SYNTHESIS OF 2- $O-\alpha$ -, 3- $O-\alpha$ -, 3- $O-\beta$ -, AND 4- $O-\alpha$ -l-RHAMNOPYRANOSYL-D-GALACTOSE

András Lipták, Zoltán Szurmai, Pál Nánási,

Institute of Biochemistry, L. Kossuth University, H-4010 Debrecen (Hungary)

and András Neszmélyi

Central Chemical Research Institute, Hungarian Academy of Sciences, H-1525 Budapest (Hungary) (Received January 30th, 1981; accepted for publication, April 27th, 1981)

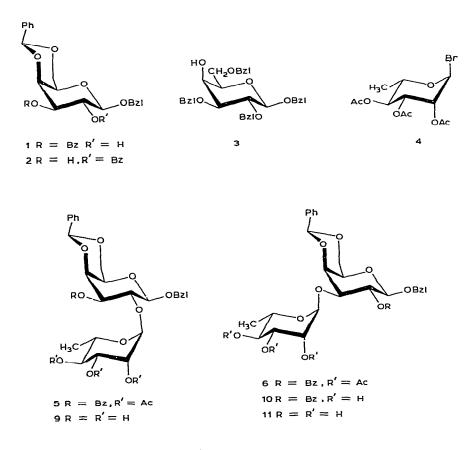
ABSTRACT

Condensation of benzyl 3-O-benzoyl-4,6-O-benzylidene-, benzyl 2-O-benzoyl-4,6-O-benzylidene- (2), and benzyl 2,3,6-tri-O-benzyl- β -D-galactopyranoside, separately, with tri-O-acetyl- α -L-rhamnopyranosyl bromide gave mainly α -linked disaccharide derivatives. An appreciable proportion of the β -linked disaccharide was also obtained from 2. An anomalous deacylation reaction was found for the $(1 \rightarrow 3)$ linked disaccharide, and the partially benzoylated products were isolated and characterised. The anomeric configuration of each disaccharide was established on the basis of $J_{C^{-1},H^{-1}}$ values. The chemical shifts for the galactose moleties of the α - and β -Lrhamnopyranosyl derivatives differed in a systematic way.

INTRODUCTION

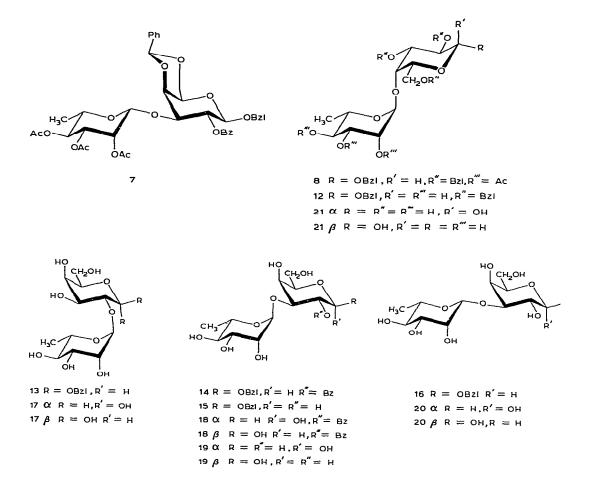
Both 2-O- and 6-O- α -L-rhamnopyranosyl-D-galactose^{1,2} commonly occur in various plant glycosides, and 3-O- α -L-rhamnopyranosyl-D-galactose³ is a constituent of several *Salmonella* cell-wall polysaccharides. To our knowledge, the fourth isomer (*i.e.*, 4-O- α -L-rhamnopyranosyl-D-galactose) has not been found in Nature.

For the preparation of robinobiose [the corresponding $(1\rightarrow 6)$ -linked isomer], several methods have been reported⁴⁻⁷ and 2-O- α -L-rhamnopyranosyl-D-galactose has been synthesised⁸. Two methods have been reported for the preparation of the $(1\rightarrow 3)$ -linked isomer^{9,10}.


We now report on an essentially new route to 2-O-, 3-O-, and 4-O- α -L-rhamnopyranosyl-D-galactose, and on their ¹³C-n.m.r. data in comparison with those of other disaccharides containing a β -rhamnopyranosyl linkage^{11,12}.

