ISSN 0036-0236, Russian Journal of Inorganic Chemistry, 2012, Vol. 57, No. 4, pp. 574–578. © Pleiades Publishing, Ltd., 2012. Original Russian Text © A.V. Ruseikina, L.A. Solov'ev, O.V. Andreev, 2012, published in Zhurnal Neorganicheskoi Khimii, 2012, Vol. 57, No. 4, pp. 638–642.

PHYSICAL METHODS OF INVESTIGATION

Crystal Structure of EuLaCuS₃

A. V. Ruseikina^{*a*}, L. A. Solov'ev^{*b*}, and O. V. Andreev^{*a*}

 ^a Tyumen State University, ul. Semakova 10, Tyumen, 625003 Russia
^b Institute of Chemistry and Chemical Engineering, Siberian Branch, Russian Academy of Sciences, ul. Karla Marksa 42, Krasnoyarsk, 660049 Russia
Received January 20, 2011

Abstract—The crystal structure of the EuLaCuS₃complex sulfide synthesized for the first time has been solved by X-ray powder diffraction. Crystals are orthorhombic, space group *Pnma*, Ba₂MnS₃-type structure, a = 8.1297(3) Å, b = 4.0625(1) Å, c = 15.9810(4) Å, V = 527.80(3) Å³, Z = 4, and $\rho_{calc} = 5.669$ g/cm³. The La and Eu atoms are randomly disordered over two crystallographic positions with a coordination number of 7, and the Eu(La)–S bond lengths range from 2.892(6) to 3.078(6) Å. The CuS₄ tetrahedra with Cu–S interatomic distances of 2.358(5)–2.40(1) Å form chains running along the *b* axis.

DOI: 10.1134/S0036023612030254

Some powder X-ray diffraction data on the crystalchemical characteristics of the SrLaCuS₃ complex sulfide are available from [1]: orthorhombic crystal system, space group *Pnma*, a = 11.157(2) Å, b =4.1003(6) Å, and c = 11.545(2) Å. In a single-crystal X-ray diffraction experiment, the crystal structure of PbLaCuS₃ was solved by Brennan and Ibers [2]. Crystals are orthorhombic, space group Pnma, a =8.091(3) Å, b = 4.093(1) Å, and c = 15.996(5) Å. The ratio of the ionic radii of seven-coordinated ions $(rSr^{2+}: rPb^{2+}: rEu^{2+} = 1.21: 1.23: 1.2 \text{ Å } [3])$ allows us to predict the formation of EuLaCuS₃. No information on the EuLaCuS₃ crystal structure has been found. The presence of d- and f elements in the crystal lattice gives rise to practically valuable properties. Brennan and Ibers [2] noted that PbLaCuS₃ is a diamagnetic and a semiconductor with a bandgap energy of 1.5 eV. In EuLnCuS₃ compounds (Ln = Eu-Lu) [4] containing nonmagnetic Ln ions, the ferromagnetic alignment of Eu²⁺ momentums occurs at 3.4-4.4 K. The ferromagnetic transition in EuLnCuS₃ compounds containing magnetic Ln ions occurs at 5.0 K. The present paper presents the solution of crystal structure EuLaCuS₃ based on powder X-ray diffraction data.

EXPERIMENTAL

Cu₂S was synthesized from elementary copper (11-4 high purity grade) and sulfur (15-3 high purity grade) in sealed evacuated double-walled quartz ampoules. EuS and La₂S₃ were synthesized from oxides of EvO-Zh and LaO-D grades in a H₂S and CS₂ flow at 1300 K [5]. According to X-ray powder diffraction, the simple sulfides were single phases. Within the error of chemical analysis, the sulfides had the stoichiometric compositions. EuLaCuS₃ samples were prepared by alloying

the initial sulfides mixed in the ratio $2\text{EuS} : 1\text{La}_2\text{S}_3 : \text{Cu}_2\text{S}$ in a graphite crucible placed into a sealed evacuated double-walled quartz ampoule. The ampoule was heated in an electrical furnace up to 1570 K and allowed to stay for 30 min. Cooling was conducted in the switch-off furnace. The samples were annealed in sealed evacuated quartz ampoules at 970 K for 3000 h.

