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HEISENBERG-WEYL OPERATOR ALGEBRAS ASSOCIATED
TO THE MODELS OF CALOGERO-SUTHERLAND TYPE
AND ISOMORPHISM OF RATIONAL AND TRIGONOMETRIC MODELS

V. Golubeva and V. Leksin UDC 517.986

The object of this article is a construction of the Fock spaces and Weyl algebras associated to
different root systems. First, a review of the recent papers devoted to the investigations of the Fock
spaces and operator algebras associated to the physical models with groups of symmetries generated by
reflections is given. Then the original treatment of the basic notions and operators defined for some
vector spaces related to the irreducible root systems is presented. This treatment permits to obtain
general constructions of the Fock spaces and the Heisenberg—Weyl operator algebras with symmetric
properties for arbitrary root systems.

Let R be a root system, R C V™, N the number of roots in R, |R| = N. For a given R, Hamiltonians
are constructed in the vector space C. The inverse images of these Hamiltonians with respect to the
map h: V™ — CV are Hamiltonians of Calogero-Sutherland. Representations of these Hamiltonians by
means of the universal Dunkl operators associated to the same root system are given. A generalization
of the Kakei conjecture about the isomorphism of operator algebras and Fock spaces associated to
Hamiltonians of Calogero and Sutherland and corresponding to different root systems is stated.

The research was written in the frame the State Program of Support of Leading Scientific Schools
and was supported by Grants RFFI-INTAS 00418 and RFFI-Germany 96-01-00008G.

Nonrelativistic one-dimensional quantum models of rational, trigonometric, and elliptic types with
interaction potential proportional to the inverse squares of distances, and with symmetries of different
forms, have been investigated in a series of papers of M. A. Olshanetski, A. M. Perelomov, E. M. Opdam,
I. V. Cherednik, A. P. Polychronakos, H. Ujino and M. Wadati, A. Veselov, V. M. Buchstaber, J. Felder
and A. Veselov, T. Yamamoto, and others.

These papers are mainly devoted to the investigation of the integrability of such models and to the
construction of complete sets of their integrals. For this purpose, the Lax method of quantum (L, A)-pairs
and the representation of Hamiltonians and integrals by means of Dunkl and Knizhnik-Zamolodchikov
operators were exploited.

The ground and exited states of such models were investigated, and corresponding quantum numbers
were calculated. However, there are still many open problems concerning the representation of eigenstates
of spin systems of particles and many related questions of construction of eigenstates of models of
Calogero— Sutherland type and of solutions of the generalized Knizhnik—Zamolodchikov equations and
the connection of these spaces. For example, the integral representations of fundamental matrices of
solutions of the generalized Knizhnik-Zamolodchikov equations for the most types of root systems either
is not known or their construction is not certified by the corresponding verification, i.e., it is not proved
that this construction gives the solution.

Translated from Itogi Nauki 1 Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory.
Vol. 54, Functional Analysis—7, 1998.
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Models of different types are naturally interrelated. For example, limit processes permit to obtain
rational and trigonometric models from the elliptic one by introducing appropriate parameters. But the
general geometric and algebraic structures of the models mentioned above are of great interest.

The present paper is devoted to a review of different approaches to construction and comparison of
Heisenberg—-Weyl algebras and Fock spaces for different models of Calogero-Sutherland type, to the in-
vestigation of the eigenstates of the corresponding Hamiltonians and the generalizations of these theories.
The basis of eigenstates for Sutherland models was described, for example, in papers of G. J. Heckman
[1] and E. M. Opdam [2]. They constructed the orthogonal bases of eigenstates using the W-invariant
Jacobi polynomials. A direct generalization of this method to the Calogero model is difficult since there
exist the degenerated eigenvalues of Hamiltonians and the Gram-Schmidt orthogonalization procedure
applied to the space of solutions of the Calogero equation does not permit to obtain the explicite formulas
for the basis.

Calogero—Sutherland models describe one-dimensional dynamics of many-body systems (on line, hy-
perbola, or circle) with 1/r%-type long-range interaction. Translation invariant systems of such type
correspond to the root system of A,-type. The necessity of consideration of the root systems differ-
ent from A, is conditioned either by constraints on moving bodies (half-line, segiment), or by external
forces, and also by effects of many-body interactions. For example, the nonrelativistic dynamics of quan-
tum sine-Gordon solitons in presence of a boundary is described by the Sutherland model of BC),-type.
This model is also related to the physics of the quantum electric transport in mesoscopic systems. The
Haldane-Shastry models can be considered as dicrete version of Calogero—Sutherland models (see [2-6]).

Recently, H. Ujino and M. Wadati {7, 8] gave a construction of a basis for the Calogero model
associated to the root system Ay with harmonic oscillator, using corresponding basis for the Sutherland
model (see also S. Kakei [9]). S. Kakei [10], T. H. Baker and P. J. Forrester [11] extended the results of
Ujino and Wadati to other root systems, in particular, to the case of the By Calogero systems with the
harmonic oscillator.

One of the objects of our paper is a review of recent papers of S. Kakei, P. Forrester, H. Ujino and
M. Wadati, A. P. Polychronakos [12], D. Serban [13], K. Takemmura and D. Uglov [14] devoted to the
investigation of the isomorphisms between the Calogero and Sutherland models associated to identical
root systems. These authors considered the root systems A,, By, C, and D,,.

Another object of the paper is an investigation of general algebraic properties of the Hamiltonians
of the models. We will give the construction of Hamiltonians in the most universal form produced by an
arbitrary root system corresponding to the finite symmetry group of the model. Further, for any root
system the algebras containing the Hamiltonians and complete systems of integrals of the model and the
Fock spaces containing all principal and excited states are introduced. By analogy with the results of
S. Kakei [9, 10], for root systems A,_;, By, Cp,, and D,,, the isomorphism of the Fock spaces and the
corresponding Heisenberg—Weyl algebras introduced for rational and trigonometric models for arbitrary
root system is conjectured.

It is necessary to note that the article abounds with nonstandard, sufficiently hard calculations. This
is done for the convenience of the reader.
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1. Representation for Sutherland Operators by Means of Dunkl Operators.
Ujino—Wadati Approach

The Sutherland model describes a system of n nonrelativistic particles on the circle (or on the
hyperbola), interacting with inverse square law, whose Hamiltonian has the following form:

n 2 2
B Z 802 + % Z sillTw(‘;(-B~ 91))/2]
=1 ¢ i,j=1 P
i#]
Different authors investigated the integrability of the Sutherland model. A complete set of n independent
integrals, i.e., of n differential operators commuting with each other and with Hg, was found (see [2]).
For example, Polychronakos [12], Ujino and Wadati [7, 8], Dunkl [15], and Cherednik [16] gave the
following characterization of the operators connected with the Sutherland model.
Let

9 -1
Vi= =By

Ox; T — Tg

k .
k]

be the Dunkl operator of rational type. Here s;;, 1 < i < j < n, act on a function as operators of
permutation of variables. Denote

S'k—l
A = it Ly
=2
k
k#j

Then we have
V; = 0; — BA;.
It was shown that the algebra generated by =1, V; and s;; is isomorphic to the double affine Hecke

algebra. The structure of this algebra is characterized by the following assertion.