RESULTS AND DISCUSSION

The readily available benzyl 3-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranoside¹³ (1), benzyl 2-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranoside¹⁴ (2),


0008-6215/82/0000-0000/\$ 02.75, © 1982 - Elsevier Scientific Publishing Company

and benzyl 2,3,6-tri-O-benzyl- β -D-galactopyranoside¹⁵ (3) were used as aglycons and condensed separately with tri-O-acetyl- α -L-rhamnopyranosyl bromide (4), according to the Helferich procedure. The reaction of 1 and 2 with 4 was complete within ~5 h, to give good yields of products. The reaction of 3 with 4 was fast and, after 1 h at 60°, 8 could be isolated in excellent yield. The chemical synthesis of 4-O-glycosyl-D-galactopyranosides has generally been considered to be difficult¹⁶⁻¹⁸ due to HO-4 being axial. This hydroxyl group has relatively low reactivity if the neighbouring groups are esters, but an increased reactivity was observed in the case of partially benzylated derivatives¹⁹.

The stereoselectivity of the rhamnosylation was excellent for 1 and 3 in giving 5 and 8, respectively; no β anomers were detected (t.l.c.) in the reaction mixture. However, for 2, two coupled products, 6 (α) and 7 (β), were detected in the ratio 9:1 (t.l.c.). Compounds 6 and 7 had different chromatographic mobilities and could also be separated by fractional crystallisation.

Determination of the anomeric configuration of L-rhamnosides cannot be based unambiguously on p.m.r. data, because the $J_{1,2}$ values are similar for α and β configurations. Only slight differences were found between the ¹³C chemical shifts of

C-1 for α - and β -L-rhamnosides, except for derivatives with relatively hindered aglycons²⁰⁻²². However, the $J_{C^{-1},H^{-1}}$ values²¹ are characteristic in being ~10 Hz smaller when H-1 is axial than when it is equatorial. The $J_{C^{-1},H^{-1}}$ values for 6 and 7 were consistent with the assigned configurations.

Zemplén deacylation of 5 and 8 proceeded smoothly, to give the crystalline 9 and syrupy 12, respectively. Similar treatment of 6 gave 10, in which BzO-2 was retained. Compound 10 had a strong i.r. absorption for carbonyl at 1740 cm⁻¹, and its ¹H-n.m.r. spectrum contained signals for three Ph groups but none for AcO groups.

Removal of BzO-2 from 10 required an equimolar amount of sodium methoxide and, after 40 h at reflux temperature, crystalline 11 was obtained. Compound 11 was more conveniently prepared by saponification of 6 with sodium hydroxide in acetone-water. Saponification of 7 proceeded within 6 h to give the acyl-free disaccharide derivative, which was then treated with dilute sulphuric acid to obtain 16. The different reactivity of BzO-2 in 6 and 7 suggests that it is sterically more crowded in 6.

atom	Compound ^b	onna																				
Galactose	v	-	7	ŝ	6	٢	B	13	15	16	17		18	1	19	7	20		21		J	
Ŀ	102.7	100.6	99.5	100 5	9.99	101.2	102.9	101.8	102.6	102.5	92.6	96,1			93.1	97.1			918	96.0	93 1	97.3
20	70.6	68.8	73.1	5.41 75.4	9.09 0.09	160 69.8°	901 7.17		71.00	70.0	77.8	101 79.6	21.9	1 74.2	-	-	1 I'I'I I	[63 1 1 12	202 702	[60.1 71 4	0/1	5.001
C-3	72.6	74.4	72.0	73.1	80.0	76.1	73.8		81.2	80.5	69.1	74.2							68.0	73.0	69.8	73.6
4	76.0	73.7	75.9	73 8	757	73.4	69.5		69.3	66.6	70.3	69.4							76.2	75.5	70.2	69.6
5	66.5	66.5	66.8	66.4	66.8	66,9	75.9		75.7	75.6		75.6							69.4	74.5	6.69	74.2
90	69.0	69.0	69.1	69.0	69.3	69.2 ^r	61.7		61.6	61.6	61.9	617							60.9	61.0	ó8.1	67.7
h-CH		102.1	101.6	100.5	101.3																	
h-CH ₂	70.1	70.8	70.1	69.69	70.3	70.2	71.9	72.1°	71.8°	71.8												
hamora																						
Nuamose																1	1					
5				98.2	99.2	95.9			102.9		103.2	101.8	102.7	1	102.9		1.76	97.8	101.	(101.3 101.2	101.2
				174	170.2	158					169.7	171.2			171		159		171.3		169	2
22				71.1	70.3	69.0			71.0		70.	6	71.	0	70.9		71.8	71.7	69.8		70.	8
c T				0.69	70.0	71.1			71.0		.0 20	I	71.	1	71 01		73.4	73.5	69		71.	
4				71.1	71.5	71.0		73.0	72.9	72.8	72.8 72.9	72.9	72.8	8	72.9		72.8	-	71.4		72.	6
С <u></u>				66,7	67.1	70.7			69.8		69	8	70.	0	69.8		73.0	-	68.8		.69	4
0-6				16,86	17.51	17.30			17.56		17.49	17.31	17.	51	17.43		17.4	9	16.1		17.	4