The identity of the synthesized compound was confirmed by microstructural analysis (a METAM PB microscope) and X-ray powder diffraction (PANalytical X'Pert PRO diffractometer equipped with a PIXcel detector, CoK_{α} radiation, graphite monochromator, 298 K). A powdery sample was prepared by pounding with addition of octane in an agate mortar. The X-ray diffraction pattern was taken within the diffraction angle range of $10^{\circ} \le 2\theta \le 125^{\circ}$. The EuLaCuS₃ unit cell parameters were determined with the ITO software [6]. In addition to the main phase, La_3S_4 , EuS, and CuLaS₂ impurities were found in the sample. The crystal structure was refined by the derivative difference minimization (DDM) method [7] using X-ray powder diffraction data with consideration for the effects of preferred orientation, the anisotropic broadening of peaks, and the surface roughness (R-DDM = 8.67%, $R_{\text{Bragg}} = 4.39\%$). The data for isostructural PbLaCuS₃ [2] was used as the initial model. The experimental, calculated, and difference X-ray diffraction patterns of the studied sample are compared in Fig. 1. Atomic coordinates and isotropic thermal parameters are listed in Table 1. The shortest selected cation-anion distances (Table 2) were calculated on the basis of the structural data. The selected bond angles are given in Table 3. The crystal structures were visualized with the use of the Diamond 3 software [8].

Fig. 1. Experimental (solid line), calculated (dashed line), and difference (points) X-ray diffraction patterns of an $EuLaCuS_3$ sample after the refinement of its structure by the DDM method (*R*-DDM = 8.67%). The peak positions for the major phase are indicated with strokes.

RESULTS AND DISCUSSION

The X-ray diffraction pattern of the studied compound was indexed in terms of orthorhombic crystal system, space group *Pnma*, a = 8.1297(3) Å, b = 4.0625(1) Å, c = 15.9810(4) Å, V = 527.80(3) Å³, Z = 4, and $\rho_{calc} = 5.669$ g/cm³. The crystal has a layered-block structure (Fig. 2). The copper ion is coordinated by four sulfur ions with the formation of a distorted tetrahedron. A CuS_4 tetrahedron is formed of the 2 × S(1) + S(2) + S(3) atoms, and the average Cu– S distance is 2.369 Å (Table 2).

In the EuLaCuS₃ structure, CuS_4 tetrahedra share the S(1) vertices to form continuous chains running in the direction [010]. The chains are spaced by rare-

Table 1. Atomic coordinates and thermal parameters and site occupancy factors in the EuLaCuS₃

Atom	x	у	ζ	Occupancy	$U_{\rm iso}, {\rm \AA}^2$
Eu(1)	0.2536(3)	0.25	0.0383(1)	0.55(5)	0.012(1)
Eu(2)	0.0908(3)	0.25	0.7851(1)	0.45(5)	0.013(1)
La(1)	0.2536(3)	0.25	0.0383(1)	0.45(5)	0.012(1)
La(2)	0.0908(3)	0.25	0.7851(1)	0.55(5)	0.013(1)
Cu	0.1180(6)	0.25	0.3661(3)	1	0.025(2)
S (1)	0.014(1)	0.25	0.6002(5)	1	0.017(3)
S(2)	0.181(1)	0.25	0.2194(6)	1	0.011(2)
S(3)	0.381(1)	0.25	0.4291(5)	1	0.012(2)

Bond	d, Å	Bond	$d, \mathrm{\AA}$	Bond	$d, \mathrm{\AA}$
Eu(1)–S(1)	2 × 2.948(7)	Eu(2)–S(1)	3.022(9)	Cu–S(1)	2 × 2.358(5)
Eu(1)–S(1)	3.059(9)	Eu(2)–S(2)	2×2.942(6)	Cu–S(2)	2.400(9)
Eu(1)–S(2)	2.954(9)	Eu(2)–S(2)	2×3.005(6)	Cu–S(3)	2.361(9)
Eu(1)–S(3)	2 × 2.892(6)	Eu(2)–S(3)	2×3.078(6)	<cu–s></cu–s>	2.369
Eu(1)–S(3)	3.076(9)	<eu(2)—s></eu(2)—s>	3.010		
<eu(1)—s></eu(1)—s>	2.967				

Table 2. Interatomic distances (d) in the EuLaCuS₃ structure

Average values are boldfaced.

Table 3. Selected bond angles (ω) in the EuLaCuS₃ structure

Angle	ω, deg	Angle	ω, deg	Angle	ω , deg
S(1)Eu(1)S(1)	87.2(2)	S(1)Eu(2)S(3)	138.3(2)	S(1)CuS(1)	118.8(3)
S(1)Eu(1)S(1)	78.4(2)	S(2)Eu(2)S(1)	77.4(2)	S(1)CuS(3)	108.3(3)
S(1)Eu(1)S(2)	78.4(2)	S(2)Eu(2)S(1)	79.9(2)	S(1)CuS(2)	108.7(3)
S(1)Eu(1)S(3)	143.5(2)	S(2)Eu(2)S(2)	157.2(2)	S(3)CuS(2)	102.9(3)
S(1)Eu(1)S(3)	125.1(2)	S(2)Eu(2)S(2)	87.2(2)		
S(2)Eu(1)S(1)	147.8(2)	S(2)Eu(2)S(2)	89.3(2)		
S(2)Eu(1)S(3)	68.7(2)	S(2)Eu(2)S(2)	85.2(2)		
S(3)Eu(1)S(1)	87.8(2)	S(2)Eu(2)S(3)	76.4(2)		
S(3)Eu(1)S(1)	158.4(2)	S(2)Eu(2)S(3)	121.3(2)		
S(3)Eu(1)S(1)	80.0(2)	S(2)Eu(2)S(3)	132.4(2)		
S(3)Eu(1)S(2)	121.0(2)	S(2)Eu(2)S(3)	68.1(2)		
S(3)Eu(1)S(3)	89.2(2)	S(3)Eu(2)S(3)	82.6(2)		
S(3)Eu(1)S(3)	74.3(2)	S(1)Eu(2)S(3)	138.3(2)		