Assertion 1 ([7-10]).  The following commutation relations hold:
(1) [va]] :07 27321727 y 12,
(2) 85V = Visy,
(3) sijvk = Vk’sija k # iaj7

(4) [Vt,x]] = (52']' 1 -+ ,BZS.L'k — (1 - 57;j)ﬁ82'j.
k#1

Proof. Prove the property (1). Let ¢ # j. We have
Evidently, [9;,0;] = 0. Further we obtain

[0;, A;] = 0;A; — A;0; = 0i(A Z i85k = — A;0;.

- ”Ck
1»73.

Using the relations s;jz; = x;s;; and s;;0; = 0;5;5, we obtain
85— 1 8k — 1 8j; — 1 85, — 1 i — 1
0, Ag] = —2 o 4 3 g L, — A0, = + T2 (5, - 5y).

(x; — ;) T; — T T — T, (x; —xi)? x5 —x,
k#js
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We sece that on the right-hand side we obtain a function symmetric with respect to ¢ and j. Hence, the
commutator [9;, A;] is equal to the above expression. Consequently, the term of [V;, V;] in parentheses,

following the coefficient 3, is equal to zero.
Compute the commutator [4;, 4;]. We have

Sim — 1 S'k—l
A Al = Zm ) J

T
ms£i ¢ k+#j

w1
Sk for i # j,k and m # j,k,
SCj—ZEk

commute with the term
i — Tm

[Ai,Aj}:Z(]:Sij—17sjk—1:1+|:8i}<:—1753'7‘,—11}+[Si}§—1’83k—~1}>'
kg i Ti—T; Tj— Tk T;— Tk Tj— X Ty — T Tj— Tk

Keeping in mind that s;, — 1 and

we obtain

Obviously, we have s;; = s;;. Introducing the notations

W = 84585k = 8ikSij = SjkSik, W1 = S5kSij = SjiSik = SikSjk,

we can rewrite the last expression in the form

1 1 1 1 1 1
mal= {5 ) e - )
T i \Ts — X Tj — T i =Tk \Tj =Tk  Tj Iy

Tp— T
k#i.j J
1

= el G as)

Tk — Zj €Ty — X i — Tk

1 1 1 1 1 1
+ - + - (w1 +1)]
ZL’j — X ZL'j—-.'Ek ;i — Tk Ly — Tk fl,‘i—;ljj :E/ﬂ_xj

1 1 1 1 1 1
+ - - - (83 + 55%)
Ty — Ty Ty — T \ Ty — Tk Ty — Xy

Ly — X T; — T

+ 1 1 1 1 1
| Ly — Tk \Lj — T i — Ty Tj — &y \Tj — Tk i — T

1 1 1 1 1 1
+ , ~ - - (8ik + 8jk)-
Ly — X Tj— T \ Ty — Tj I; — Iy

Lk — Ty j Ly — X

Direct verification shows that the coefficients at (w+ 1) and (w; + 1) are equal to zero. Further, simul-
taneous reduction of similar terms in last three lines shows that the coefficients at s;;, s;i, s;, are equal

to zero as well. Hence, we obtain [A;, A;] = 0 and the proof of (1) is finished.

Now we prove (4). We have

Sik — 1
! )T] —zjV,L-
i~ LTk

[Vi,lﬁj] = VLLL] - x_va = (82 - BZ T
ek

k#z
Using in the third term of this sum the following well known formula of reflection,
2(a, x)
(sa); = 25 — (o)
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we obtain

(Vi) =0y + 20, = B g = (w0 2e) O = dg)sie — @] g,
e

Sik — 1
=§;; | 0 — ﬂz k + ,BZ(éij — Okj)Sik — T3 Vi
! k
ki

Ty — T} -
k#i

:51']' 1+ﬂ25ik —625ijsik+xjvi—xjvi
k

k
ki ki

:5ij 1+BZSH€ _(1—5ij)65ij-
e
Here we have used the relation
Sij if 4 7& j7
Z Ok Sik = s s
k: 0 if i=34.
ki
The proof is finished. O

Consider the family of commuting operators (see [16])

ﬁj =z;V; + ﬁz Sk

k<j
Remark. V,; can be represented in the form

Vi = a8y (s = 1) = B —— (s = 1)~ B - 1)

s —
k<j k> 7 k

€

ke
The following assertion holds.

Assertion 2.  The operators @j satisfy the following commutation relations:

(1) Ve Vil = [mi,25] =0,
(2) $?=1, 88118 = 8i118iSi41,
(3) [Si7sj] =0, IZ_J| 7é 1,
(4) TiSij = 8ijTj, TiSjk = SjpTi, 1 F 5k,
(5)  Viesi—sVi=0, 8V —Vs; =8,
6)  [sVi]=0, j#bi+1,
—Bz;i84, P> g,
(1) [Via]=1Q =+ (Z TiSik + D ~'T3k3ik:> ;o t=17
k<i k>i
_6:Ei8ij7 i< j
Here we use the notation s; = s;;41, ¢ = 1,...,n. The equations (2)-(4) and (6) are either well

known or easily verified. The basic relations are (1), (5), and (7). The proof of (7) is very similar to
that of (4) in Assertion 1. We verify (1) and (5).

295



Proof of (1). Let i < j. We have

Vi, Vj] = |2V + 3 Z Sim, T;Vj +5Zé‘jk

m k
m<t 113<j

[xivia ,'I;] ] + ﬁ ’Ijzv,” Z S]k — IBJVJ, Sim -+ ﬂz Z Sims Z Sjki
Ic<] m<t m<e k<j
Further, we obtain
[aziVi, IjvJ‘] = :cZVZrJVJ — l’ijlZVz - xiijiVj — xjxiVjVi + xi[Vi, .’Ej]Vj + Z; [Vj, ZI?»L]VZ
The first and the second terms in the last equality cancel out, and we have
[:L'iVi,ach-] = 1'7,( ,6873) — ZL'J( ﬁ3w>vl = —ﬁ.’EiviSU +,8ijjsij = ﬁ(x]V — X Vi )Sij-

Now, all terms of ) s;, commute with z;V; excluding s;;, and all terms of > $;,, commute with z;V;
k<j m<i
since ¢ < j. Hence we have

.’L’ivi, Sik| — "EJVJ, E Sim I‘ Vz, Sz;]} $ivi3ij - Sjil’z'vi — (-’Ezvz — fL'jVj)SIL‘j.
k<j m<z

Consequently, the difference of commutators cancels out with the precceding commutator {z;V;,z;V,].
For the last commutator

ZSJky § Szm

k<] m<z

we have

E 3]]@7_5_ Sim | = § Sim,y Sji § Szmyg Sim :g szmysji]+§ [Simasjm]-
m

m m .
<] m<q m <1 m<z m<z m<i m<3

Taking into account the equations
[Sz‘m, sz'] = Si¢mSji — 85iSim = SjmSim — S5iSim,
[Sz’m Sjm] = SimSjm — SjmSim = S8jiSim — SjmSim,
which are the consequences of the relation
588 = Ss5,.85a)

we see that the mth terms of two sums of the computed commutator cancel, and we obtain

ZS_)I\» Z Sim | =

k<.7 m<l

The proof of (1) is finished.