 $^{13}\text{C-N.M.R.}^{\,\text{c}}$ chemical shifts (p.p.m) and coupling constants (Hz)

TABLE I

"souvents: CUC for compounds 1, 2, and 3-1; CUC is (1:1) for compound A; D_2U for compounds B, C, 13, and 13-21 "A = Benzyl 4,6-U-benzylidene- β -D-galactopyranoside. B = Benzyl β -D-galactopyranoside. C = $6 \cdot 0 \cdot \alpha \cdot 1$ -Rhamnopyranosyl-D-galactose (robinobiose). "Assignments may be reversed.

Mild, acid hydrolysis of the benzylidene group in 9 and 10 gave 13 and 14, respectively. Zemplén deacylation of 14 gave crystalline benzyl $3-O-\alpha$ -L-rhamno-pyranosyl- β -D-galactopyranoside (15).

A comparison of the ¹³C-n.m.r. spectra of **15** and **16** shows that the change of the anomeric configuration of the L-rhamnopyranosyl moiety from α to β caused a marked downfield shift of the signals for C-3' and C-5', in accordance with the previous observations^{11,21}.

The chemical shifts of the C-1 signals for α - and β -rhamnopyranosides differ greatly (see Table I). The C-1 resonances of the β -rhamnosides are characteristic, appearing 3.3, 5, and 5.1 p.p.m. upfield for 7, 16, and 20, respectively, as compared to the corresponding signals for the α anomers 6, 15, and 19. These chemical shifts differ markedly from the data given by Kochetkov *et al.*¹¹ and Bundle *et al.*¹², but agree with those reported by Kasai *et al.*²¹ for rhamnosides having relatively hindered aglycons. This discrepancy may be explained by the conformational properties of the glycosidic linkages²².

There are characteristic differences also in the spectra of the aglycon part, the glycosylation shift caused by the α -rhamnopyranosyl moiety being larger than those observed for the β anomers. However, the β -effect is much larger for the β anomers, particularly at C-4.

Catalytic hydrogenolysis of the benzyl glycosides 13, 16, and 12 gave the disaccharides 17, 20, and 21, respectively. Similar treatment of 14 gave 18, in which BzO-2 was retained. Zemplén saponification of 18 afforded the disaccharide 19. Thus, the stability of the benzoyl groups in 6 and 14 strongly depends on the presence of the aglycon and the 4,6-O-benzylidene group.

The values of the α -rhamnosylation shifts for 17 [(1 \rightarrow 2)-linkage], 19 [(1 \rightarrow 3)-linkage], 21 [(1 \rightarrow 4)-linkage], and 6-O- α -L-rhamnopyranosyl-D-galactose are different. The highest values belong to the (1 \rightarrow 2)-linked compound, and those for the (1 \rightarrow 4)-and (1 \rightarrow 6)-linked compounds are similar. Also, the values are higher for the α - than for the β -galactose moieties.

Conventional treatment of 17 with acetic anhydride-pyridine gave a crystalline hepta-acetate having physical parameters the same as those reported by van Niekerk and Koeppen⁸, but different from those for the compound isolated by Kuhn *et al.*¹ and characterised as a hepta-acetate of $2-O-\alpha$ -L-rhamnopyranosyl-D-galactose.

