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ABSTRACT: A substrate self-assisted activation of allylic alcohols by tautomerizable heteroarenes via hydrogen bond was 
disclosed by various NMR techniques including variable-temperature 1H NMR, Job’s Plot and 1H NMR titration. Guided by 
these finding, a much milder allylic substitution of tautomerizable heteroarenes with allylic alcohols was developed, 
affording the target products in high yields.

The successful generation of the л-allylic palladium 
species is usually crucial for a Tsuji–Trost reaction.1 The 
reactive allylic halides and esters which are liable to 
undergo oxidative addition with a palladium catalyst 
traditionally served as precursors of л-allylic fragments.1 
From the viewpoint of environmental issues and atom-
/step-economy, much attention has recently been paid to 
the direct use of simple allylic alcohols as preferable 
alternates, because such kind of transformation with 
allylic alcohols only gives water as by-product and 
moreover, the common allylic partners in Tsuji–Trost 
reactions are generally prepared from the corresponding 
alcohols.2 However, owing to the poor leaving character 
of hydroxy group, an extra activator such as As2O3, B2O3, 
BEt3, or Ti(O-iPr)4 is generally required to promote the 
smooth cleavage of C-O bond in allylic alcohols.2 
Therefore, developing efficient activation of allylic 
alcohols becomes one of the research hotspots in this area. 

In recent years, some extra activator-free Tsuji–Trost 
reactions of allylic alcohols have been developed.3-5 
However, the activation mechanisms of allylic alcohols 
were investigated only in rare reports but mainly based on 
theoretical calculations.3 Therefore, it is still highly 
desirable to illuminate the activation mechanism of 
activator-free Tsuji–Trost reaction especially by simple 
and facile experimental methods.4 
We have been interested in activation of alcohols for a 
long time.6 We have recently disclosed a substrate self-
assisted secondary bond activation of allylic alcohol via a 
six-membered ring complex by various NMR techniques 
(Scheme 1A).6b It can be hypothesized that the substrate 
bearing both a hydrogen bond donor site and an acceptor 
site may interact with allylic alcohols, thus leading to the 
activation of C-O bonds in allylic alcohols via hydrogen 
bond (Scheme 1B).7 2-Hydroxypyridines, one of the typical 
tautomerizable heteroarenes, are readily tautomerized to 
2-pyridones with both hydrogen bond donor site and 
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acceptor site in a molecule,8 therefore, a direct, activator-
free and substrate self-assisted allylic substitution of 
tautomerizable heteroarenes with allylic alcohols is 
anticipated.
In 2015, Cook and coworkers achieved the activator-free 
allylic substitution of tautomerizable heteroarenes with 
allylic alcohols at 100 oC in a solvent of dimethyl 
carbonate (DMC), however, the initial activation of allylic 
alcohols which led to the smooth oxidative addition with 
a palladium catalyst to give the key л-allylic palladium 
species was underappreciated and not mentioned 
(Scheme 1C).5d,9 It is also interestingly noticed that the 
reaction could be conducted in almost all common 
organic solvents including both protic and aprotic ones 
(such as MeOH, EtOH, PhMe, PhH and DCE) in their 
conditions screening, affording the target product in 
moderate yields.5d It is still difficult to explain these 
phenomena reasonably, especially why the reactions 
could be carried out even in a nonpolar and aprotic 
solvent which cannot activate allylic alcohols. Therefore, 
an interesting activation mechanism may be involved in 
these reactions. Hereon, we wish to report our results on 
the possible activation mechanism of allylic alcohols by 
various NMR techniques including variable-temperature 
1H NMR, Job’s Plot and 1H NMR titration. The 
experimental results suggested that a substrate self-
assisted activation of allylic alcohols by tautomerizable 
heteroarenes via hydrogen bond might be involved 
(Scheme 1D). Guided by these findings, a substrate self-
assisted and much milder allylic substitution of 
tautomerizable heteroarenes with allylic alcohols was also 
developed.
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Scheme 1. Activation modes of allylic alcohol and the 
working hypothesis.
Cinnamyl alcohol (1a) and 2-hydroxypyridine (2a-H) were 
selected as the test samples (Figure 1). As shown in Figure 