Proof of (5). We have to establish
V4185 = 5V =,
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where s; = s; j41. We have

Vit18j = 8V = 211 Vi85 — 852V + > sienk | 58 s
k<j+1 k<j

=51 Virs) — 81 Vis1si + B | D sje1iss + 8551585 = D 501,88
k<j k<j
2
= Bsj,j+18541.5 = PB8j j1 = 5.
The proof of the second equation of (5) is similar. (N

Let now Res P be the restriction of the operator P on the space of symmetric functions. Concerning
the properties of operators V;, we have the following important

Assertion 3 ([8, 12]).  The set of commuting operators

n

I, = Res Z(@z)k, k=1,...,n,
i=1
constitute the set of integrals of the Sutherland model.

Remark. It is necessary to note that the operator 21, is conjugate to the Hamiltonian Hg by means of
the ground state function of the Hamiltonian Hg considered in coordinates z; = exp[2i0;], j=1,...,n

Consider now the properties of the Sutherland operator Hg. Making the change of variables z; = %%
(the trigonometric case) we obtain

n

2z;x
Hs =) (2;0;) = B(B-1)) (7;‘_]—:)5
i=1 gk NI Tk
Indeed, we have
)
Z.Z'jaj 8—9]

and

2 U — Uy
S = ——

Further, let Hg be the operator of the form

Hs = Res i (@j _B(ngl))z

=1

Recall that

Sjk—l +,628]k

k<j

vV, =z;V; +ﬁZsjk—— x;0; —BZ
k#J

k<j
= x;0; —ﬁz sjk—l) BZ

The following two assertions describe the properties of the operator Hg.

5Jk -1+ —-1).

Assertion 4.  The operator Hg has the form

~ n + 2
Hs == Z( +BZ % £Z 38]' - :L‘kak) - %n(nz _ 1).
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Proof. Introducc the operators

ZEj

B; = (1 —sj,)+ 1—sik),
ﬁkz . k) ﬂz z; —zk( Sjk)
<j k>j7 -
j=1,...,n, which vanish on symmetric functions, i.e., Res B; =0, j=1,... /n.

We have

- ‘ 2j —n—1\
HS:RGSZ (I‘]8]+BJ+,6’L‘§‘_“>
j=1

n

= Res Z [(ZBjaj)Z + xj(?ij + 5(2] - n — 1)Bj + BJ2
ji=1

2
+B;x;0; + B(2) —n — 1)z;0; + %(23' —n—1)?

=1 =

= a0+ 3 By + 616~ 1)~ (n = ajdy) + %z (25— 1)’

:Z;(xj +BZ Z( k(l”sjk)"‘l) ;0;

=1 tk<j
+Z % (1—-sj5)—1)x;0; +§i2”:(2j_n_1)2
\T; ~ Tg g 7 4 4 '
k>j j=1
Two double sums, over j = 1,...,n and over k < j or j < k, can be rewritten as a sum in all pairs
1<k<j<norl<j<k<n,
- L
Hg 0; — Ok 0
=S (s, $BY =Y et BY
i=1 k<j’ k<j’ i<k
R 2
_52 Py rk6k+~4—2(2j—n—1)‘.
i<k i=1

Grouping pairwise the sums (the second and the fourth, the third and the fifth), and making the change
7 ¢ k in the fourth and fifth sums, we obtain

n

s = Z(:cjaj)z + 8 Z

i=1 k<]

9 N
z Th z ,
kt 0 + E k z;0; | + b (2j —n—1)?
7Tk ’

8>3 —aid; |+
= z; y Ty — Xy 4 P
n T 2 n
= (L]83)2++,BZIE' (xjaj—rkﬁk)—l—ﬁzfv‘_ (2;0; — Bkak)—l—%—Z(Z]—’n—l)“
i=1 k<i 7 k<j” J i=1
” ) 5 + T B o 2
= Zzzl(xjaj) +ﬂkZ<J z; — Th (l'jaj - .’L'kak) + “4‘ ;(2] - n— 1) .
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n

Using the formula Y (25 —n—1)%? = %ﬁ we obtain

i=1
r 2
Te =S (1£.9:)2 Tj T 5 B n? —
Hs = Z(%aj) + 0 Z — (2;0; — 210k) + 1271,(71 1).
Jj=1 1<j<k<n
The proof of asserion 4 is finished. a

Let ¢g be the function

o5 = [ le; — zul’ Hr“”

i<k

The following assertion characterizes the conjugation of the operator Hg by the function @s.-

Assertion 5.

¢sHsos' = Hs.
Proof. Indeed, we have
osHsog" = Z sy B0 (0 — k) + on(n? ~ 1) | 03
s 773 12 o
Jj=1 J<k
" _ T+ _ _ 2
= (050,05 ) +8>_ P © (w(ps0565") — TrdsOkds") + %n(n ~1).
i=1 ek 1T Tk
Since
n—11
65005~ =0, —BZ e T
k#]
we have

9 _ n
LquS ]¢S 1’.7 621,] _:Ek 9
k?fj

Substituting this expression into the first term of the sum ¢gH qugl and continuing the calculation, we
obtain

n

. T n—1 :1:1+7:
pslsos =3 | ;0,8 x'_{mﬁﬁ D & (2;0; — 240)
kIR

-z
Jj=1 ) ]<k k
k#j

Ty + g 5‘
_62211_2 ZT —x&_; ﬁn(n - 1)

G<k LT — Ty
l;é m#

=3 w0+ [ |+ Dy
j=1

k Ty — Tk
k#j

— Bx;0; Z

k#] k#j k#]

—I—B (n—1)z;0;
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sl p Ll — Tm,
k i<k 145 mrgék'
2
-y 0;)? Y TiTk 2N L B 1)2
D CUNEN) ) e M DI PSS
j=1 i=1 k 7=1 k
k] k#j
n x n T 7
—QQZZx Ja: rjﬁj—ﬁ“(n—l)zzx :Ek%—ﬂ(n—l)er@J
i=1 &k j=1 & 7 j=1
[y k7
T; + T 2N Zj + Tk z; T 5
x;0; — x1.0) — - —n{n* -1
DD R AR D Sr) DO D) AV
i<k ™ j<k I J ]
I#] l#k
Grouping the terms containing z;0; and x,0k, we obtain
= r - e
k
263 2303+ B(n = 1) 2,05+ B " (305 — 2y
j=1 k ' “ j=1 ]<k§ e
k#j
- €; e x
= -0 z;0; + I 20, | -5 J __ _1)x;0
k<j k>3 k#j
Ti+ g T r
+5Z T] (2705 — 2k 0k) = _52 . jT ;0 ﬁz - 31 ;0
<k I k<j 3 TR k>j "7
- T i +x
k T k
=YY ———1,0, +> ;0; +Bzx3 —— (2,05 — %)
=1 \k<j "7 k k> jak 3Tk
Z; Z 4 Tr
—“52% %a]—ﬂzmj - BJaJ"ﬁZ%, T x;0;
k<j k>j - k<