EXPERIMENTAL

General methods. — Melting points (uncorrected) were determined with a Kofler apparatus. Reactions were monitored by t.l.c. on DC Alurolle Kieselgel 60 F_{254} (Merck); detection was made possible by charring with sulfuric acid. Kieselgel G and Kieselgel 60 H (Reanal) were used for short-column chromatography. Optical rotations were measured with a Perkin–Elmer 241 automatic polarimeter; equilibrium values are given for compounds 17–21. ¹H-N.m.r. spectra were recorded with a Jeol MH-100 (100 MHz) instrument (internal Me₄S1). ¹³C-N.m.r. spectra were recorded

with a Varian XL-100-15 FT spectrometer for solutions in $CDCl_3$ (internal Me₄Si) or D_2O (internal 1,4-dioxane). I.r. spectra were recorded with a Perkin-Elmer 700 spectrometer.

Benzyl 3-O-benzoyl-4,6-O-benzylidene-2-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)- β -D-galactopyranoside (5). — A solution of benzyl 3-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranoside¹³ (1, 3.0 g) in a mixture of dry benzene (100 ml) and nitroniethane (100 ml) was concentrated at atmospheric pressure to ~ 100 ml and cooled to 60°. Hg(CN)₂ (1.97 g) and, after sturring for 15 min, tri-O-acetyl-a-Lrhamnopyranosyl bromide (4, 2.75 g) were added, and the mixture was stirred at 60° . After 1, 2, 3, and 4 h, more Hg(CN), (0.39 g) and 4 (0.55 g) were added and stirring was continued for 5 h. After cooling, the mixture was concentrated, diluted with dichloromethane (250 ml), washed with 5% aqueous potassium iodide (2 \times 50 ml) and water (2 \times 50 ml), dried (Na₂SO₄), and concentrated. The residue (6.12 g) was purified by short-column chromatography on Kieselgel G (250 g) with 95.5 dichloromethane-ethyl acetate. The crystalline product (3.26 g, 68.4%) was recrystallised from ethanol (20 ml), to give 5 (1.98 g, 41.5%), m.p. 104–106°, $[\alpha]_{\rm D}$ +31° (c 07, chloroform), $R_F = 0.55$ (dichloromethane-ethyl acetate, 95:5). ¹H-N.m.r. (CDCl₃): δ 8.02–7.20 (m, 15 H, aromatic), 5.44 (s, 1 H, PhCH), 3.52 (m, 1 H, H-4), 1.91, 1.81, and 1.78 (3 s, 9 H, 3 OAc), and 0 82 (d, 3 H, CH₃)

Anal. Calc. for C₃₉H₄₂O₁₄ (734 76): C, 63.75; H, 5.76. Found. C, 63.84; H, 5.81. Benzyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-β-D-galactopyranoside (6) and benzyl 2-O-benzoyl-4,6-O-benzylidene-3-O-(2,3,4-tri-O-acetyl-β-L-rhamnopyranosyl)-β-D-galactopyranoside (7). — Benzyl 2-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranoside¹⁴ (2, 6.50 g) was treated with 4, as described for the preparation of 5. Work-up gave a crystalline residue (13.04 g) which contained 6 and 7 in a ratio of ~9:1 (t.l.c.). Crystallisation from ethanol (100 ml) gave a product (0.66 g, 6.4%) which was recrystallised from ethanol (66 ml), to give 7 (0.56 g, 5.4%), m p. 226°, [α]_D +50° (c 0.75, chloroform), R_F 0.38 (ethyl acetate-light petroleum, 6:4). ¹H-N.m r. (CDCl₃): δ 8.04–7.00 (m, 15 H, aromatic), 5.48 (s, 1 H, PhCH), 1.91, 1.85, and 1.69 (3 s, 9 H, 3 OAc), and 0.97 (d, 3 H, CH₃). Anal. Calc. for C₃₉H₄₂O₁₄ (734.76): C, 63.75; H, 5 76. Found: C, 63.60; H, 5.83.