1, the tautomeric equilibrium of 2-hydroxypyridine (2a-H) 
and 2-pyridone (2a-P) is susceptible to various reaction 
conditions and generally 2-pyridone (2a-P) is the main 
existing species in a neutral liquid medium.8 As shown in 
Figure 2, the chemical shift of the free OH group in 
cinnamyl alcohol (1a) is 1.598 ppm and by extra adding ca. 
1.0 equiv. of 2-hydroxypyridine (2a-H), the chemical shift 
could moves downfield to 1.839 ppm, revealing the 
possible formation of intermolecular hydrogen bond 
between cinnamyl alcohol (1a) and 2-hydroxypyridine 
(2a-H) (Figure 2). Then variable-temperature 1H NMR 
experiments were carried out.10,6b As the test temperature 
is increased, the chemical shift of OH group in cinnamyl 
alcohol (1a) moves upfield from 1.839 (25 oC), to 1.771 (35 
oC), 1.706 (45 oC) and finally to 1.655 ppm (55 oC), further 
suggesting the possible formation of intermolecular 
hydrogen bond (Figure 2). 

N OH N
H

tautomerization

O

2a-H 2a-P

OHPh

1a

Figure 1. Test samples: 1a and 2a

Figure 2. Variable-temperature NMR analysis
Then the Job’s Plot and 1H NMR titration techniques were 
employed to investigate the possible host-guest binding 
interactions between cinnamyl alcohol (1a) and 2-
hydroxypyridine (2a-H) (Figures 3-4).11-14 Job’s Plot is the 
most popular way of determining the stoichiometry of 
complexes.12 By continuous variation of the concentration 
of [1a] and [2a-H], our Job’s Plot experimental results was 
shown in Figure 3 and the maximum in the curve for 
cinnamyl alcohol (1a) is at X1a = 0.55 (Figure 3A), while 2-
hydroxypyridine (2a-H) serves as the host, the maximum 
lies at molar fraction X2a-H = 0.38 (Figure 3B), indicating 
that both 1:1 and 2:1 binding complexes were possibly 
formed (Figure 5).12 Moreover, residual distribution 
analysis of the fitting curve of 1H NMR titration 
experiments further suggested that the possible formation 
of 1:1 and 2:1 binding complex via hydrogen bond. (Figure 
5).12-14 As shown in figure 5, the 1:1 binding complex can be 
in a six-membered ring form (i) or linear form (ii) and 
(iii), and the 2:1 binding complex can be in form (iv). 
These binding complexes readily reached equilibrium in 
the reaction.

OHPh

δ : 1.598

OHPh

δ : 1.839

OHPh

δ : 1.771

OHPh

δ : 1.706

OHPh

δ : 1.655

1a (100%)
CDCl3, 25 oC

1a/2a-P (1:1)
CDCl3, 25 oC

1a/2a-P (1:1)
CDCl3, 35 oC

1a/2a-P (1:1)
CDCl3, 45 oC

1a/2a-P (1:1)
CDCl3, 55 oC
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(A)

(B)
Figure 3. The Job’s Plots

Figure 4. 1H NMR titration experiments
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Figure 5. Formation of binding complexes via hydrogen 
bond

Based on these experimental results, some control 
experiments were carried out to investigate the possible 
substrate self-assisted activation of allylic alcohols via 
binding complex. As shown in scheme 2, The reaction of 
cinnamyl alcohol (1a) and 2-hydroxypyridine (2a-H) in 
toluene successfully afforded the target 3a under Cook’s 
conditions (Scheme 2, eq. 1), suggesting the possible 
activation of cinnamyl alcohol (1a) by 2-hydroxypyridine 
(2a-H) via binding complex. However, the reaction of 4-
hydroxypyridine (2b-H) and 2-ethoxypyridine (2c) which 
could not form a six-membered ring binding complex (i) 
with cinnamyl alcohol (1a) via hydrogen bond failed to 
give the target N-allylic alkylation products even at 120 oC. 
(Scheme 2, eqs. 2-3). These experimental results revealed 
the formation of the six-membered ring binding complex 
is crucial for the activation of allylic alcohols, due to the 
efficient activation of allylic alcohols via double hydrogen 
bonds. As the reaction proceeds, binding complexes ii, iii 
and iv can be transformed into the six-membered ring 
complex i, thus allylic alcohols can be activated to 
generate the key л-allylic palladium species.