Ty T+
_ﬂz oy _k :Bjaj +ﬁz ] —I: (3?'7‘(9]' — rké?k)

k> 7 i<k

Substituting 7 <+ &k in the first and the third sums and grouping the first and the fourth sums, and also
the second and the third sums, we obtain

Tk T Tj + Tk
-0 zi0; —xp0p) — 3 x;0; —1p0y) — 3 z;0; — T 0k
D R LR Dl SRR LR D CUREL
j<k j<k i<k
XTi 4+ Tp T+
=-0 J x;0; — K0y} + 05 x:0; — x1.08) = 0.
D AR D S OORE LY
j<k i<k
Hence, we have,
2
n n TiT n xr n x
7 o—1 . 932 Ltk A2 '] 2 ]
OsHsss’ =3 (@007 +0) > 2 L — B =D D T+ D
=1 i=1 k J i=1 k" j=1\ k& Y
=) k#j k#j
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2

T; + Tk T T
_5223.__’1 Z J _Zm_’jxl —f-%—n(n—l)(?ﬂ—l)
: . ~ Tk

r; —& xr; — X
Gk 3 TR T T T
1] stk
n
TiT, TiT,
= (% +5Z Z——*J st
= (zj — x1) — (25 — z1)
ke k>
)
n mn
2 T T 2 Ty
FEr R A j=1\ kIR
k< k>j k#j

2

Tj + T T; Tk 8
_ — —n(n—1)(2n—1).
ﬁzm — Zp Z.Ij—l'l Zxk—a}l +6n( )(2n )
i<k L [
I#] 1#k
Substituting j <> k£ in the second sum in the bracket at 8 and in the second sum in the bracket at

—b*(n — 2), we obtain

~ i ;T T; — X
N S +2ﬂZZ R A UES VD W
j=1 glgk - k)2 k<jxj Tk
J

2

-3 g I - +Zn(n—1)(2n—1).
g Z -—,rk Z:kxj—xk ;l’j—xl zl:xk—ml 6 ( A )
k#a I#j Ik

n(n —1)?

Note that the third summand is equal to ——[32-—5——. Hence we have

n

b5Tls05t = Y ay0 D B R P D D
Jj=1 j<k: j=1 kij J

2

x3+rk /8
- — 2 nn—1)(n-2).
N o 3 Rt L
17k

i<k l
1#j

Compute the following difference:

2

n
S —Zﬁ—m"”’“ YAy
X ¢ — r; — I L — X
; S it ! Tk T

7= iy <k 1] Ik
" x?
= ‘7 -2 Z T2
= (x; —xp)(z; — T) < (x; — rk) x;—x) Py = Xp) xk — )
n#j Ik

-1y ZZ e
oy (; —xp)(z; — 1) (z; — xp)(zK — 1)
I#]
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Substituting j <> k in the third and the fifth sums, we obtain

2 2
] L;
;; (z; — zp)(z; ;; x5 — 23,)( ,;__wl)+éz PR Y
kym#j I#5 1£5

DI e R I) DI .

IE — X 'E - "—:l: ’U — X
i<k 1 k) ) = w)(25 — 1)
I#7

It is easy to see that the sum of the first, the second, and the third summands is equal to zero. Hence
we have

STy e Y

— T —zp)(z; — ) =% 5 — k) (z; — 1)
k>j l1£j k<j l;éj

B D2 2P Mo e ZZZ e

(xj —z)(zy — 1)

B

3

=1 k I =1 k
k>jl#5,k k<j l;éj k
n
+
PDPIEN o) e
i=1 k i=l k
k>3 k<j
;T ;T
S L) Jyu
ikl J—J,‘k I‘J—L‘l i<k j——:l?k
J#kF#l
Note that the summation in the first sum is done over all ordered triples (j,k,[) of pairwise distinct
natural numbers (j,k,1 =1,... ,n). Grouping by six summands corresponding to all permutations of the

triples (4, k,1), and using for any given triple (j, k,1) the identity
zixp(z; — 2p) + 2pry(Tr — ) + 2125 (0) — 75) = — (x5 — zE){@r — ) (2 — 25),

we obtain C2 = "(”_—16)(”_2 terms of the swin, each of them equal to —1. Substituting this expression
into the last result for ¢SHS¢§1, we obtain

n
~ 2x.xy, 9 2z 1y,
dsHso 1_ (x-@-)2+ﬁ T 5 el
° ; T Z,:c (2 — @)? JZ; (25 — o)
_ pan{n— 1)(7;—2) sn{n—1)(n—2)
8 e
_ n ((L‘ 6)2 n 52 2:I:j$k _ ,32 Z 2.1‘j:l?k
= 7 = (@ — ) o (25— )
~ 2z
=2 @0 -8B s
7=1 i<k (T'? h QL’A)
Assertion 5 is proved. O

Cousider the Calogero operator in the field of a harmonic oscillator

1 n
Hg«ZHC‘l‘iZ’E?,

=1
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where

Introduce the operators

The commutator of V; and V;r has the following form:

V5, VI]= 6 1+ﬁ§:32k) = (1= 845)Bs4;-
k#i

Let
+ + ;-1
Vj (C) - ¢cvj R

=[]z — 5.

1<j

where

It is easy to see that

Vil)==8;~8>

A Ij— Tk
k]

- Ty, = ZEVJ(C) + Tj,

where

Indeed,

j=1
n K 1 n n
= =D VIO +5 > IVi(ehas] = 5 D (Vi) + D3
i=1 J=1 j=1 j=1
:—QZV?(0)+2 z?
=1 j=1

n
Hence the equation V‘]Z- = Hc¢ implies the desired assertion.
j=1
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2. Fock Spaces of Calogero and Sutherland Models

Consider now the spaces of eigenstates of the Sutherland model and the Calogero model with har-
monic oscillator. More exactly, we describe the eigenfunctions of the Hamiltonian

_ N w?B(B-1)
Hs =~ 2802+22smh 0 —6,)/2]
%753

We have defined the algebra Ag = C[V;,z;,5;;, i,4 =1,... ,nj], associated to the Sutherland model. Let
V~,V™ be the operators
1
- __ . . + _
Introduce the algebra 2Ac = C[V;,V sy, 4,j = 1,...,n]. The algebras As and Ao are called
Heisenberg—Weyl algebras.

(V + ;).

It is easy to show that the operators V=, V*, s;; satisfy the same commutation relations as the
operators V;, x;, $;j, i.e.,
(1) [Vf7vf]:07 5:i7 ivjzla"'anv
(2) SUV§ = V‘?Sij; Sig - VE = Vi <845y, €= :i:l,
(3) Vi) = —=[0(1+ 8 si) — (1= 0i5)Bsis),
ki
4) vy V+] Vi, z;].