The mother liquor from the first crystallisation, after storage overnight, gave **6** (5.70 g, 55.2 %), m.p. 98–100°, $[\alpha]_D + 24^\circ$ (c 0.5, chloroform), $R_F 0.46$ (ethyl acetate–light petroleum, 6 4). ¹H-N.m.r. (CDCl₃): δ 8.10–7.15 (m, 15 H, aromatic), 5.71 (dd, 1 H, H-2), 5.56 (s, 1 H, PhCH), 5.24 (dd, 1 H, H-3'), 3.88 (dd, 1 H, H-3), 3.48 (m, 1 H, H-4), 1.92 and 1.84 (2 s, 6 H and 3 H, 3 OAc), 1.01 (d, 3 H, CH₃); $J_{1,2}$ 8.0, $J_{2,3}$ 10.0, $J_{3,4}$ 3.4, $J_{2',3'}$ 3.1, and $J_{3',4'}$ 10.0 Hz.

Anal. Calc. for C₃₉H₄₂O₁₄ (734.76): C, 63.75; H, 5.76. Found: C, 63.55; H, 5.69. Benzyl 2,3,6-tri-O-benzyl-4-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-β-D-galactopyranoside (8). — Benzyl 2,3,6-tri-O-benzyl-β-D-galactopyranoside¹⁵ (3, 2 20 g) was treated with 4, as described for the preparation of 5, but for 60 min. Work-up gave a syrupy residue (4.14 g) which was purified by short-column chromatography on Kieselgel G (200 g) with 9:1 dichloromethane-ethyl acetate, to give 8 (3.11 g, 94%) as a syrup, $[\alpha]_D$ --36° (c 1, chloroform), R_F 0.81 (dichloromethane-ethyl acetate, 9°1). ¹H-N.m.r. (CDCl₃): δ 7.45-7.00 (m, 20 H, aromat²c), 5.55-4.36 (m, 13 H, 4 PhCH₂, H-1,1',2',3',4'), 4.16-3.28 (m, 7 H, skeleton protons of galactose moiety and H-5'), 1.94 and 1.89 (2 s, 9 H, 3 OAc), and 1.11 (d, 3 H, CH₃).

Anal. Calc. for C₄₆H₅₂O₁₃ (812.92): C, 67.97; H, 6.45. Found: C, 69.72; H, 6.22. Benzyl 4,6-O-benzylidene-2-O-α-L-rhamnopyranosyl-β-D-galactopyranoside (9).
To a solution of 5 (1.50 g) in dry methanol (50 ml) was added sodium methoxide (10 mg). After 24 h at room temperature, the mixture was neutralised with Amberlite IR-120 (H⁺) resin, filtered, and concentrated. The crystalline residue (1.07 g) was recrystallised from ethanol (15 ml), to yield 9 (0.96 g, 93.2%), m p. 206-209°, [α]_D -34.5° (c 0.6, pyridine), R_F 0.34 (dichloromethane-methanol, 9:1). ¹H-N.m.r. [CDCl₃ + (CD₃)₂SO]: δ 7 60-7.20 (m, 10 H, aromatic), 5.52 (s, 1 H, PhCH), 5.17 (s, 1 H, H-1'), 4.74 (q, 2 H, PhCH₂), and 1.07 (d, 3 H, CH₃).

Anal Calc. for C₂₆H₃₂O₁₀ (504 54): C, 61.89; H, 6.39 Found C, 62 01; H, 6.46. Benzyl 2-O-benzoyl-4,6-O-benzylidene-3-O-α-L-rhamnopyranosyl-β-D-galactopyranoside (10). — Compound 6 (3.12 g) was deacetylated, as described for the preparation of 9, to give a crystalline product Recrystallisation from ethanol (60 ml) and hexane (60 ml) yielded 10 (1.83 g, 70.8%), m.p. 202–204°, $[\alpha]_D$ +26° (c 0.5, pyridine), R_F 0.42 (dichloromethane-methanol, 9:1), v_{max} 1740 cm⁻¹ (C=O). ¹H-N.m.r. [CDCl₃ + (CD₃)₂SO]: δ 8.00–7.00 (m, 15 H, aromatic), 5.50 (s, 1 H, PhCH), 5.60–5.34 (m, 1 H, H-2), 2.68 (broad s, 3 H, 3 OH), and 1.21 (d, 3 H, CH₃); after the addition of D₂O, the singlet at δ 2.68 disappeared.