N OH
+Ph OH

1a 2a-H

(Pd(PPh3)4 (5 mol%)

toluene, 100 oC, N2, 12 h N

O

Ph

3a, 70%

(1)

N
+Ph OH

1a 2b-H

(Pd(PPh3)4 (5 mol%)

toluene, 120 oC, N2, 12 h
NPh

3b, 0%

OH
O

(2)

N O Me
+Ph OH

1a 2c

Pd(PPh3)4 (5 mol%)

toluene, 120 oC, N2, 12 h N

O

Ph

3a, 0%

(3)

Scheme 2. Control experiments to show the key roles of 
six-membered ring complex
Table 1. Allylic alkylation of tautomerizable heteroarenes 
with allylic alcoholsa,b

R1 OH

1

+

[Pd(ally)Cl]2 (2.5 mol%)
dppf (10 mol%)

cyclohexane, N2, 60 oCN OH

2

N

O

R1

3

Ph N

O

(1) 3a, 90% (81%)c
N

N

O

Ph

(2) 3c, 94% (90%c, 51%d)

S

N

O

Ph

(3) 3d, 94% (90%)c

N

N

O

N

N

O

N

N

O

(12) 3m, 73%d (78%)c
N

N

O

(11) 3l, 65% (E/Z = 85/15)c,e,f

Me

(10) 3k, 82%d,e (91%)c

R

(4) R = 4-MeO, 3e, 86%
(5) R = 4-F, 3f, 90%
(6) R = 4-Cl, 3g, 92%
(7) R = 2-MeO, 3h, 84%

N

O

N

O

(8) 3i, 82%d,e (9) 3j, 89%

Ph N

O

(13) 3a, 93% (0.981 g)g
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a Unless otherwise noted, the mixture of 1 (0.60 mmol), 2 (0.50 
mmol), [Pd(ally)Cl]2 (2.5 mol%), dppf (10 mol%) in cyclohexane (1.0 
mL) was sealed under N2 in a 20 mL Schlenk tube, and stirred at 60 
oC for 12 h, and monitored by TLC and/or GC-MS. b Isolated yield 
based on 2; reported yields in parentheses by Cook,s method, see ref. 
5d for details. c 100 oC, d 80 oC. e 1 (1.5 equiv.) was used. f Hex-2-en-1-ol 
(E/Z = 85/15) was used. g The reaction was carried out in 5.0 mmol 
scale, 65 oC, 17 h.

Moreover, the variable-temperature NMR analysis 
showed that the intermolecular hydrogen bond between 
cinnamyl alcohol (1a) and 2-hydroxypyridine (2a-H) will 
become stronger as the test temperature is decreased 
(Figure 2). Therefore, a mild allylic substitution of 2-
hydroxypyridine (2a-H) with allylic alcohol is anticipated. 
By screening the palladium catalysts, solvents and 
reaction temperatures,13 to our delight, the reaction of 
cinnamyl alcohol (1a) and 2-hydroxypyridine (2a-H) 
could successfully afford the target 3a in 90% isolated 
yield at 60 oC in a nonpolar and aprotic solvent of 
cyclohexane (Table 1, run 1).15 The method can be easily 
extended to the allylic alkylation of 4-hydroxyquinazoline 
(2d-H) and benzo[d]thiazol-2-ol (2e-H), giving the target 
products in a same excellent isolated yield of 94% (runs 2-
3). By contrast, these products were obtained in yields of 
81% and 90% respectively at 100 oC by Cook’s method 
(runs 1-3).5d Besides, the allylic alkylation of 4-
hydroxyquinazoline is sensitive to the reaction 
temperature by Cook’s method, and the yield of target 3c 
is decreased greatly to 51% at 80 oC (run 2).5d Then various 
allylic alcohols were tested to extend the scopes of the 
method. As shown in table 1, like the model reaction, both 
electron-rich and -deficient cinnamyl alcohols reacted 
efficiently with 4-hydroxyquinazoline, affording the target 
products in high yields (runs 4-7). To our delight, the 
allylic alkylation of 2-hydroxypyridine (2a-H) with 
aliphatic allylic alcohols can smoothly proceed, affording 
the target products in high yields under mild conditions 
(runs 8-9). As to 4-hydroxyquinazoline, the target 
products could be obtained in comparable yields to 
Cook’s method only by increasing the reaction 
temperature to 80 or 100 oC (runs 10-12). Despite that no 
better yields were obtained, a substrate self-assisted 
activation of allylic alcohols is still possibly involved. 
Finally, a larger scale (5.0 mmol) reaction of cinnamyl 
alcohol (1a) and 2-hydroxypyridine (2a-H) could afford 
the target products 3a in a slightly higher yield of 93% 
(0.981 g), showing the practicability of this new method.
Based on these control experiments and the literature 
reports, [2,5d,6b,9] a possible reaction mechanism was 
depicted in scheme 43. As to this novel extra activator-
free Tsuji–Trost reaction of allylic alcohols with 
tautomerizable heteroarenes, two activation paths might 
be involved in the activation of allylic alcohols (Scheme 3). 
A DMC-assisted activation of allylic alcohol via 
transesterification may be involved in cook’s method,5d,9 
leading to the generation of key π-allyl palladium 
intermediate. However, when the reaction is carried out 
in a nonpolar and aprotic solvent such as cyclohexane, a 
substrate self-assisted activation of allylic alcohols via 
formation of six-membered ring complex by hydrogen 

