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Optical resolution of C2-symmetric racemic 1,4-diols,
1,2-bis(1-hydroxyalkyl)benzene, was examined using (S)-
5-allyl-2-oxabicyclo[3.3.0]octene ((S)-ALBO-V) as chiral
resolving agent. Diastereomeric acetals obtained from the
1,4-diols with (S)-ALBO-V were easily separated by silica-
gel column chromatography. After removal of the resolving
agent, both enantiomers of the 1,4-diols were obtained with
high enantiomeric excesses.

C2-Symmetric 1,2-, 1,3-, and 1,4-diols have been recognized
as useful chiral scaffolds in various asymmetric transformations
as chiral ligands and chiral auxiliaries,1­5 since the existence of
a C2-symmetric element is often important in asymmetric syn-
thesis to induce high levels of stereoselectivity.6 Among them,
the structural variety of chiral C2-symmetric 1,4-diols is rather
limited, and the precise control of the stereochemical outcome
of asymmetric reactions is generally difficult due to their
structural flexibility except for 1,1¤-bi-2-naphthol (BINOL)
derivatives3 and α,α,α¤,α¤-tetraaryl-1,3-dioxolane-4,5-dimetha-
nol (TADDOL) derivatives4 with relatively rigid structures.

We have reported the asymmetric synthesis of chiral C2-
symmetric 1,4-diols with o-xylylene structure, (S,S)-1,2-bis-
(1-hydroxyalkyl)benzene (1), and the use of (S,S)-1,2-bis-
(1-hydroxypropyl)benzene (1a) (R = Et) as chiral auxiliary
or starting material of chiral ligands.7 The superiority of chiral
1,4-diol 1a as chiral auxiliary was shown in the 1,4-addition
of phenyllithium to a β-nitrostyrene derivative by comparing
the results using other C2-symmetric chiral 1,2-, 1,3-, and 1,4-
diols.7c In the previous report,7a however, the stepwise enan-
tioselective addition of dialkylzinc reagent to aromatic aldehyde
was utilized for the construction of two benzylic stereogenic
centers of 1,4-diol 1. Therefore, the examples of chiral 1,4-diols
1 with high enantiomeric excesses have been limited to 1a
and 1b (R =Me). Although van Koten et al. also reported the
enantioselective synthesis of several examples of 1,4-diol 1, the
enantioselectivities of the reactions were less than 90%.8

On the other hand, optical resolution is another method to
obtain optically active compounds. As for the optical resolution
of chiral secondary alcohols, (S)-5-allyl-2-oxabicyclo[3.3.0]-
octene ((S)-ALBO-V) was reported as a useful chiral resolving
agent.9 Various diastereomeric acetals prepared from racemic
secondary alcohols with (S)-ALBO-V were easily separated by
silica-gel column chromatography, and both enantiomers of the
alcohols with high enantiomeric excesses were easily obtained
after removal of (S)-ALBO-V by deacetalization. Herein, we
established a facile procedure for the preparation of both enan-
tiomers of chiral 1,4-diols 1 bearing various alkyl groups by
optical resolution using (S)-ALBO-V.

In the first place, various racemic 1,4-diols 1a­1g were syn-
thesized from o-phthalaldehyde (2) and the corresponding
Grignard reagents according to a known procedure with slight
modification (Table 1).10 Namely, to dialdehyde 2 in cyclo-
pentyl methyl ether (CPME) was added an ethereal solution of
ethylmagnesium bromide, prepared from 2.5 molar amounts of
bromoethane, at 0 °C and the reaction mixture was refluxed
for 3 h. After acidic work-up, a mixture of desired 1,4-diol
rac-1a, its diastereomer meso-3a, and reduced product 4a,
which resulted from a single nucleophilic addition followed
by a reduction by β-hydrogen of the Grignard reagent, were
obtained in 55%, 13%, and 16% yields, respectively (Entry 1).
Similarly, the reaction with methylmagnesium iodide gave
rac-1b and meso-3b in 46% and 47% yields, respectively
(Entry 2). As for the synthesis of rac-1c, the amount of
isopropylmagnesium bromide was increased to that prepared
from 5.0 molar amounts of 2-bromopropane until 2 was not
detected by TLC, and rac-1c was obtained in 29% yield along
with meso-3c and 4c with 6% and 31% yields, respectively
(Entry 3). 1,4-Diols 1d­1f were also obtained in 37­57%
yields by the reaction of 2 with Grignard reagents prepared
from 4­5 molar amounts of the corresponding alkyl halides
(Entries 4­6).