Anal. Calc. for C₃₃H₃₆O₁₁ (608.65): C, 65 12; H, 5.96. Found: C, 65.30; H, 5.61. Benzyl 4,6-O-benzylidene-3-O-α-L-rhamnopyranosyl-β-D-galactopyranoside (11).
— A mixture of 6 (1.0 g), acetone (60 ml), and 0.1M NaOH (40 ml) was boiled under reflux for 8 h, and then cooled, neutralised (acetic acid), decolourised, and concentrated. A solution of the residue in methanol (30 ml) was filtered, concentrated to ~10 ml, and eluted from a column of Kieselgel G, to give 11 (0.65 g, 94.7%). Recrystallisation from ethanol (20 ml) gave 0.32 g of 11 (46.6%), m.p. 217-220°, [α]_D -8° (c 0.6, pyridine), R_F 0.34 (dichloromethane-methanol, 9:1). ¹H-N.m.r. [CDCl₃ + (CD₃)₂SO]: δ 7.60-7.20 (m, 10 H, aromatic), 5.50 (s, 1 H, PhCH), 5.00-4.56 (m, 3 H, H-1' and PhCH₂), and 1.21 (d, 3 H, CH₃).

Anal. Calc. for $C_{26}H_{32}O_{10}$ (504.54): C, 61.89; H, 6.39. Found: C 62.01; H, 6.30. Benzyl 2,3,6-tri-O-benzyl-4-O- α -L-rhamnopyranosyl- β -D-galactopyranoside (12).

-- Compound 8 (2.90 g) was deacetylated, as described for the preparation of 9. Purification of the product by short-column chromatography on Kieselgel G gave syrupy 12 (2.20 g, 89.8%), $[\alpha]_D - 17^\circ$ (c 0.9, pyridine), $R_F 0.50$ (dichloromethanemethanol, 9:1).

Anal. Calc. for C₄₀H₄₆O₁₀ (686.81): C, 69.95; H, 6.75. Found: C, 70.23; H, 6.95. Benzyl 2-O-α-L-rhamnopyranosyl-β-D-galactopyranoside (13). — A solution of 9 (0.60 g) in a mixture of ethanol (30 ml) and 0.05M sulfuric acid (30 ml) was boiled for 2 h, and the boiling solution was neutralised with BaCO₃, filtered, and concentrated. The residue (0.40 g) was purified by short-column chromatography on Kieselgel

60 H (15 g) with 2:1:1 1-butanol-methanol-water, to give amorphous 13 (0.32 g, 64.6%), $\lceil \alpha \rceil_D - 34^\circ$ (c 0.8, water), R_F 0.60 (1-butanol-methanol-water, 2:1:1).

Anal Calc. for $C_{19}H_{28}O_{10}$ (416.43). C, 54.80, H, 6.78. Found: C, 54.21; H, 6 50. *Benzyl* 2-O-*benzoyl*-3-O- α -L-*rhamnopyranosyl*- β -D-galactopyranoside (14).

Compound 10 (1.65 g) was hydrolysed, as described for the preparation of 13, to give a crystalline residue (1.21 g). Recrystallisation from ethanol (120 ml) gave 14 (0.67 g, 47 5%), m.p 236-237°, $[\alpha]_D$ --43° (c 1.3, pyridine), R_F 0.18 (dichloromethane-methanol, 9:1). v_{max} 1710 cm⁻¹ (C=O). ¹H-N.m.r. [CDCl₃ + (CD₃)₂SO]: δ 8 00-7.05 (m, 10 H, aromatic), 5.36 (dd, 1 H, H-2), and 1.18 (d, 3 H, CH₃).

Anal. Calc for C₂₆H₃₂O₁₁ (520.54): C, 59.99, H, 6.20. Found: C, 60.31; H, 6.32. Benzyl 3-O-α-L-rhamnopyranosyl-β-D-galactopyranoside (15). — To a solution of 14 (230 mg) in dry methanol (30 ml) was added sodium methoxide (20 mg), and the reaction mixture was boiled for 8 h, cooled, neutralised with Amberlite IR-120 (H⁺) resin, filtered, and concentrated, to give a crystalline product (205 mg). Recrystallisation from methanol (3 ml) yielded 15 (100 mg, 54.3%), m.p. 180–184°, [α]_D -45° (c 0 3, water), R_F 0 63 (1-butanol-methanol-water, 2:1:1).