bond may be the main path (path b), following by 
oxidative addition with a palladium catalyst giving the 
crucial π-allyl palladium intermediate. Once the key π-
allyl palladium intermediate is generated, a final 
nucleophilic attack by tautomerizable heteroarenes 
affords the target products.

R1 OH

[Pd]
+

DMC R1 OCO2Me

[Pd]

R1

[Pd]

cyclohexane

2

N

O
H

H
O R1

[Pd]

Target product

Cook's method

This method

path a

path b R

2

Scheme 3. Possible activation mechanism of cinnamyl 
alcohol under extra activator-free conditions
In conclusion, we disclosed a substrate self-assisted 
activation of allylic alcohol by various NMR techniques 
including variable-temperature 1H NMR, Job’s Plot and 1H 
NMR titration. The efficient activation of allylic alcohols 
may be involved in a 1:1 binding six-membered-ring 
complex via hydrogen bond, thus leading to the 
generation of the key л-allylic palladium species. Guided 
by these finding, a much milder dehydrative substitution 
of tautomerizable heteroarenes with allylic alcohols was 
developed. Compared with Cook’ method, the reactions 
can be carried out in milder conditions, affording the 
target allylic products in high yields. Further application 
of this novel substrate self-assisted activation of allylic 
alcohols for the developments of mild Tsuji–Trost 
reactions is under way.

