Preliminary communication

A new approach to the synthesis of β -glycosidically linked oligosaccharides containing 2-acetamido-2-deoxy-D-mannose residues

EMILIO MICHELI, FRANCESCO NICOTRA, LUIGI PANZA \dagger , FIAMMA RONCHETTI*, and L. TOMA

Dipartimento di Chimica Organica e Industriale and Centro di Studio per le Sostanze Organiche Naturali del C.N.R., Via Venezian 21, 20133 Milano (Italy)

(Received December 31st, 1984; accepted for publication, February 11th, 1985)

The synthesis of the repeating units of bacterial capsular polysaccharides is important because of their potential use as vaccines¹. The structures of several such polysaccharides have been elucidated¹ and frequently they contain a 2-acetamido-2-deoxy- β -D-mannose residue. The introduction of this unit into an oligosaccharide chain is not easy, because of the difficulty in obtaining a 1,2-*cis*- β -D-mannoyranosidic linkage².

We now describe a synthetic approach to such β -glycosidic linkages which utilises the well-known² Koenigs—Knorr reaction; this leads easily and with high stereoselectivity to a β -D-glucopyranosyl glycopyranoside from an α -D-glucopyranosyl bromide with an equatorial participating-group at C-2. Selective exposure of HO-2 of the glucopyranosyl moiety, followed by oxidation, oximation, stereoselective reduction, and acetylation, yields the axially oriented N-acetylamino group. The inversion of configuration at C-2 of β -D-glucopyranosides has already been employed to obtain β -D-mannopyranosides³, as well as the catalytic reduction of the 2-oximino function to obtain 2amino-2-deoxy- α -D-glucosides⁴.

Thus, reaction of methyl 2,3,6-tri-O-benzyl- α -D-glucopyranoside⁵ (2, 0.57 mmol) with 2-O-acetyl-3,4,6-tri-O-benzyl- α -D-glucopyranosyl bromide⁶ (3, 1.14 mmol) was performed⁷ in the presence of silver triflate (1.14 mmol), 2,4,6-trimethylpyridine (0.14 mL), and molecular sieves Type 3A under argon in CH₂Cl₂ (at 0° for 2 h, and then room temperature overnight) to yield methyl 4-O-(2-O-acetyl-3,4,6-tri-O-benzyl- β -D-glucopyranosyl)-2,3,6-tri-O-benzyl- α -D-glucopyranoside** (1,75% after purification by SiO₂ column chromatography using hexane-ethyl acetate, 7:3), m.p. 86-87° (from ethanol-hexane), [α] D +17° (c 0.9, chloroform). ¹H-N.m.r. data (200 MHz, CDCl₃): δ 1.87 (s, 3 H, OAc), 3.36 (s, 3 H, OMe), 3.3-3.9 (m, 11 H), 4.48 (d, 1 H, $J_{1',2'}$ 8.5 Hz, H-1'), 4.62 (d, 1 H, $J_{1,2}$ 3.5 Hz, H-1), 4.95 (dd, 1 H, $J_{2',3'}$ 9.5 Hz, H-2), 4.3-5.1 (6 ABq, 12 H, 6 CH₂Ph), 7.1-7.5 (m, 30 H, 6 Ph). O-Deacetylation of 1 yielded 4 (85%), [α] D +14.5° (c 1, chloroform). ¹H-N.m.r. data: δ 3.35 (s, 3 H, OMe), 3.1-4.0 (m, 12 H), 4.3-5.1 (m, 14 H, H-1,1' and 6 CH₂Ph), 7.1-7.5 (m, 30 H, 6 Ph).

[†]Fondazione "Guido Donegani" Fellow, June 1984–May 1985.

^{*}To whom enquiries should be addressed.

^{**}All the new compounds exhibited elemental analyses consistent with the theoretical ones.

