ~_~)(%- ~_e,)~es~ 

c~ER+ c~,fl~R+ 

{ l%~h:/3F(ct'fl) } w" 
w E W  a,~CR+ 

Now we prove the equation for sum of squares of trigonometric Dunkl operators ~ - 2 V~. We have 
"yER 

7ER "~CR 7CR ~/CR 

314 



It was shown above that A 2 = ~ D./.-2 Let, as above, c('u~) - 
-y6R 

We obtain 

~6R+ 

( -4u~u_~)  

ct~R+ c~6/~+ 

Make the change 0 / = s~'~. We obtain 

( -4u~u_~)  
(~. - u_~)2 ~ + ~ ~c(~)  

a6R+ a6R+ 

Z F(saa, ? ' )D~-' 
",/ ~ R 

Since 

we have 

Compute now 

= -  ~ ~(~,~) (-~o~-~) 
(~-7 - ~-~)----~ ~ + ~ ~(~)b~o~ 

a6R+ a6R+ 

( -4u~u_~)  

c~6R+ c~R+ 

~CR a6R+ o~6R+ o~6R+ 

"~ER "TCR c~CR+ 

B 2. We have 
~/6R 

(-4u~u_.) 
(~. _ ~_~):~" 

2 '9 2 
Z B'7 = - Z k~'c(u~) Z F(a'~/)F(%a) 
~'6R a6R+ "TCR 

+ Z k~k, Z F(a,o')F(o',/9)c(u~)s~c(u;Js, 
ct,/3E R+ ~6 R 

= -  Z kJr(~,~)~(~) 2+ ~ ~,~k,p(~,/9)~(~)~(,,~,)~. 
aC R+ a,/3~ R+ 

Using the equality c(ua) 2 - 1 - (-4nau-a) (ua - u - a )  2' we obtain 

2 - - _ _ _ _  B ~ : -  ~ / c a 2 F ( a , a ) ( - 4 u ~ u _ ~ )  
~ ~ +  ( ~ -  ~-~)~ 

- Z  
a,L~'CR+ 

Substituting/3 =/3 '  and a ++/9, we have 

~ R  ~ R +  ( u s  - u - a )  2 

k~2F( ~, ~) 
o~ER+ 

-- Z k a 2 F ( a ' c t ) -  
aER+ a,~eR+ 
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Hence, 

~2 

21CR c ~ R +  (~ta - -  ~t--c~)2 

or, t iER+ ~oL --  ~ t - a  ~tfl - -  ~ t_ f l  a E R +  

= - H s  E k~k~F(c~,fl)'u~ + u_~ u~ + u_~ - ~ o ~ -  ~ ~ ' r ( ~ , ~ ) .  

The proof is finished. 

Previous calculations naturally lead to the following definitions. 

[] 

Def in i t i on  1. Let 7, 6 E R and c~, fl E R+ are such that s~s~ = w E W. Then, for all w E W, we can 
define an algebraic variety by the equations 

MD(R) = ~ ~ C N ~ t~o~ = 0. 

8 c ~ 8 ~ W  

This variety will be called the Dunkl variety for the Calogero model. 

Def in i t i on  2. The algebraic subvariety in C N defined by the equations 

k ~  r ( ~ , ~ )  = o 
~,;3~+ ( ~  - ~ - ~ ) ( ~  - ~-~) 

will be called tile Bethe variety for Calogero model. 

Def in i t ion  3. The intersection of the Dunkl variety and Bethe variety will be called the Bethe-Dunkl 
variety. 

It is posible to give similar definitions for the Sutherland models, but in this case the modification 
of operators Vi is necessary. On these varieties the preceeding equations are simplified considerably and 
we obtain following assertions. 

T h e o r e m  1. (1) On the Dunkl variety the operators V~, Vs,  7, (~ E R commute; 
(2) on the Bethe variety we have the following representation of the Hamiltonian Hc:  

~ E R  

(3) On the Bethe-Dunkl variety, the quantum problem with the spin Hamiltonian Hc  is integrable 
and the set of algebraically independent integrals is given by 

L = V~. 
"~C R 

The proof follows easily from Propositions 3 and 4. 
Let V~ be the operator 

v~ = -D~ + ~ G f ( ~ , ~ ) s ~  
Uc~ --  U--c~ c~ER+ 
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Define the operators 

V~ + = V~ + L~(u), V~ = V~- L.y(u). 

The following proposition holds. 

Proposition 6. On the Bethe variety the following equations holds: 

Proof .  Indeed, 

= A 1 -  ~ 
c~CR+ 

1 ~ (v~-v~ + + vCvo-) 
"76R 

V~-V~ + + V~+V~ - = 2V 2 - L~V~ - VgL.y + L~Vg - 2L~, 2 = 2(V~ 2 - L~}; 

1 _ 2 
Z (V~ V~++V~I+V~-)= ~V~2-EL~ =Hc-Q(u)=-(Hc+Q(u))=-H h. 
"7~R -~R "yCR 

5. Algebras of Dunkl Operators and Fock Spaces for Arbitrary Root Systems 

Let P~ be tim operators of multiplication by the generators s~ E W(R) in C [W(R)]. Let r W(R) be 
the space of W-invariant functions on C IRt restricted to the Dunkl variety MD(t~). Define the algebra 

As = C [V~, L~, s.J, 0' E R. 

Consider an As-module Fs (Fock space} generated by the vacuum vector ]0}s = 1. The operators 
V~ annihilate the vacuum vector, and s~ preserve it, 

%lO>s = o, s~lo>s -- Io>s. 
Let, as above, L~ = ~ F(% a)ua. Define the algebra 

c~CR 

Ac : C [V +, V~-, s-J, 7 E R, 

where 

V +=V~+L~(u), V~=V,-L~(u). 

Introduce an At-module Fc (Fock space) generated by the vacuum vector, 

IO)c = e x p -  1/2Q(u)lO)s .  

The operators V~ annihilate ]0}c. 
Define the maps 

PA : As  -+ Ac, 

such that we have 

pF " F s - +  Fc,  

pA(V~) = V +, pA(Lv) = V~ ,  

pA(S~) = s~, Pr(alv>s) = pA(a)pF(]v}S). 

It is easy to see that PA is an epimorphism. 
The following lemma holds. 

Lemma 2. Th, e Hamiltonian Hc and its integrals I~ belong to the algebra Ac.  

The proof follows from the propositions above. 
In conclusion we propose some conjectures. 
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Lemma.  The Hamiltonian Hs and its integrals 13 = ~ belong to the algebra As. 
~cR 

The proof of this lemma is known only in some particular cases. 

Theorem.  Epimorphisms PA and PF are isomorphisms. 

At the present time we have no complete proof of this theorem. For the root systems A, B, C, and 
D similar result was announced in short communications by S. Kakei. 
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