JOURNAL OF THE CHEMICAL SOCIETY

Chemical Communications

Number 21 1991

Kinetics of the Capture of Methyl Radicals by Carbon Monoxide in Aqueous Solution

Andreja Bakac* and James H. Espenson

Ames Laboratory and the Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA

The title reaction has a rate constant of $(2.0 \pm 0.3) \times 10^6$ dm³ mol⁻¹ s⁻¹ at 25 °C, which is fast enough to make it a useful route for C–C bond formation even at ambient temperatures and pressures.

The gas phase reaction of CH₃· with CO,¹ eqn. (1), has forward and reverse rate constants of $k_1 = 6.5 \times 10^3$ dm³ mol⁻¹ s⁻¹ and $k_{-1} = 7.3$ s⁻¹ at 25 °C. It has been assumed that the solution and gas phase values of k_1 are similar,² but some other work indicated that reaction (1) is 'exceedingly fast' in

$$\dot{C}H_3 + CO \rightleftharpoons CH_3\dot{C}O$$
 (1)

solution.³ The apparent controversy and the potential importance of reaction (1) as a C–C bond forming step in organic and organometallic synthesis prompted us to study the solution reaction. A direct determination by standard methods would be difficult in view of the low molar absorptivities of all the species involved, and thus a chemical competition method was devised.

Methyl radicals were generated by a Fenton-type reaction between ButOOH and either of two macrocyclic cobalt complexes ($\rm H_2O$)₂CoL²⁺ ($\rm L^1=1,4,8,11$ -tetraazacyclotetradecane, L² = meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane), eqn. (2)–(3), at pH 1–2.† In argon-saturated solutions in the absence of CO reaction (3) was followed exclusively by the capture of 'CH₃ by ($\rm H_2O$)₂CoL²⁺ in the concentration ranges [($\rm H_2O$)₂CoL²⁺] = 0.1–1 mmol dm⁻³ (always in an excess), [ButOOH] = 0.05–0.4 mmol dm⁻³, eqn. (4).^{4,5}

$$(H_2O)_2CoL^{2+} + (CH_3)_3COOH \rightarrow (H_2O)_2CoL^{3+} + (CH_3)_3CO^* + OH^-$$
 (2)

$$(CH_3)_3CO' \rightarrow CH_3 + (CH_3)_2CO k = 1.4 \times 10^6 \text{ s}^{-16}$$
 (3)

$$^{\cdot}CH_3 + (H_2O)_2CoL^{2+} \rightarrow CH_3CoL(H_2O)^{2+} + H_2O$$
 (4)

Under an atmosphere of CO, the competition between $(H_2O)_2CoL^{2+}$ and CO for 'CH₃, eqns. (1) and (4), resulted in the formation of two different organocobalt complexes, the known CH₃CoL(H₂O)^{2+4,5} and a novel acetyl complex CH₃C(O)CoL(H₂O)²⁺, eqn. (5).‡

$$CH_3\dot{C}O + (H_2O)_2CoL^{2+} \xrightarrow{fast} CH_3C(O)CoL(H_2O)^{2+} + H_2O$$
 (5)

The yields of acetylcobalt were determined spectrophotometrically after the reduction by Cr^{2+} of the strongly absorbing $(H_2O)_2CoL^{3+}$, formed in reaction (2), to the weakly absorbing $(H_2O)_2CoL^{2+}$. These experiments used CO-saturated solutions ([CO] = 0.96 mmol dm⁻³)⁸ and several concentrations of $(H_2O)_2CoL^{2+}$ (0.05–1.0 mmol dm⁻³ for L^1 , 0.1–0.5 mmol dm⁻³ for L^2) and ButOOH (0.02–0.4 mmol dm⁻³ for L^1 , 0.04–0.2 mmol dm⁻³ for L^2). The data were fitted to eqn. (6),§ which yielded $k_1 = (2.3 \pm 0.1) \times 10^6$ (L = L^1) and $(1.8 \pm 0.1) \times 10^6$ (L = L^2) dm³ mol⁻¹ s⁻¹, giving an average value of $(2.0 \pm 0.3) \times 10^6$ dm³ mol⁻¹ s⁻¹.

$$[CH_3C(O)CoL(H_2O)^{2+}]_{\infty} = -(k_1/2k_4)[CO]_{av}$$

$$\ln \left\{ 1 - \frac{[\text{ButOOH}]_o}{0.5[(\text{H}_2\text{O})_2\text{CoL}^{2+}]_o + (k_1/2k_4)[\text{CO}]_{\text{av.}}} \right\} \quad (6)$$

This confirms the reaction scheme of eqns. (1), (4), (5), and thus the validity of our approach to the determination of k_1 . Specifically, the most probable alternative scheme, whereby ${}^{\bullet}CH_3$ reacts rapidly with small (but undetected) amounts of a

Thus, according to eqns. (1), (4) and (5), and denoting LCo-COCH₃²⁺ as A and LCoCH₃²⁺ as B:

$$\frac{d[B]/dt}{d[A]/dt} = \frac{k_4[LCo^{2+}]}{k_1[CO]} = \frac{k_4([LCo^{2+}]_o - 2[A] - 2[B])}{k_1[CO]_{av.}}$$

$$\frac{d[B]}{d[A]} + \frac{2k_4[B]}{k_1[CO]_{av.}} = \frac{k_4[LCo^{2+}]_o}{k_1[CO]_{av.}} - \frac{2k_4[A]}{k_1[CO]_{av.}}$$