 $R^{1} = OAC, R^{2} = H, R^{3} = Bn$ $R^{1} = OH, R^{2} = H, R^{3} = Bn$ $R^{1} = R^{2} = OH, R^{3} = Bn$ $R^{1}, R^{2} = NOH, R^{3} = Bn$ $R^{1} = H, R^{2} = NHAC, R^{3} = Bn$ $R^{1} = R^{3} = H, R^{2} = NHAC$ $R^{1}, R^{2} = NOH, R^{3} = Bn$

Oxidation of 4 with acetic anhydride-dimethyl sulfoxide³ (room temperature, overnight) gave the glyculose 5 mainly as the hydrate⁸ (77% after purification by column chromatography using hexane-ethyl acetate, 6:4), $[\alpha]_D +9^\circ$ (c 2.8, chloroform); $\nu_{max}^{CHCl_3}$ 1750 cm⁻¹. ¹H-N.m.r. data: δ 3.36 and 3.37 (s, 3 H, OMe), 3.3–5.3 (m, 25 H), 7.1–7.5 (m, 30 H, 6 Ph). Treatment⁴ of 5 with hydroxylamine hydrochloride gave the oxime 6 as a mixture of *E* and *Z* isomers (80% after purification by column chromatography using hexane-ethyl acetate, 6:4). ¹H-N.m.r. data (80 MHz): δ 3.36 and 3.38 (s, 3 H, OMe), 3.3–5.3 (m, 24 H), 5.50 and 5.90 (s, 1 H, H-1'), 7.1–7.5 (m, 30 H, 6 Ph). Reduction of 6 with LiAlH₄ in tetrahydrofuran yielded the 2'-axial amine 7, $[\alpha]_D +9^\circ$ (c 1.5, chloroform). ¹H-N.m.r. data: δ 3.35 (s, 3 H, OMe), 2.9–4.0 (m, 12 H), 4.3–5.1 (m, 14 H, H-1,1' and 6 CH₂Ph), 7.1–7.5 (m, 30 H, 6 Ph). Acetylation of 7 then gave methyl 4-*O*-(2-acetamido-3,4,6-tri-*O*-benzyl-2-deoxy- β -D-mannopyranosyl)-2,3,6-tri-*O*-benzyl- α -D-glucopyranoside (8), $[\alpha]_D -1^\circ$ (c 0.9, chloroform). ¹H-N.m.r. data: δ 1.83 (s, 3 H, NAc), 3.35 (s, 3 H, OMe), 3.1–4.0 (m, 11 H), 4.2–5.0 (m, 15 H, H-1,1', 2' and 6 CH₂Ph), 5.75 (d, J_{2'NH} 10 Hz, NH), 7.1–7.5 (m, 30 H, 6 Ph).

That 7 and 8 have an axially oriented substituent at C-2' is evident from the $J_{1',2'}$ and $J_{2',3'}$ values (1.5 and 4.5 Hz, respectively) obtained from the 300-MHz ¹H-n.m.r. spectrum (D₂O) of methyl 4-O-(2-acetamido-2-deoxy- β -D-mannopyranosyl)- α -D-gluco-pyranoside 9, obtained by catalytic hydrogenation of 8 over Pd/C, which contained signals for H-1' and H-2' at δ 4.879 and 4.546, respectively.

ACKNOWLEDGMENTS

We thank Professor G. Russo for helpful discussions. Professor G. Ricca for the 200-MHz spectra, and Dr. D. Monti for the 300-MHz spectrum. This contribution is part of the "Progetto finalizzato Chimica fine e secondaria".

REFERENCES

- 1 H. J. Jennings, Adv. Carbohydr. Chem. Biochem., 41 (1983) 155-208.
- 2 H. Paulsen, Angew. Chem. Int. Ed. Engl., 21 (1982) 155-224,
- 3 G. Ekborg, B. Lindberg, and J. Lonngren, Acta Chem. Scand., 26 (1972) 3287-3292.
- 4 H. B. Boren, G. Ekborg, and J. Lonngren, Acta Chem. Scand., Ser. B, 29 (1975) 1085-1088.
- 5 P. J. Garegg, H. Hultberg, and S. Wallin, Carbohydr. Res., 108 (1982) 97-101.
- 6 M. A. E. Shaban and R.W. Jeanloz, Carbohydr. Res., 52 (1976) 103-114.
- 7 C. D. Warren, C. Augé, M. L. Laver, S. Suzuki, D. Power, and R. W. Jeanloz, *Carbohydr. Res.*, 82 (1980) 71-82.
- 8 D. C. Baker, D. Horton, and C. G. Tindall, Jr., Carbohydr. Res., 24 (1972) 192-197.