EXPERIMENTAL SECTION 

General Information. Unless otherwise specified, all 
reactions were carried out in sealed Schlenk tubes under 
N2 and then monitored by TLC and/or GC-MS. Products 
were purified by column chromatography on silica gel 
using petroleum ether and ethyl acetate as the eluent. 1H 
and 13C {1H} NMR spectra were measured on a JNM-
ECZ600R/S3 (Jeol, Japan) (600 MHz and 150 MHz, 
respectively) using CDCl3 as the solvent. Chemical shifts 
for 1H and 13C NMR were referred to internal Me4Si (0 ppm) 
as the standard. Mass spectra were measured on an 
Agilent GC-MS-5890A/5975C Plus spectrometer (EI). 
High resolution mass spectra (HRMS) were recorded on a 
LC-TOF spectrometer (Xevo G2-XS QTof) using ESI 
techniques. Melting points are uncorrected.
General procedure for variable-temperature NMR 
analysis: A mixture of cinnamyl alcohol 1a (5.6 mg, 0.418 
mmol), 2-hydroxypyridine (2a-H) (4.0 mg, 0.418 mmol) 
was dissolved in CDCl3 (0.50 mL). Then variable-
temperature NMR experiments (25, 35, 45 and 55 oC) were 
conducted at a JNM-ECZ600R/S3 NMR spectrometer. 
General procedure for determination of 
stoichiometry between cinnamyl alcohol (1a) and 2-
hydroxypyridine (2a-H) studied by Job’s Plot method. 
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The stock solutions of Cinnamyl alcohol 1a (225mM, 
5.5mL) and 2-hydroxypyridine 2a-H (225mM, 5.5mL) were 
prepared by directly dissolving their powers (1a, 166.4mg; 
2a-H, 117.9mg) in 5.5 mL CDCl3, respectively. The 
solutions of the 1a (Host) and 2a-H (Guest) were mixed to 
NMR tubes according to certain proportions as 
summarized in Table S1 and S2. The hydroxyl protons (–
OH) chemical shifts of both host (1a) and guest (2a-H) 
were referenced to TMS. All 1H NMR spectra were 
recorded at 600MHz 25K on a JNM－ECZ600R/S3 NMR 
spectrometer.
General procedure for Host-guest interactions of 
cinnamyl alcohol (1a) and 2-hydroxypyridine (2a-H) 
by 1H NMR titration experiments. The stock solution of 
Cinnamyl alcohol 1a (224mM, 800μL) was prepared by 
directly dissolving 24.0 mg power in 800μL CDCl3. The 
stock solution of 2-hydroxypyridine 2a-H (2.24M, 157μL) 
was prepared by directly dissolving 33.5mg power in 157μL 
CDCl3. 
500μL 1a stock solution was transferred to an NMR tube 
and was titrated with 100 μL 2a-H (2.24M), added in 5μL 
increments for 10 times and 10μL increments for 5 times, 
and then with 32.1mg 2a-H powder, added in 10.7mg 
increments for 3 times. The details were summarized in 
Table S3. The chemical shift of hydroxyl protons (–OH) of 
host (-OH of 1a) was referenced to TMS. All 1H NMR 
spectra were recorded at 600 MHz 298 K on a JNM －
ECZ600R/S3 NMR spectrometer.
Typical Procedures for mild allylic substitution of 
tautomerizable heteroarenes with allylic alcohols. 
The mixture of cinnamyl alcohol 1a (80.4 mg, 0.60 mmol) 
and 2-hydroxypyridine 2a-H (47.5 mg, 0.50 mmol), 
[Pd(allyl)Cl]2 (4.6 mg, 2.5 mol%), dppf (13.8 mg, 10 mol%) 
and cyclohexane (1.0 mL) was sealed in a Schlenk tube (20 
mL) under N2, and stirred at 60 oC (oil bath) for 12 h. The 
reaction was then monitored by TLC and/or GC-MS. After 
completion of the reaction, the reaction mixture was 
purified by flash column chromatography on silica gel 
using ethyl acetate and petroleum ether (EA/PE = 0 ~ 1/1) 
as the eluent, giving 3a in 90% isolated yield.
1-Cinnamylpyridin-2(1H)-one (3a). Colorless oil, 
(EA/PE = 0 ~ 1/1, 95.0 mg, 90%).5d 1H NMR (600 MHz, 
CDCl3) δ 7.35 (d, J = 7.4 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.23 
(dd, J = 8.2, 6.3 Hz, 1H), 6.65 – 6.51 (m, 2H), 6.29 (dt, J = 
15.8, 6.5 Hz, 1H), 6.23 – 6.05 (m, 1H), 4.70 (dd, J = 6.3, 1.0 
Hz, 2H); 13C {1H} NMR (150 MHz, CDCl3) δ 162.6, 139.6, 
137.1. 136.1, 134.1, 128.7, 128.2, 126.7, 123.7, 121.2, 106.3, 50.8; 
m/z (EI) : 211, 194, 182, 171, 152, 146, 133, 120, 117, 115, 102, 96, 
91, 78, 65, 51. 
3-Cinnamylquinazolin-4(3H)-one (3c). Colorless solid, 
m.p. 108-109 oC, (EA/PE = 0 ~ 1/3, 123.5 mg, 94%). 5d 1H 
NMR (600 MHz, CDCl3) δ 8.34 – 8.29 (m, 1H), 8.08 (s, 1H), 
7.75 – 7.68 (m, 2H), 7.50 – 7.46 (m, 1 H), 7.36 – 7.31 (m, 
2H), 7.27 (t, J = 7.5 Hz, 2H), 7.24 – 7.20 (m, 1 H), 6.63 (d, J 
= 15.9 Hz, 1H), 6.31 (dt, J = 15.8, 6.4 Hz, 1H), 4.75 (dd, J = 
6.8, 1.1 Hz, 2H); 13C {1H} NMR (150 MHz, CDCl3) δ 161.0, 
148.2, 146.3, 135.8, 134.5, 134.4, 128.7, 128.4, 127.6, 127.5, 
126.9, 126.7, 122.9, 122.2, 48.3; m/z (EI) : 262, 247, 233, 216, 
201, 191, 184, 171, 147, 130, 117, 115, 102, 91, 77, 63, 51. 