Table 1. Synthesis of Racemic 1,4-Diols 1a­1f

Entry RMgXa) rac-1
/%b)

meso-3
/%b)

4
/%b)

1 EtMgBr (2.5) 55 13 16
2 MeMgI (2.5) 46 47 0
3 i-PrMgBr (5.0) 29 6 31
4c) i-BuMgBr (4.0) 37 15 39
5 n-C5H11MgBr (5.0) 41 23 34
6 c-C6H11MgCl (5.0) 57 14 14

a) Molar amounts of the corresponding alkyl halides used were
in parentheses. b) Isolated yield. c) The reaction was carried
out at room temperature.
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1,2-Bis(2-ethyl-1-hydroxybutyl)benzene 1g was prepared
from 1,2-dibromobenzene (5), since the reaction of 1-ethyl-
propylmagnesium halide with 2 afforded rac-1h in ca. 10%
yield due to the predominant formation of 4g and 1,2-bis-
(hydroxymethyl)benzene. Dibromide 5 was mono-lithiated by
butyllithium in Et2O/THF at between ¹115 and ¹110 °C, and
the resulting aryl lithium was reacted with 2-ethylbutanal to
give bromoalcohol 6 in 81% yield. Treatment of 6 with butyl-
lithium in Et2O at room temperature, and the subsequent reac-
tion with 2-ethylbutanal afforded rac-1g and meso-3g in 32%
and 36% yields, respectively (Scheme 1).

Next, the optical resolution of rac-1a was examined using
(S)-ALBO-V (Table 2). When rac-1a was mixed with 1.0
molar amount of (S)-ALBO-V in the presence of a catalytic
amount (1mol%) of p-toluenesulfonic acid in toluene at room
temperature for 3 h, diastereomers of monoacetals (R)-7a and
(S)-7a were obtained in moderate yields along with diastereo-
meric diacetals (R)-8a and (S)-8a. The resulting four products
((R)-7a, (S)-7a, (R)-8a, and (S)-8a) were separated by a single
silica-gel column chromatography (Entry 1). The reaction was
then examined using 2.0 molar amounts of (S)-ALBO-V, and
diacetals (R)-8a and (S)-8a were obtained in 29% and 41%
yields, respectively (Entry 2). Monoacetals were fully con-
verted to diacetals by using 3.0 molar amounts of (S)-ALBO-V,

and (R)-8a and (S)-8a were obtained in high isolated yields
(Entry 3). The amount of (S)-ALBO-V was reduced to 2.2
molar amounts to give (R)-8a and (S)-8a in 40% and 45%
yields, respectively (Entry 4).

As a good result was obtained for rac-1a, the optical resolu-
tion of various 1,4-diols 1b­1g was then examined (Table 3).
When 1b (R =Me), 1d (R = i-Bu), and 1e (R = n-C5H11) were
reacted with (S)-ALBO-V, diacetals 8b, 8d, and 8e were
obtained in high isolated yields (Entries 1, 3, and 4). In the
cases of 1c (R = i-Pr) and 1f (R = c-C6H11), diacetals (S)-8c
and (S)-8f were obtained in high yields although ca. 15% of
monoacetals (R)-7c and (R)-7f were isolated and the yields of
(R)-8c and (R)-8f were moderate probably due to the steric
hindrance of the substituents (Entries 2 and 5). The yields of
(R)-8c and (R)-8f were not improved by elongation of the reac-
tion time or increasing the amount of p-toluenesulfonic acid.
As for 1,4-diol 1g (R = (C2H5)2CH), a higher catalyst loading
(20mol%) was required for the formation of diacetals (R)-8g
and (S)-8g (28% and 39% yields, Entry 6). All diastereomeric
diacetals (R)-8b­8g and (S)-8b­8g were also separated by
silica-gel column chromatography.