Let Ac be the algebra isomorphic to A and generated by the operators conjugate to the operators
~ n ~
V¢, si; through the operator of multiplication by the function ¢c = Hl exp(—x2/2). In other words, Ac
i
is generated by the operators

j ¢clv o, 8ij = Ot sibe = sij.
The homomorphism p: Ag — Ac is defined by the following rules:
p(V;) = @}L, p(z;) = @;7 p(8ij) = Sij-

Consider now the images of operators @j =z;V;+06 > s, 1 =1,...,n, under homomorphism p. The
k<j

resulting operators will be denoted by ﬁj,
hj=p(V;)=V;VI+B> s, i=1...,n.
k<j
The operators h;,j =1,... ,n commute pairwise. This correspondence and the commuting set of oper-

ators lAzj was considered for the first time by A. Polichronakos [12].
In algebra e consider the operator

X . 1
He = Res Zhj — —2—71,(77, —1).

=1
It has the form
X 1o, o " 1
He = 5;(31' + 2x;0;) — 5; P (0; — Ok)-
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Consider the operator
Hg = ¢c o Ho o g,
conjugate to the operator Ho through the operator of multiplication by the symmetric function

dc = H |2j — a1|° H exp(—z7/2).

i<k j=1

The operator H. coincides with the Hamiltonian of the Calogero model in the field of the harmonic
oscillator He,

Hg:—%§218§+6(5—1)2——1—+;x§.
7= J=

i< (@ —zp)?

The expressions for Ho and the coincidence HS, = HJ can be obtained as above (for Hg and
H = ¢sHsds" = Hs).

Following Kakei [9, 10], define the Fock spaces for the Calogero operator with harmonic potential
and the Sutherland operator. These spaces define linear representations of the algebras As and Ac.

Definition. The Fock space §g of the Sutherland model is the linear space over C which is a one-
dimensional module over the algebra s with the generating “vacuum vector” v% identically equal to
1.
Note that we have
Vjvg = O, Sij’Ug = Ugv.
Similarly define the Fock space §¢ for Calogero model as a one-dimensional module over the algebra Qe
with generating “vacuum vector”

Evidently, we have

Define a linear map

p%:Fs = Fc
as a map of one-dimensional modules satisfying the following rules:
P (v3) = ve,
Va € As, pS(avd) = p(a)p®(wd).
It is easy to verify that for any elements v € §g and a € Ag we have

pS(av) = p(a)p®(v).

Considering the actions of algebras g and ¢ (and their conjugates by means of the function ¢) we
can, roughly speaking, consider that the Hamiltonian Hg transforms under the homomorphism p into the
operator Hj, and the map p¥ converts the eigenfunctions of the first Hamiltonian to the eigenfunctions
of the second one. The spaces §s and §¢ are spaces of polynomials in variables z1, ..., z,, investigated
in sufficiently broad classes of models. It is nesessary to note that the action of Hamiltonians Hs and
H g. can be transferred to the spaces of polynomials §s and F¢ by conjugation through functions of their
“oround states.”

Define now nonsymmetric Jack polynomials F;(z) € C[z] by following two conditions:

(1) Ei(z) are eigenfunctions of commuting operators @j, j=1,...,n
(2) the set of E;(z) constitute the basis in C|z].
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More exactly, Jack polynomials are indexed by partitions A = (A1,...,A,), that is, by the sets of
nonincreasing nonpositive numbers (A > ... > A,) and by the elements of the permutation group
w € X,. On the pairs (A, w) the lexicographical order is introduced [14]. We say that (u,w’) < (A, w) if
[t < A with respect to the order of domination of partitions, and in case u = A, if w’ <p w with respect
to the Bruhat order.

Definition ([1, 2, 17]).  Nonsymmetric Jack polynomial E)(z), where A = (A1,...,\,) is a partition
and w € %, is defined by following two properties:

A
(1) EMzy=z)+ Y. ut.zh, where z) = 1:1’:1(1), o zan(n);
(pw")=(Aw)

(2) E)(z) is the common eigenfunction of operators V;.

Consider now the symmetric Jack polynomials.

Definition. Symmetric Jack polynomials Jy(x) are defined by the two following conditions:

1) Ju(z) =my{x) + ux.,m,(x), where my(z) is the symmetrization of the monomial z* = ™,
uTy

(M)
}\7L .
7 :E ?

(2) Ja(z) is the eigenfunction of the operator Hg.

The fact that the operator Hg is conjugate to the operator Hg (through the principal state ¢g of
Hg) has a consequence that the symmetric Jack polynomials describe the exited states of theoperator
Hg. It was shown that the symmetrical Jack polynomials define the orthogonal eigenbasis in the space
of states of the operator Hg [1, 14] with respect to the scalar product

dx, xn

(F(&), 9(a))s = [ F(@)g(ebs(x)bs(a >( i
27" z;

where 7" = S x - -+ x §! is the n-dimensional torus.

The isomorphism p of Fock spaces defined above transforms Jack polynomials to the eigenfunctions
of Calogero operator which are called hidden Jack polynomials or Hermite polynomials. S. Kakei has
shown that these polynomials generate orthogonal basis with respect to scalar product

(f(=), 7

S. Kakei constructed the analogs of homomorphism p for Calogero and Sutherland models, associated
to the root systems B, Cy, D, [10], and defined the analogs of Laguerre polynomials which, as Hermite
polynomials, are the images of Jack polynomials.

flz ((bc) dzy...dz,

8\8

We shall not give the corresponding Kakei construction for classical root systems and consider further
technical propositions for construction of a p-homomorphism which is suitable for arbitrary root system.
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3. Universal Spaces, Quadratic Forms, and Laplasians Associated to the Root Systems

The aim of this section is to recall principal definitions and to investigate properties of differential
operators defined by means of a nondegenerate positive symmetric bilinear form (see Bourbaki) associated
to the root system.

Let R be a reduced and irreducible root system in a n-dimensional real vector space V. Let Ry be
the set of positive roots, Ry = {a1,...,qm} the set of simple roots, Ry C Ry, W(R) the Weyl group
of R. For a given root system, a unique nondegenerate positive symmetric bilinear form Fg(z,y) on V,
invariant under W(R), can be constructed. The form satisfies the condition

Fr(z,y) = Z Fr(z,a)Fr(a,y).
aER

From now on we will denote by the same characters V, F,s, € W(R), the complexifications V @ C and
the natural extensions of F', s, to V ® C.

Let eq,...,e, be an orthonormal basis in V' with respect to F. Any vector z € V can be represented
in the form

T = Z F(z,e)e;.
i=1

Then, by the bilinearity of F', we have
n
F(z,y) = ZF(z,ei)F(ei,y).
i=1

Let |R| = N be the number of roots in the oot system R, CY be the complex space associated with
R. Let {uq,a € R} be coordinates in CV, ordered by some order chosen on R. For example, a > (3 if
o — 3 € PT, where PT is the positive part of the root lattice. Define on C¥ the quadratic form

Qu) = Z F(a, B)uqug,
a,BER
and its polar symmetric bilinear form
Qu,v) = Y Fla,B)uqvs.
«,BER

The following lemma holds.