3-Cinnamylbenzo[d]thiazol-2(3H)-one (3d). Colorless 
solid, m.p. 46-47 oC, (EA/PE = 0 ~ 1/1, 125.5 mg, 94%). 5d 1H 
NMR (600 MHz, CDCl3) δ 7.47 – 7.42 (m, 1H), 7.36 – 7.31 
(m, 1H), 7.31 – 7.27 (m, 2H), 7.24 – 7.21 (m, 3H), 7.16 (t, J = 
7.4 Hz, 1H), 7.10 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 15.9 Hz, 
1H), 6.22 (dt, J = 15.9, 5.8 Hz, 1H), 4.73 (dd, J = 5.8, 1.5 Hz, 
2H); 13C {1H} NMR (150 MHz, CDCl3) δ 170.0, 137.1, 136.0, 
133.6, 128.7, 128.2, 126.6, 126.5, 123.3, 122.8, 122.7, 122.2, 111.2, 
44.7; m/z (EI) : 267, 249, 234, 223, 212, 207, 193, 176, 165, 
150, 136, 122, 117, 115, 106, 91, 78, 69, 65, 57, 54, 51.
(E)-3-(3-(4-Methoxyphenyl)allyl)quinazolin-4(3H)-
one (3e). Colorless solid, m.p. 122-124 oC, (EA/PE = 0 ~ 1/2, 
125.5 mg, 86%). 16 1H NMR (600 MHz, CDCl3) δ 8.37 – 8.28 
(m, 1H), 8.09 (s, 1H), 7.80 – 7.65 (m, 2H), 7.50 – 7.48 (m, 
1H), 7.28 (dd, J = 9.0, 2.4 Hz, 2H), 6.81 (dd, J = 9.0, 2.4 Hz, 
2H), 6.59 (d, J = 15.6 Hz, 1H), 6.18 (dt, J = 15.6, 6.6 Hz, 1H), 
4.80 – 4.71 (m, 2H), 3.77 (s, 3H); 13C {1H} NMR (150 MHz, 
CDCl3) δ 161.0, 159.8, 148.2, 146.3, 134.4, 134.2, 128.6, 128.0, 
127.6, 127.4, 126.9, 122.2, 120.5, 114.1, 55.4, 48.4; m/z (EI) : 
292, 280, 267, 261, 249, 235, 229, 207, 201, 191, 171, 147, 131, 
115, 103, 91, 77, 63, 55, 51.
(E)-3-(3-(4-Fluorophenyl)allyl)quinazolin-4(3H)-one 
(3f). Colorless solid, m.p. 110-111 oC, (EA/PE = 0 ~ 1/3, 126.0 
mg, 90%).17 1H NMR (600 MHz, CDCl3) δ 8.33 – 8.26 (m, 
1H), 8.06 (s, 1H), 7.76 – 7.64 (m, 2H), 7.47 (t, J = 7.2 Hz, 
1H), 7.28 (dd, J = 8.4, 5.4 Hz, 2H), 6.95 (t, J = 8.4 Hz, 2H), 
6.57 (d, J = 15.6 Hz, 1H), 6.22 (dt, J = 15.6, 6.6 Hz, 1H), 4.73 
(d, J = 6.0 Hz, 2H); 13C {1H} NMR (150 MHz, CDCl3) δ 162.7 
(d, J = 247.6 Hz), 161.0, 148.2, 146.2, 134.4, 133.3, 132.1 (d, J = 
2.6 Hz), 128.3 (d, J = 7.8 Hz), 127.5 (d, J = 25.5 Hz), 126.8, 
122.7, 122.2, 115.7 (d, J = 21.7 Hz), 48.2; m/z (EI) : 280, 265, 
251, 232, 221, 207, 199, 191, 171, 165, 147, 135, 120, 115, 109, 102, 
90, 83, 76, 63, 57, 50.
(E)-3-(3-(4-Chlorophenyl)allyl)quinazolin-4(3H)-one 
(3g). Colorless solid, m.p. 138-139 oC, (EA/PE = 0 ~ 1/3, 
136.1 mg, 92%).  1H NMR (600 MHz, CDCl3) δ 8.32 (dd, J = 
8.4, 1.2 Hz, 1H), 8.07 (s, 1H), 7.78 – 7.74 (m, 1H), 7.71 (d, J = 
7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.28 – 7.23 (m, 4H), 
6.58 (d, J = 15.6 Hz, 1H), 6.30 (dt, J = 15.6, 6.6 Hz, 1H), 4.77 