Anal. Calc. for $C_{19}H_{28}O_{10}$ (416 43): C, 54 80; H, 6.78. Found: C, 54.00, H, 6.95. Benzyl 3-O- β -L-rhamnopyranosyl- β -D-galactopyranoside (16). — To a solution of 7 (400 mg) in dry methanol (40 ml) was added sodium methoxide (20 mg), and the mixture was boiled for 6 h, cooled, neutralised with Amberlite IR-120 (H⁺) resin, filtered, and concentrated. A solution of the residue (380 mg) in ethanol (10 ml) and 0.05M sulfuric acid (10 ml) was boiled for 4 h. The boiling solution was neutralised with BaCO₃, filtered, and concentrated. The syrupy product was purified by shortcolumn chromatography on Kieselgel 60 H (20 g) with 2:1:1 1-butanol-methanolwater, to give 16 (147 mg, 64.8%), which, after crystallisation from methanol-ether, had m.p. 198-202°, $[\alpha]_D + 30°$ (c 0.4, water), R_F 0.62 (1-butanol-methanol-water, 2:1:1).

Anal. Calc. for $C_{19}H_{28}O_{10}$ (416.43): C, 54.80; H, 6.78. Found: C, 55.03; H, 6.72. 2-O- α -L-Rhamnopyranosyl-D-galactose (17) — A solution of 13 (210 mg) in a mixture of ethanol (30 ml), acetic acid (2 ml), and water (10 ml) was hydrogenated in the presence of 10% palladium-on-carbon (100 mg) for 12 h at room temperature, and then filtered and concentrated. The residue (160 mg) was purified by shortcolumn chromatography on Kieselgel 60 H (10 g) with 2:1:1 I-butanol-methanolwater, to give amorphous 17 (120 mg, 72.9%), $[\alpha]_D + 5^\circ$ (c 0.6, water), $R_F 0.45$ (1-butanol-methanol-water, 2:1:1); lit.⁸ $[\alpha]_D + 10.19^\circ$ (c 2.03, water), m.p. 125– 126° (dec.).

Compound 17 was conventionally acetylated with acetic anhydride in pyridine, to give the crystalline hepta-acetate of 17, which, after recrystallisation, had m.p. 200–204°, $[\alpha]_D + 43°$ (c 0 2, methanol); lit.⁸ m.p. 196–198°, $[\alpha]_D + 49.4°$ (c 1.74, methanol).

2-O-Benzoyl-3-O- α -L-rhamnopyranosyl-D-galactose (18). — Compound 14 (400 mg) was hydrogenated, as described for the preparation of 17, to yield a crystalline product (325 mg). Recrystallisation from ethanol (4 ml) gave 18 (126 mg, 38.1%),

m.p. 126–128°, $[\alpha]_D$ + 39.5° (c 0 5, water), R_F 0.63 (1-butanol-methanol-water, 2:1:1), v_{max} 1750 cm⁻¹ (C=O).

Anal. Calc. for $C_{19}H_{26}O_{11}$ (430.41): C, 53.02; H, 6.09. Found. C, 53.29; H, 5.95. 3-O- α -L-Rhamnopyranosyl-D-galactose (19). — To a solution of 18 (240 mg) in dry methanol (30 ml) was added sodium methoxide (10 mg) After 12 h at room temperature, the mixture was neutralised with Amberlite IR-120 (H⁺) resin, filtered,

and concentrated. The syrupy product (177 mg) was crystallised from 2:1 1-butanolmethanol (5 ml), to yield **19** (65 mg, 35.7%), m.p. 146–150°, $[\alpha]_{\rm D}$ +7.5° (c 0 45, water), $R_{\rm F}$ 0.44 (1-butanol-methanol-water, 2:1:1); lit.¹⁰ $[\alpha]_{\rm D}$ +8.1° (c 1 30, water). *Anal.* Calc for C₁₂H₂₂O₁₀ (326.30) C, 44 17; H, 6.79. Found: C, 43.89. H, 6.69.