Lemma 1. Let

L'Y(u) = Z F(V?ﬁ)ua-

aER
Then we have

Qu) =Y (Ly(w)*,  Quwv) =Y Ly(u) Lo (v).

yER yER

Corollary.  The restriction of Q to RY c CV is a nonnegative form.
9

The proof is immediate.
Define the action of the Weyl group W(R) on C¥ by the rule

Wlha = Uars a€R, weW(R).
Define an action of W{(R) on the space of complex-valued functions on C*,

“fu) = f(wu) = f(uws), «€R.
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We have
Y Lo(u) = Lyy(u).

Indeed,
W Lo Z F(vy, 0)tye = Z F(y,w o Yuy
a€R o'ER
= Z F(wy,a )ug = Ly (w).
a’ER

Introduce now the Laplacians and define some maps for rational, trigonometric, and elliptic cases.

0
Denote 0, = T Consider the differential operator of the first order (momentum operator)
Ugy
= F(7,0)d
aER

For the differential operator of the second order
Y F(a,8)0a0s,
a,BER
using Lemma 1 and commutativity of d, and 0g, we obtain
2
-y
YER

This operator, naturally, is called Laplacian for the rational case.
Similarly, for trigonometric case we have the momentum operator

13W = Z F (v, a)ug0q
aER

Using Lemma 1 and commutativity of d, and 93, we obtain for the differential operator of the second
order

Ny= 3" F(o, B)(uado)(usds) =y D2

o,BER YER
This operator is called Laplacian for trigonometric case.
For the elliptic case we have the momentum operator

=Y F(v,B8)uati—a0a,

aER

and the Laplacian

Z F(a, B)(uaqu—q0a)(ugu_gis) = Z B;

a,BfER YER

The following assertion is an easy consequence of the W (R)-invariancy of F'(«, 3) and of the equation
w o Y = Oy~ o w.

Proposition 1.  The families of operators 0., D., and Dv are equivariant with respect to the action of
the Weyl group W(R), i.e

w, = Oy yw, wD, = Dy w, w!j7 = Dw,yw,
and the operators Ay and As are invariant with respect to W(R),

wolA; = Ajow,woAy = Ayow.
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The proof of the first group of equations follows easily from the fact that F(«, 8) is W(R)-invariant.
The proof of the second group of equations is sufficient to carry out for the generators s, o € R, of
W (R). Indeed, if 5,7 = &, then s, = v (since s2 = 1), and we have s, 08, = 5 0 34.

wolA; =wo Z F(a, 3)0403 = Z F(a, B)w o 0,08

a,BER a,BER

= Z F(a,3)0pqowodsg = Z Flo, 3)0yn 0 Oypow

oa.BER a.BER

= ( Z F(a',ﬁ')@al()gz) ocw=A; ow.

a' \B'eER
Let h: M — N be the map of smooth manifolds, and fj; and F be the spaces of functions on M
and NNV respectively. Let, further, D be a differential operator on Fl.

Definition.  The differential operator on Fjy, which makes the following diagram commutative:

FM(—]E——FN

h*Di \ILD
Fy «"— Fy,
is called the inverse image h*D of the differential operator D.
Define the following maps from V =V @ C to CV:
U:V—=CV, z2—-U()={usr)=F(o,2),a € R},
E:V—=CV, z— E(x)={u(z)=-expF(a,z),ac R}.
We prove the following proposition.
Proposition 2.  The Laplace operator on V A = Z 02 is the inverse image of the operators Ay and

=1

Ay under the maps U and E, respectively.

Proof. We have

04U = Y 05 52 = 3 Plascal,
a€R v acR
07 f(U(x)) = 8, (Z F(a, ei>6af) = > Fla,e;) Y F(B,)000sf
«€ER aER BER
= Y Flo,e)F(B,€)0:03f(U(x)),
a,BER
Zaffw(:c)) = > Y Flo,e)F(B,6)0.05f (U(x)) = Y Fla, 8)0a0sf(U(x)) = A f(U(2)).
=1 a,B€R =1 o,B€ER

The equation A = E*As can be proved similarly.

Hint: use the equations

0Uy(z) OexpFla,z)
or;, ozx;

= F(a,e;}exp Fa,z) = F(a, €;)ua(x).
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4. Universal Dunkl Operators and Hamiltonians.
The Bethe-Dunkl Varieties

Let o — ko, € R, be the W(R)-invariant function on R and A, and B,, v € R, the operators of
the form

F(vy, a)k, _
A, = Z ——(l—g)——sa, Z F(vy, o)k, ua—i—u 2 T%s,.

Ug — U —u-
aERL @ @ a€R., o
These operators generate equivariant families of operators, that is, for A, we have
wo Ay = Ay, ow.
Indeed,

F F
whA, =wo Z — (’Y_’(z)ka Sq = Z (———————(7_’0[)]%‘ swa) w

Uwa u—wa

QGR—l— o OéER+
F(v,w o ky~1, F(wy, ko
Ly (Rt ) s (e Yy,
o' €RL Ua’ = U—a’ ach, \ tol T U-a

The case of B, is considered similarly.
Introduce the “universal” Dunkl operators

Vy=-Dy+A,, Vy=-D,+B, V¥=V,tL,(u)
for v € R. Each of the introduced families of operators is equivariant.

Proposition 3.  The following commutation relations hold:

O VaVi= Y { T kakﬁ(F(%a)F(é,ﬂ)—F(’Y,ﬁ)F(é,a))}w’

weW(R) \ a,BeR (e — u—o)(ug —u_g)
SaSﬁ:w

2 [V, Vsl= > { > ks (F(1, @) F(6, ) — F(v, §)F (8, a)) Yot tma o FUp }w

Uy — U U —U_p

weW(R) \ a,BeRy
SaSg=w
(3) [D’WL(S] = F(f%é)a
_ 5 a)k Lo (1)sa
@) [V Lol = -2 3 TR e alilte
QER+

5)  [L,V.,LsVs] = —K(7,0) (L Vs — LV )

—1 Y, Tl alleltle (5,07, - Pl6.)7),

a€Ry o u—a)

where

K(y,6) = %5)_}_22 6a)kL()

i, F(a a) (g — U—q)

In the equations above, the terms related to w € W(R) that cannot be represented in the form of
the product s,sg are supposed to be zero.