(dd, J = 6.0, 1.2 Hz, 2H); 13C {1H} NMR (150 MHz, CDCl3) δ 
161.0, 148.2, 146.2, 134.5, 134.3, 134.0, 133.2, 128.9, 127.9, 
127.64, 127.55, 126.9, 123.6, 122.19, 48.2; m/z (EI) : 298, 297, 
296, 281, 267, 253, 207, 191, 184, 176, 171, 151, 147, 125, 115, 102, 
90, 76, 63, 58, 50. HRMS (ESI-TOF) m/z: (M+H)+ calcd for 
C17H14ClN2O 297.0795, found 297.0807.
(E)-3-(3-(2-Methoxyphenyl)allyl)quinazolin-4(3H)-
one (3h). Colorless solid, m.p. 112-113 oC, (EA/PE = 0 ~ 1/2, 
122.6 mg, 84%).  1H NMR (600 MHz, CDCl3) δ 8.31 (d, J = 
7.8 Hz, 1H), 8.10 (s, 1H), 7.73 –7.68 (m, 2H), 7.47 (t, J = 7.8 
Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.23 – 7.18 (m, 1H), 6.99 (d, 
J = 15.6 Hz, 1H), 6.89 – 6.80 (m, 2H,), 6.35 (dt, J = 15.6, 6.6 
Hz, 1H), 4.77 (d, J = 6.6 Hz, 2H), 3.80 (s, 3H); 13C {1H} NMR 
(150 MHz, CDCl3) δ 161.0, 156.9, 148.2, 146.4, 134.3, 130.0, 
129.4, 127.6, 127.4, 127.3, 126.9, 124.8, 123.5, 122.3, 120.7, 110.9, 
55.5, 48.8; m/z (EI) : 292, 280, 273, 249, 235, 229, 207, 201, 
191, 171, 147, 131, 115, 103, 91, 77, 63, 55, 51. HRMS (ESI-TOF) 
m/z: (M+H)+ calcd for C18H17N2O2 293.1290, found 
293.1268.
1-Allylpyridin-2(1H)-one (3i). Colorless oil (EA/PE = 0 ~ 
1/1, 55.3 mg, 82%). 8a  1H NMR (600 MHz, CDCl3) δ 7.30 
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(ddd, J = 8.8, 6.6, 1.8 Hz, 1H), 7.23 (dd, J = 6.6, 1.8 Hz, 1H), 
6.56 (d, J = 8.8 Hz, 1H), 6.28 – 6.10 (m, 1H), 6.04 – 5.84 (m, 
1H), 5.23 (d, J = 10.4 Hz, 1H), 5.16 – 5.14 (m, 1H), 4.54 (d, J = 
5.4 Hz, 2H); 13C {1H} NMR (150 MHz, CDCl3) δ 162.5, 139.6, 
137.2, 132.6, 121.2, 118.5, 106.2, 51.1; m/z (EI) : 135, 133, 128, 
120, 118, 109, 106, 96, 92, 79, 78, 67, 51.
1-(Cyclohex-2-en-1-yl)pyridin-2(1H)-one (3j). Colorless 
oil, (EA/PE = 0 ~ 1/1, 77.9 mg, 89%). 1H NMR (600 MHz, 
CDCl3) δ 7.47 – 7.29 (m, 1H), 7.29 – 7.15 (m, 1H), 6.51 –6.45 
(m, 1H), 6.13 –6.08 (m, 2H), 5.59 – 5.41 (m, 2H), 2.11 –2.05 
(m, 3H), 1.74 – 1.56 (m, 2H), 1.54 – 1.47 (m, 1H); 13C {1H} 
NMR (150 MHz, CDCl3) δ 162.6, 139.0, 134.9, 134.1, 126.2, 
120.5, 105.9, 51.2, 29.7, 24.7, 19.7; m/z (EI) : 175, 165, 161, 157, 
146, 141, 127, 122, 118, 113, 109, 96, 81, 80, 79, 78, 77, 67, 66, 
60, 57, 53, 52, 51. HRMS (ESI-TOF) m/z: (M+H)+ calcd for 
C11H14NO 176.1075, found 176.1071.
3-Allylquinazolin-4(3H)-one (3k). Colorless solid, m.p. 
63-64 oC, (EA/PE = 0 ~ 1/3, 76.2 mg, 82%). 5d 1H NMR (600 
MHz, CDCl3) δ 8.29 (dd, J = 7.8, 1.2 Hz, 1H), 8.00 (s, 1H), 