As both enantiomers of various 1,4-diols 1a­1g were ob-
tained in diacetal form with (S)-ALBO-V, deacetalization of
diacetals 8a­8g was carried out to obtain (R)-1a­1g and (S)-
1a­1g (Table 4). In the presence of 1mol% of p-toluene-
sulfonic acid, a methanol solution of diacetal (R)-8a was heated
under reflux for 1 h to give (R)-1a in 98% yield with 98% ee
(Entry 1). The chiral resolving agent was recovered as meth-
anol adduct, which is the precursor of (S)-ALBO-V and there-
fore reusable.9 Similarly, deacetalization of (S)-8a afforded (S)-
1a in 96% yield with 97% ee (Entry 2). Deacetalization of
other diacetals, (R)-8b­8g and (S)-8a­8g, also proceeded to
give the corresponding 1,4-diols (R)-1b­1g and (S)-1a­1g in
high yields and enantiomeric excesses (Entries 3­14). Although
the ee values of 1,4-diols 1a­1g should be >99% in principle
since enantiomerically pure (S)-ALBO-V was used as chiral
resolving agent, the ee values were 92­98% in some cases. This
is probably due to the technical problem in the separation of
diastereomeric diacetals (R)-8 and (S)-8 by silica-gel column

Scheme 1. Synthesis of 1,2-bis(2-ethyl-1-hydroxybutyl)-
benzene (1g).

Table 2. Acetalization of rac-1a with (S)-ALBO-V

Entry
(S)-ALBO-V
/mol. amt.

Time
/h

7a/%a) 8a/%a)

(R) (S) (R) (S)

1b) 1.0 3 22 26 6 9
2 2.0 10 15 8 29 41
3 3.0 7 Trace Trace 42 45
4 2.2 17 9 4 40 45

a) Isolated yield. b) Recovery of rac-1a was 13%.

Table 3. Acetalization of Various 1,4-Diols with (S)-
ALBO-V

Entry 1 R
7/%a) 8/%a)

(R) (S) (R) (S)

1 1b Me Trace Trace 40 43
2 1c i-Pr 15 5 28 42
3 1d i-Bu 5 Trace 45 46
4b) 1e n-C5H11 7 Trace 37 42
5 1f c-C6H11 14 5 30 37
6c) 1g (C2H5)2CH 14 6 28 39

a) Isolated yield. b) Reaction time was 3 h. c) Reaction was
carried out using 20mol% of p-TsOH.

Bull. Chem. Soc. Jpn. 2015, 88, 966–968 | doi:10.1246/bcsj.20150066 © 2015 The Chemical Society of Japan | 967

http://dx.doi.org/10.1246/bcsj.20150066


chromatography. In the case of 1d, enantiomerically pure sam-
ples (>99% ee) were obtained for both enantiomers after single
recrystallization from Et2O/hexane.

In conclusion, various C2-symmetric rac-1,4-diols with o-
xylylene structure were synthesized from the easily available
starting materials in one or two steps with good yields. Acetal-
type chiral resolving agent (S)-ALBO-V was found to be useful
for the optical resolution of 1,4-diols 1, and both enantiomers
of 1 were obtained with high enantiomeric excesses. The chiral
1,4-diols obtained in this study would find applications in
various kinds of asymmetric transformations as chiral ligands
or chiral auxiliaries.
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Table 4. Deacetalization of Various Acetals 8

Entry R Acetal Yield/%a) ee/%b)

1 Et (R)-8a 98 98
2 (S)-8a 96 97
3 Me (R)-8b 95 98
4 (S)-8b 96 98
5 i-Pr (R)-8c 86 97
6 (S)-8c 87 99
7 i-Bu (R)-8d 72 92 (>99)c)

8 (S)-8d 79 98 (>99)c)

9 n-C5H11 (R)-8e 85 96
10 (S)-8e 88 >99
11 c-C6H11 (R)-8f 92 >99
12 (S)-8f 81 98
13 (C2H5)2CH (R)-8g 84 97
14 (S)-8g 85 96

a) Isolated yield. b) Determined by HPLC analysis. c) After
single recrystallization.
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