Proof. For the first equation we have

[v’ya Vé] = [_Dv + A% —Ds + A5] = [D%Dé] - ([DW,A(;] - [D57A’V]) + [Avv Aé}-
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Evidently the first bracket is equal to zero since the operators D; and D, are sums of commuting
differential operators 0, and, hence, commute.
Further we have

ko F(6,a)s
[D,,As] =Dy0As —As oD, = D, (As) + E —O“—(——)—EDSM - A;D,,.
u& - 'U/«a)
acRL
Using the equation
F(v,a)
=y 2D
SOL,}/ f)/ F(a, a)a7

we obtain

Dy, As] = Dy(As) + Y <M> -2y i F”’O‘)F(‘S ) Do — AsD,

U — U Flo, a)(ug —u_
aERL @ @ aeRL @ O‘)

= D, (As) + AsD., — 2 Z F( )iié Ci)z D)
aER4 o —a

_ZZAFU% 5asa_2§:F F(5a)kD-

Yt — U—q)

— AsD,

- U-
a€Ry o O‘ aclRy

It is easy to see that this expression is symmetric with respect to v and . Hence, the commutator
[Ds, A,] is equal to the same expression, and we obtain

[v% V5] = [A’V’ A5]'

Computation of the last commutator gives

[AfyyAé] _ z kak,@F(77 a)F(é,ﬂ)

5083
ey (e = U=a)(Usap ~ t-sos) )

Let 0 = e4(58)saf = £, [ € Ri. We obtain, further,

A= Y (kakﬁ/F(%OZ)F(Sa&B) 5055

a,ﬁ€R+ Ua - u‘a)(usaﬁ - U’—Saﬁ)

3 Z kaks F(soy, B)F (0, @)

a,8'€R,. (ua - ’U;_a)(uﬁ/ - u‘IB’

)SQSQI

-y ¥ kakg (F % ) (0,0) - ’Yﬂ)F((ia))w

wWEW(R) 0. HeRy — u-a)(ug — u-p)
Sasdg

The first equation is proved.

The other equations are proved similarly. U

Now we will prove the analogs of Proposition 2 for trigonometric case. We have the following
operators:

D, = Z F(7y, 0)uad, Z Fy,a)(ug + t—q)0q,
acR acRy
Z ko F (7 M‘_)Sa’
a€R+ - IU/AO[)

V,=-D,+B,.
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Proposition 4.  The following commutation relations hold:

where

Gr.s(e, B) = kakp(F (v, ) F'(5, 8) — F(v, B)F (6, ).
Proof. In the equation

V5 Vs) = [Dy, Ds) = ([D+, Bs] = (Ds, By]) + B, Bs]

we have [D., D] = 0.
Find the commutator [D.,, B;s]. We obtain

[DV,B(;] D o Bjs —B,;D Z F(8 Msapsﬂ
OéER+ ('U,a - U,a)

“BsD, = Y F(v,0)F(5, a)ke ( 4uau_ sat Y -2 Fy, aFO(j , &) E;S%Z:Z;SQFQ

acR

We see that the indices v and 0 are contained in the commutator [DW, B;) in a symmetric way. This

gives
(m'vaé] - [DéaB'yD = 0.
Hence,
[V, Vsl =By, Bs]-
Compute now the commutator [B.,, B;].
Let c(uq) = (—M We obtain

(Yo —u—
By, Bsl = ) kaksF(y, a)F(3, B)lc(ua)sa, c(up)ss)-
a,BERY

Further we have

[e(ua)sa: c(ug))ssl = c(ua))saclug))ss — c(up))spc(ua))sa
= (Ua)c(Us,8)Sass — c(ug)c(Ussa)S35as
[By,Bsl = Y kakpF(y,@)F (5, B)c(ta)c(ts, 8)sa5s
o,BER,
Z kokgF (v, a)F(9, B)e(ug)c(ths;0) 885
o,BERL

Making the change ' = +s,0 and o = =sga, supposing that k, are W-invariant, and using the
properties of the forimm F(a, 3) with respect to the reflections s,, we obtain

BoBil= 3 haks F(7,0) F(s0d, Be(ua)c(us s s

a,8'€Ry
Y. kaksF(sy, o )F (6, B)e(uar)c(up)sarss
o' BER,
Z kakgF (v, a)F (6, B)c{uq)c(up)sgsa
a,BERL
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— Y kaksF(v,0)F (5, B)c(ua)c(ug)sass

o,BERL
, &) F(a, B)F (5, )
-2 koks Flya (o )c(ug)spsa
ﬁ% F(a,a) ’
F(v, B)F(8, a)F(s,
+2 Z ko ks u B)F((g g)) ( mc(ua)c(u[;)sas@
a,BERL ’

Substituting the indices a <> 3, we se that the third and the fourth summands cancel out, and the first
two give the following expression for the commutator [B., Bjs]:

By Bsl = > kaks(F(7,0)F(5,8) = F(7,8)F(6,0) e(ua)e(us)sass

a,BERL

Z Z G'y() ua+u_au,3+uﬁ

o —U_g Ug — U
weW (R) 0,86 Ry a BB ﬁ
SaSg=w

Introduce the “universal” Hamiltonians of Calogero—Sutherland type

Z—A—f—z kaa)’

_ 2
OCER+ ua u‘a)
F(a, a)dugu_o(k 2k
Hs= 20+ Y ot-alfe ~ ko)
(Ug — U—g )?
ac R
}Lg::£ﬂ7+49(u)
It is easy to verify that these Hamiltonians are W-invariant, i.e.,

wHe = How, wHE=HEw vYw e W(R).

Proposition 5.  The following representations hold:

"

Z vi = _Ho— Z Z kaksF(a, 3) w,

veR werir) | aben, (Mo = t=a)(us — u_p)
kSaSﬁ:w

S =t 3 Y kaksFla,f) et tme BTUS SN p2 (g a),

vER weW(R) | o,.B€RL a€Ry
a#p
\SQSB:’w
_ koLo(u)s
39, =i | Y e Y el
Ug — U—py
~YER YER aER

Proof. Prove of the first of these equations. We have

Z Vi = Z(“D’y + A'y)g = Z(Dwz = (Dyo Ay + A, Dy) + A7)

YER YER YER

=" D23 (Dyo A, +ADy) + > A2

YER YER YER
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Earlier it was shown that A, = 3 D%. Furter we compute . D, o A,. We have

YER ~YER

koF(v,a)s Dsa

S0ea =Y Y 0 Y el
vER YERaERy YER -

2k F (v, ) F(y
-y 3 P 9’ by e S pgap,,
YERaER a)? acRy ¢ T NER

k k D

Z 2( O‘—O‘) ascz i Z aSalls o

a€Ry Yo - ) aERL o = U-c

= — Z 25(_(1,_&)_]@@_ Z kasaDa_

(U — U-q)?

O{GR+ C!ER+

Further,

N4, =Y Z _uf“DW,

YER YERacR4
kaSa kasa
= Z U — U ZF(&,’Y)D»YZ Z U — U Da-
acR, @ T® ~eR aCR, ¢ @

We see that

kaSa
S DyoA +Y AD, =~ 2(5%.