3-O- β -L-Rhamnopyranos) l-D-galactose (20). — Compound 16 (60 mg) was hydrogenated, as described for the preparation of 17, to give amorphous 20 (39 mg, 82.9%), $[\alpha]_D$ +41° (c 04, water), R_F 0.42 (1-butanol-methanol-water, 2.1.1).

4-O- α -L-Rhamnopyranosyl-D-galactose (21) — Compound 12 (1.75 g) was hydrogenated, as described for the preparation of 17, to give a syrup. Purification by short-column chromatography on Kieselgel 60 H (25 g) with 2:1 · ! 1-butanol-methanol-water gave 21 (668 mg, 80.3%) as a foam, $[\alpha]_D + 6^\circ$ (c 0.35, water), R_F 0.41 (1butanol-methanol-water, 2:1 · 1).

Anal. Ca'c. for C₁₂H₂₂O₁₀ (326.30): C, 44 17; H, 6.79 Found: C, 44.71; H, 6 90.

REFERENCES

- 1 R. KUHN, I. LÖW, AND H. TRISCHMANN, Chem. Ber, 88 (1955) 1492-1507.
- 2 G ZEMPLÉN AND A. GERECS, Ber., 68 (1935) 2054-2059.
- 3 S. G. WILKINSON, IN I W. SUTHERLAND (Ed), Surface Carbohydrates of the Prokaryotic Cell, Academic Press, London, 1977, p 97.
- 4 G. ZEMPLÉN, A. GERECS, AND H. FLESCH, Ber., 71 (1938) 774-776.
- 5 S. KAMIYA, S. ESAKI, AND M. HAMA, Agric. Biol Chem, 31 (1967) 261-266
- 6 A. LIPTÁK AND P. NÁNÁSI, Carbohydr. Res., 44 (1975) 313-316.
- 7 H WAGNER, A. LIPTÁK, AND P. NÁNÁSI, Acta Chim. Acad. Sci. Hung, 89 (1976) 405-410.
- 8 D. M. VAN NIEKERK AND B H KOEPPEN, Experientia, 28 (1972) 123-124.
- 9 B. A. DMITRIEV, A. YA. CHERNYAK, AND N. E BAYRAMOVA, *Izv Akad Nauk SSSR, Ser. Khum.*, (1975) 142–148.
- 10 V. I. BETANELI, M. V OVCHINNIKOV, L V BACKINOWSKY, AND N. K KOCHETKOV, Carbohydr. Res., 84 (1980) 211–224.
- 11 L. V. BACKINOWSKY, N. F. BALAN, A. S. SHASHKOV, AND N. K. KOCHETKOV, Carbohydr. Res., 84 (1980) 225-235.
- 12 T. IVERSEN AND D. R. BUNDLE, Carbohydi. Res., 84 (1980) c13-c15.
- 13 G. J. F. CHITTENDEN, Carbohydr. Res, 16 (1971) 495-496
- 14 G. J. F. CHITTENDEN AND J. G. BUCHANAN, Carbohydr Res., 11 (1969) 379-385.
- 15 A. LIPTÁK, L JÁNOSSY, J. IMRE, AND P NÁNÁSI, Acta Chim Acad. Sci. Hung., 101 (1979) 81-92.
- 16 H. M. FLOWERS, Carbohydr. Res, 4 (1967) 312-317.
- 17 H. M. FLOWERS, Carbohydr. Res., 5 (1967) 126-i31.
- 18 K. L. MATTA AND J. J. BARLOW, Carbohydr. Res., 53 (1977) 209-216.
- 19 H. M. FLOWERS, Carbohydr. Res., 39 (1975) 245-251.
- 20 R KASAI, M. SUZUO, J. ASAKAWA, AND O. TANAKA, Tetrahedion Lett , (1977) 175-178
- 21 R. KASAI, M. OKIHARA, J. ASAKAWA, K. MIZUTANI, AND O. TANAKA, Tetrahedron, 35 (1979) 1427-1432
- 22 R. U LEMIEUX AND S. KOTO, Tetrahedron, 30 (1974) 1933-1944.