7.75 – 7.68 (m, 2H), 7.50 – 7.47 (m, 1H), 6.00 – 5.94 (m, 
1H), 5.35 – 5.20 (m, 2H), 4.62 (dt, J = 6.0, 1.2 Hz, 2H); 13C 
{1H} NMR (150 MHz, CDCl3) δ 160.9, 148.2, 146.3, 134.4, 
131.9, 127.6, 127.4, 126.9, 122.2, 119.0, 48.4; m/z (EI) : 186, 185, 
171, 169, 157, 145, 143, 132, 130, 118, 102, 92, 91, 89, 78, 76, 75, 
65, 63, 56, 54, 52, 50.
(E)-3-(Hex-2-en-1-yl)quinazolin-4(3H)-one (3l). 
Colorless oil (EA/PE = 0 ~ 1/3, 74.1 mg, 65%). 1H NMR 
(600 MHz, CDCl3) δ 8.30 (dd, J = 8.4, 1.2 Hz, 1H), 8.02 (s, 
1H), 7.74 – 7.74 (m, 1H), 7.49 – 7.47 (m, 2H), 5.83 – 5.68 (m, 
1H), 5.66 – 5.56 (m, 1H), 4.56 (d, J = 6.0 Hz, 2H), 2.02 (q, J 
= 7.2 Hz, 2H), 1.41 – 1.35 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H); 
13C {1H} NMR (150 MHz, CDCl3) δ 161.0, 148.2, 146.3, 136.5, 
134.3, 127.5, 127.3, 126.9, 123.7, 122.2, 48.0, 34.3, 22.1, 13.7; 
m/z (EI) : 228, 211, 2017, 199, 197, 185, 171, 147, 129, 127, 118, 
102, 99, 94, 91, 90, 82, 76, 67, 63, 65, 53, 50. HRMS (ESI-
TOF) m/z: (M+H)+ calcd for C14H17N2O 229.1341, found 
229.1322.
3-(Cyclohex-2-en-1-yl)quinazolin-4(3H)-one (3m). 
Colorless oil (EA/PE = 0 ~ 1/3, 82.5 mg, 73%). 5d 1H NMR 
(600 MHz, CDCl3) δ 8.30 (dd, J = 8.4, 1.2 Hz, 1H), 8.15 (s, 
1H), 7.77 – 7.71 (m, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.49 – 7.47 
(m, 1H), 6.23 – 6.20 (m, 1H), 5.64 – 5.62 (m, 1H), 5.56 – 5.53 
(m, 1H), 2.27 – 2.08 (m, 3H), 1.80 – 1.72 (m, 2H), 1.72 – 1.62 
(m, 1H); 13C {1H} NMR (150 MHz, CDCl3) δ 161.0, 148.0, 
144.9, 134.7, 134.3, 127.4, 127.2, 126.9, 125.3, 122.0, 50.0, 29.9, 
24.7, 19.7; m/z (EI) : 226, 197, 185, 171, 147, 130, 118, 102, 90, 
80, 77, 63, 55, 53.
Typical Procedures for mild allylic substitution of 2-
hydroxypyridine 2a-H with cinnamyl alcohol 1a on a 
large scale. The mixture of cinnamyl alcohol 1a (804.9 
mg, 6.0 mmol) and 2-hydroxypyridine 2a-H (475.0 mg, 
5.0 mmol), [Pd(allyl)Cl]2 (46.6 mg, 2.5 mol%), dppf (138.0 
mg, 10 mol%) and cyclohexane (5.0 mL) was sealed in a 
Schlenk tube (20 mL) under N2, and stirred at 65 oC (oil 
bath) for 17 h. The reaction was then monitored by TLC 
and/or GC-MS. After completion of the reaction, the 
reaction mixture was purified by flash column 
chromatography on silica gel using ethyl acetate and 
petroleum ether (EA/PE = 0~ 1/1) as the eluent, giving 3a 
in 93% isolated yield (0.981 g).
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