YER R S
Compute now > A% _ We have
YER
o F'( ks F
Y A= > = (1, )30 o b (v,8)ss
“u, P
YER yeRaER, GERy
k353 5
- X F(y,0)F(7,0)
a€Ry (g = U-0)(t-0 = Ua) ¥ER
kakﬁSaSB
" F(a,v)F(8,9
OL,%%+ (ua - u—a)('us 38— u*%ﬂ) ’y;R ( ( )

K2 F(a,a) kakpF(a, 500
=) el $'s5a
Z (Uo — U—a)? Z (o — u—a)(ulﬁ —u_p) ¢

2
_ Z k2 F(a, a)2 B Z koksF(a, ) 5
oCR (Ua — U—q) a’5§R+ (Ua = u—q)(ug — u_g)
a3
_ Z k2F(a, ) B Z Z koksF(a, B) w
2 T wa? 2\ o, (e (s~ g)

The proof of the first assertion of Proposition 3 is finished.
Now we prove the equation for sum of squares of trigonometric Dunkl operators Y V%. We have

~YER
Z V2= Z D? - Z(DVB7 +B,D.,) + Z B,?

YER YER YER YER
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It was shown above that Ay = ) ng Let, as above, c(uy) = —%._ We obtain

YER (Ua — U q)
DyoBy=Dy(By)+ Y kaF(v,)c(ta)saDs,y
acRy
(—dugu_q)
= Z I{CF’)/, ")/,Of)(———‘)—,) a+ Z]{,CUQ )Dsa'y-
Q€Ry e aER,

Make the change 7' = s,y. We obtain

Z ko F(« 4?_75__0‘,) So t+ Z koc(uq ZF Sa,7')

aclRy a€ERy YER
—4un U
__Zk:Faa)( 0‘)2a+2kcua)Dsaa
a€R+ OLER+
41— -
=— Z ko F(o, @) (( _Ofu_:‘)l a— Z koc(to)Dq
aER+ OcER+
Since
B,D, = koc(ug)Sa Z F(a,v)D, = Z ko c(tie) De
YeR aCRy acRy aCRy
we have
= (—dugu_q)
Z Dy By + Z B,Dy = — Z kaF (o, ) (o — ua)2 @
~YER YER afR,
Compute now Y BZ. We have

vER

D B== ) kalc(ua)’ Y Fla,y)F(v,0)

yeER aERy YER
+ > kaks Y Fon7)F(y, B)c(ua)sac(up)sg
a,feERL YER
a#p
=— Z ko 2F(a, a)c(ue)? Z kokgF (o, B)c(ua)c(Usas)SasSs-
aCR, o,BER,
a# B
(—dupu_q)

Using the equality c(u(,‘)2 —1= we obtain

(U — uﬂa)z ’

Y B= Zk2Faa)(( 4“““‘“> Y ka?Fleya)

YER acRy U a achy
- Z kakg F(a, B)e(ua)c(ug )sp sa-

a,ﬁ'€R+

a8’

Substituting 8 = " and a + 3, we have

—4uqU_q
E 2 2 : «
B’Y k F —’U,—T E k F G’ a E k k/jF(O’ IB)C(UQ)C UJﬁ)SQSﬁ
YER a€ERy acRy a,BER,

a#f
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Hence,

Zfﬂ Ny — Z F(a, ) 4%‘“_0‘) =2 ko (ko — Sa)

3
— U_
YER acRy O‘>

Uy + Uy Ug T U_
2 kalfglﬂ’(a,ﬁ)uCY — = ug—u ZSG,SB ~ Z ko’ F(o, @)
o —a -

o, B8Ry a€R,
a#f
Ug T U—q Uﬂ +u_g 5
=—Hg — Z koksF(a, 5) 5483 — Z ko”F(a, a).
— U U — U
a#i
The proof is finished. O]

Previous calculations naturally lead to the following definitions.

Definition 1. Let 7,6 € R and o, 3 € R are such that sos3 = w € W. Then, for all w € W, we can
define an algebraic variety by the equations

=du N ., F(77 Oé)F(é, B) B F('Ya 6)F(67 a) —
bl = e O a,%?r falts { (o — t—a)(ug — u_g) } N

SasSg=w

This variety will be called the Dunkl variety for the Calogero model.
Definition 2.  The algebraic subvariety in C defined by the equations

F
sk, —U—a)(up — u_p)
g as;;?—w

will be called the Bethe variety for Calogero model.
Definition 3. The intersection of the Dunkl variety and Bethe variety will be called the Bethe-Dunkl
variety.

It is posible to give similar definitions for the Sutherland models, but in this case the modification
of operators V; is necessary. On these varieties the preceeding equations are simplified considerably and
we obtain following assertions.

Theorem 1. (1) On the Dunkl variety the operators V., Vs, 7,0 € R commule;
(2) on the Bethe variety we have the following representation of the Hamiltonian He:

2 _
Z Vy=-
YER
(3) On the Bethe-Dunkl variety, the quantum problem with the spin Hamiltonian He is integrable
and the set of algebraically independent integrals is given by

I,=)"V:.

veR

The proof follows easily from Propositions 3 and 4.
Let V., be the operator

V:_D_‘_Zk_ﬂl’__)fg

- U
a€ERy @
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Define the operators
Vo =V + Ly(u),Vy =V, = Ly(u).
The following proposition holds.

Proposition 6.  On the Bethe variety the following equations holds:

1 _ _
5 2 (V2 VT 47,7V, )

YER

=Ar— > Mka(ka—zsa)—cz(u)z— b

(U — U—q )2

Proof. Indeed,

vV, V4V, TV, T =2V - LV, ~ VL, + L,V - 2L, =2(V,* - L2);
3 (T VAV ) = SV, Y 1 = He — Q) = —(Ho + Q) = -
~ER YER YER

5. Algebras of Dunkl Operators and Fock Spaces for Arbitrary Root Systems
Let P, be the operators of multiplication by the generators s, € W(R) in C[W(R)]. Let (I)AVZ(R) be
the space of W-invariant functions on C/®l restricted to the Dunkl variety Mp(R). Define the algebra
As=C[V,, L, s, v € R.

Consider an Ag-module Fg (Fock space) generated by the vacuum vector |0)s = 1. The operators
V., annihilate the vacuum vector, and s, preserve it,

Vil0)s =0, s4|0)s =10)s.

Let, as above, L, = > F(vy,a)u,. Define the algebra
acR

AC:C[V;_,V;,SW], v € R,
where
V+ Vy+Ly(u), VI =V,~L,(u).
Introduce an Ac¢-module Fe (Fock space) generated by the vacuum vector,
|0)c = exp™ 1/2Q(u)|0)s.

The operators V_ annihilate |0)c.
Define the maps

pa:As — Ac, pr: Fs — Fg,
such that we have

pa(Vy)=VE,  pa(l,) =V,
pa(sy) =8y,  prlalv)s) = pala)pr(lv)s).

It is easy to see that p4 is an epimorphism.
The following lemma holds.

Lemma 2. The Hamiltonian He and its integrals Ig belong to the algebra Ac.

The proof follows from the propositions above.
In conclusion we propose some conjectures.
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Lemma. The Hamiltonian Hg and its integrals I§ = S belong to the algebra Ag.
YER

The proof of this lemma is known only in some particular cases.

Theorem.  Epimorphisms pa and pr are isomorphisms.

At the present time we have no complete proof of this theorem. For the root systems A, B, C, and
D similar result was announced in short communications by S. Kakei.
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