JOURNAL OF THE CHEMICAL SOCIETY

Chemical Communications

Number 12 1982

Reaction of Carbon Dioxide and Hydrogen on Supported Palladium Catalysts

Edwin Ramaroson, Roger Kieffer,* and Alain Kiennemann

Laboratoire de Chimie Organique Appliquée, Université Louis Pasteur, 1, rue Blaise Pascal, F 67008 Strasbourg Cedex, France

Reaction of CO_2 – H_2 with Pd/La_2O_3 gives MeOH with 89% selectivity, but acidic supported catalysts (Pd/SiO_2) favour the formation of CH_4 .

At atmospheric pressure, the reactions of carbon oxides on Pd catalysts give mainly CH_4 .^{1,2} Poutsma³ and Bell⁴ have reported the synthesis of methanol on this type of catalyst but they used medium or high pressures (10—1088 bar) and synthesis gas (CO-H₂). The activity of CO_2 under these conditions was not tested.

We have reported earlier, 5 in agreement with other authors, 6 , 7 that methanol synthesis from CO_2 occurs by a direct reaction and not through prereduction to CO and consecutive hydrogenation. Consequently, the activity and selectivity for CO_2 reactions do not necessarily have the same characteristics as those for CO reactions in similar catalytic systems. We have now studied the reactions of CO_2 – H_2 mixtures on supported palladium catalysts.

The results in Table 1 show that at a pressure of 120 bar and 350 °C, catalysts supported on SiO_2 , Al_2O_3 , and ThO_2 are able to form detectable quantities of methane, but systems based on La_2O_3 , or those promoted by an alkali metal (Li-Pd/SiO₂) show a selectivity for methanol formation of >80%.

Under our reaction conditions, the formation of higher hydrocarbons or alcohols by a chain-growing process is negligible. The reaction of CO, under the same conditions, shows a selectivity of up to 5% for formation of this type of product.⁸ The observed formation of CO in the present reactions can be attributed to the water gas shift reaction.

These results and especially the particular selectivity towards formation of C_1 products are in accordance with a direct synthesis from CO_2 to methane or methanol. The mechanism proposed earlier for carbon oxides—hydrogen reactions⁹ is in agreement with these facts. In this mechanism, the first step is the formation of formates by CO_2 insertion into a hydride site. We have detected formate species on Pd/SiO_2 and Pd/Al_2O_3 by chemical trapping¹⁰ and Solymosi¹¹ has confirmed this proposition on Rh catalysts by i.r. spectroscopy. Another possible route to formate species is *via* the reduction of carbonates formed by CO_2 insertion into hydroxide sites.⁹

The conversion of the formate species into methanol (or methane) can be interpreted as taking place via bridged oxygenated and methoxy-species.^{9,12} The stabilisation of these intermediates can explain the favourable effect of the basic supports. Chain-growing processes from C_1 products to higher alcohols or hydrocarbons by insertion of CO_2 into a

Table 1. Reaction of CO₂ on supported Pd catalysts.^a

	Conversion (%)			Selectivity (%)				
Catalyst: 5% Pd/support	CH ₄	MeOH+ Me₂O	со	CH ₄	RH (C_2-C_5)	МеОН	Me_2O	$ \begin{array}{c} \text{ROH} \\ (C_2 - C_5) \end{array} $
Pd/SiO ₂ Pd/Al ₂ O ₃	7.6 5.5	0.6 5.3	3 18	92.5 50.3	Trace Trace	6.3 38.9	1.1 10.2	Trace
Pd/ThO ₂ Pd/La ₂ O ₃	6.3 0.7	6.2 6.1	6.8 4	49.8 10.5	0.5 0.1	49.1 89.4		0.3
LiPd/SiO ₂	1.2	7.2	13.3	13.9	1.7	83.9		0.2

 a T=350 °C; P=120 bar; $H_2/CO_2=3$; gas space velocity $41\,h^{-1}$ (g catalyst) $^{-1}$. The supports were commercial products, SiO₂ (Roth 0201), and γ -Al₂O₃ (Fluka 1095), or were prepared (La₂O₃, ThO₂) by calcination (12 h at 550 °C) of the hydroxides obtained by precipitation from commercial nitrates (Rhône-Poulenc) with NH₄OH at pH = 8. Catalysts were prepared by impregnation under reduced pressure (20 mbar) of the oxides, with a solution of PdCl₂ in 0.2 m-HCl (Li₂PdCl₄ in aqueous media for the final entry), and dried (150 °C at 0.1 mbar for 3 h, then 400 °C in air for 4 h). Reactions were carried out in a stainless steel reaction vessel as described previously, after reduction in situ at 400 °C for 5 h. The products were analysed by g.l.c. as described in ref. 5.

metal-C or metal-O bond which occur with transition-metal complexes13 are not observed on solid catalysts under our conditions.

Thus, supported palladium catalysts are able to produce methanol from CO₂-H₂ synthesis gas, with a selectivity which depends on the nature of the support.

We thank F. Antoni for technical assistance.

Received, 22nd February 1982; Com. 185

References

- 1 M. A. Vannice, J. Catal., 1975, 37, 449; 1975, 40, 129.
- 2 F. Solymosi and A. Erdöhelyi, J. Mol. Catal., 1980, 8, 471; F. Solymosi, A. Erdöhelyi, and M. Kocsis, J. Catal., 1980, 65, 428.
- 3 M. L. Poutsma, L. E. Elek, P. A. Ibarbina, A. P. Risch, and J. A. Rabo, J. Catal., 1978, 52, 157.
- 4 Y. A. Ryndin, R. F. Hicks, A. T. Bell, and Y. I. Yermakov, J. Catal., in the press.

- 5 R. Kieffer, E. Ramaroson, A. Deluzarche, and Y. Trambouze, React. Kinet. Catal. Lett., 1981, 16, 207.
- 6 R. Bardet, J. Thivolle Cazat, and Y. Trambouze, J. Chem. Phys., 1981, 78, 135.
- 7 Y. Kagan, L. Liberov, G. Slivinskii, S. Loktev, G. Lin, A. Rozovskii, and A. N. Bashkirov, Dokl. Akad. Nauk SSSR, 1975, 221, 1093.
- 8 E. Ramaroson, R. Kieffer, and A. Kiennemann, to be pub-
- 9 A. Deluzarche, J. P. Hindermann, and R. Kieffer, J. Chem. Res., 1981, (S) 72; (M) 934.
- 10 A. Deluzarche, J. Cressely, and R. Kieffer, J. Chem. Res., 1979, (S) 136; (M) 1656.
- 11 F. Solymosi, A. Erdöhelyi, and T. Bansagi, J. Chem. Soc., Faraday Trans. 1, 1981, 77, 2645.
- 12 C. S. Kellner and A. T. Bell, J. Catal., 1981, 71, 288.
 13 A. L. Lapidus and Y. Y. Ping, Russ. Chem. Rev., 1981, 50, 63.
- 14 Y. Kikuzono, S. Kagami, S. Naito, T. Onishi, and K. Tamaru, Chem. Lett., 1981, 1249.