If $2k_4/k_1[CO]_{av.} = a$ and $k_4[LCo^{2+}]_o/k_1[CO]_{av.} = b$, then

$$\frac{\mathsf{d}[\mathsf{B}]}{\mathsf{d}[\mathsf{A}]} + a[\mathsf{B}] = b - a[\mathsf{A}]$$

Multiplication of both sides by $e^{a[A]}$ and integration yields

$$[B]e^{a[A]} = b/a e^{a[A]} - e^{a[A]} ([A] - 1/a)$$

Substitution of the limits ([A] = [B] = 0 at t = 0, and [A] = A_{∞} , [B] = $[B]_{\infty}$ at time ∞ , and $[B]_{\infty} + [A]_{\infty} = [Bu^tOOH]_0$, yields the final eqn. (6).

[†] The values of k_2 are 52.0 (L¹) and 11.4 (L²) dm³ mol⁻¹ s⁻¹, irrespective of whether the reactions are run under Ar or Co.

[‡] Reaction (5) probably has a rate constant of $(1-5) \times 10^7$ dm³ mol⁻¹ s⁻¹, similar to reactions of these cobalt complexes with alkyl radicals, and is therefore fast in comparison with other possible reactions of the radicals under experimental conditions.

[§] Eqn. (6) takes into account the fact that the concentration of $(H_2O)_2CoL^{2+}$ changes significantly during the course of each experiment, whereas that of CO remains sufficiently constant that an average value suffices. Thus $[(H_2O)_2CoL^{2+}]_t = [(H_2O)_2CoL^{2+}]_o - 2[CH_3CoL(H_2O)^{2+}]_t - 2[CH_3CO)CoL(H_2O)^{2+}]_t$ and $[CH_3CoL(H_2O)^{2+}]_{\infty} + [CH_3C(O)Co(L)(H_2O)^{2+}]_{\infty} = [Bu^tOOH]_o$. Subscripts o and ∞ are used for initial and final concentrations, and t for all the intermediate ones.

cobalt–CO adduct, is ruled out. For a given L such a scheme would require that a constant percentage of the organocobalt product be present as the acetyl complex at constant [CO]. This is clearly not the case, and the yield of $CH_3C(O)-CoL(H_2O)^{2+}$ increases with decreasing $[(H_2O)_2CoL^{2+}]$ as described by the reaction scheme and eqn. (6).

The value of k_1 is much larger in water than in the gas phase because solvation stabilises the polar acetyl radical. This also implies that k_1 might decrease significantly in less polar solvents.

The solid [CH₃C(O)CoL(H₂O)](ClO₄)₂ was prepared with both L¹ and L² by visible light photolysis (300 W sun lamp) of an ice-cold 1 mmol dm⁻³ solution of CH₃CoL(H₂O)²+ under constant bubbling of CO. The complexes were purified by ion exchange and the yellow salts precipitated by the addition of solid NaClO₄. For L = L¹, λ_{max} 452 nm (ϵ 90.7 dm³ mol⁻¹ cm⁻¹) and 319 (1190); ¹H NMR, δ 1.48 (CH₃), ¹³C NMR, δ 32.7 (CH₃). For L = L², λ_{max} 472 nm (ϵ 81.0) and 324 (834). The presence of the CH₃CO group, (and specifically not its hydrated form) was established by laser flash photolysis of CH₃C(O)CoL¹(H₂O)²+ ($\lambda_{irradiation}$ 490 nm). The CH₃CO was identified by its known rate of hydration (2 × 10⁴ s⁻¹)⁷ and by the subsequent reaction of CH₃C(OH)² with C(NO₂)4.⁷

The clean photochemistry of the acetyl complex makes it an excellent source of acetyl radicals, which until now had to be

prepared by pulse radiolysis of CH₃CHO for direct kinetic studies in aqueous solutions.⁷

This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division, under Contract W-7405-Eng-82.

Received, 2nd July 1991; Com. 1/03284D

References

- 1 K. W. Watkins and W. W. Word, *Int. J. Chem. Kin.*, 1974, **6**, 855; H. Fischer and H. Paul, *Acc. Chem. Res.*, 1987, **20**, 200, and references cited therein.
- 2 K. I. Goldberg and R. G. Bergman, J. Am. Chem. Soc., 1989, 111, 1285.
- 3 D. D. Coffman, R. Cramer and W. E. Mochel, J. Am. Chem. Soc., 1958, 80, 2882.
- 4 A. Bakac and J. H. Espenson, Inorg. Chem., 1989, 28, 4319.
- 5 T. S. Roche and J. H. Endicott, Inorg. Chem., 1974, 13, 1575.
- 6 M. Erben-Russ, C. Michel, W. Bors and M. Saran, J. Phys. Chem., 1987, 91, 2362
- 7 M. N. Schuchamann and C. von Sonntag, J. Am. Chem. Soc., 1988, 110, 5698.
- 8 Solubility Data Series, Carbon Monoxide, ed. R. W. Cargill, Pergamon Press, Oxford, New York, 1990, p. 2. It was assumed that the presence of submillimolar concentrations of (H₂O)₂CoL²⁺ and Bu^tOOH had no effect on the solubility of CO in H₂O.