earth metal atoms that coordinate sulfur atoms. A characteristic feature of the $EuLaCuS_3$ structure is that Eu and La atoms are disordered over two positions in a manner similar to that in isostructural PbLaCuS₃ [2] and SrLaCuSe₃ [9].

Both rare-earth ions in the structure $EuLaCuS_3$ coordinate seven sulfur ions to form two coordination polyhedra (monocapped trigonal prisms $Eu(1)S_7$ and $Eu(2)S_7$) with coordination numbers of 6 + 1 (Fig. 3). The $Eu(1)S_7$ prism is formed of the 2S(1) + S(1) +S(2) + 2S(3) atoms with an average Eu(1)–S distance of 2.967 Å. The theoretical value calculated from the ionic radii of La^{3+} and Eu^{2+} (for CN = 7) with consideration for the site occupancy (Eu : La = 0.55 : 0.45) is 2.995 Å [3]. The Eu(2)S₇ prism is formed of the S(1) + 2S(2) + 2S(3) atoms with an average Eu(2)–S distance of 3.010 Å (theoretical value with consideration of site occupancies is 2.985 Å).

The Eu(1)S₇ prisms are linked to one another by common $2 \times S(1)$ and $2 \times S(3)$ edges along the *a* axis and with common S(3)S(1) edges along the *b* axis to form two-dimensional networks in the *ab* plane. The

Fig. 2. Geometrical projection [010] of the EuLaCuS₃ structure. The Cu, Eu(La), and S atoms are denoted by small-, medium-, and large-diameter circles, respectively. M_1 is Eu(1)La(1) and M_2 is La(2)Eu(2). The Cu–S interatomic distances are denoted by semi-bold lines.

Fig. 3. Coordination geometry of (a) Eu(1)La(1) atoms and (b) La(2)Eu(2) atoms in $EuLaCuS_3$. The interatomic distances in single-cup trigonal prisms are given in Å.

Eu(2)S₇ prisms are linked by $2 \times S(2)$ edges along the *a* axis and by S(2)S(2)S(3) faces along the *b* axis, and also form two-dimensional networks in the *ab* plane. The Eu(1)S₇ and Eu(2)S₇ prisms are linked by the S(2)S(1) and S(2)S(3) edges along the *c* axis to form a three-dimensional structure with channels accommo-

dating copper ions. As noted in [2], an analogous arrangement is typical of α -La₂S₃ and some other compounds with a similar composition. Thus, the EuLaCuS₃ structure may be considered as a result of the replacement of some La atoms in α -La₂S₃ for Eu atoms and the incorporation of Cu atoms into approx-

imately tetrahedral positions between the LaS₇ prisms, this providing an explanation, in particular, for the distorted structure of CuS_4 tetrahedra and the random distribution of Eu^{2+} and La^{3+} ions, which have close sizes, over two crystallographic positions.

ACKNOWLEDGMENTS

This work was supported by the Federal Target Program "Scientific and Pedagogical Resources for Innovative Russia" for 2009–2013 and State Contract nos. 6K/143-09 (P 646) and NK-409/5 (P 2263).

REFERENCES

 N. V. Sikerina and O. V. Andreev, Russ. J. Inorg. Chem. 52, 581 (2007).

- T. D. Brennan and J. A. Ibers, J. Solid State Chem. 97, 377 (1992).
- 3. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).
- 4. M. Wakeshima, F. Furuuchi, and Y. Hinatsu, J. Phys.: Condens. Matter 16, 5503 (2004).
- V. G. Bamburov and O. V. Andreev, Russ. J. Inorg. Chem. 47, 598 (2002).
- 6. J. W. Visser, J. Appl. Crystallogr. 2, 89 (1969).
- 7. L. A. Solovyov, J. Appl. Crystallogr. 37, 743 (2004).
- 8. K. Brandenburg, *DIAMOND*—Visual Crystal Structure Information System CRYSTAL IMPACT (Postfac 1251, D-53002 Boon).
- 9. S. Strobel and T. Schleid, J. Alloy. Compd **418**, 80 (2006).