SHORT COMMUNICATION

POLYPHENOLS OF ANACARDIUM OCCIDENTALE

S. SANKARA SUBRAMANIAN, K. J. JOSEPH and A. G. R. NAIR

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 8 October 1968, in revised form 1 November 1968)

Plant. Anacardium occidentale L.--Anacardiaceae.

Uses. Edible cashew nuts; shell oil industrial; medicinal.²

Previous work. Phenolic constituents: anacardic acid, anacardol and cardol from shell oil³.

Present Work

Flowers. (EtOH extract of fresh material, fractionated with petrol. ether, ether and ethyl acetate). Ethyl gallate. (From ether fraction, 3.0% yield) $C_9H_{10}O_5$, Found: m.p. $157-158^\circ$ (C_6H_6 -MeOH), optically inactive; triacetate, m.p. $137-138^\circ$; tribenzoate, m.p. $127-128^\circ$; trimethyl ether, m.p. $53-54^\circ$; gallic acid (hydrolysis⁴ with H_3PO_4), m.p. $250-252^\circ$; Mixed m.p. with synthetic ethyl gallate and all the derivatives undepressed. Required: m.p. 158° , triacetate, m.p. 138° , tribenzoate, m.p. $126-128^\circ$, trimethyl ether, m.p. $53-55^\circ$, gallic acid, m.p. 253° (decomp.). Quercetin. (m.p. and mxd. m.p., penta acetate, m.p. and mxd. m.p.; R_f and co-chromatography). Hyperoside (quercetin 3-galactoside). (From ethyl acetate fraction, m.p. and mxd. m.p. $232-234^\circ$, R_f values and co-chromatography. Acid hydrolysis gave quercetin and one mole of galactose). M-digallic acid. Two dimensional paper chromatography.

Tender leaves. (Fresh material extracted EtOH and fractionated as for flowers). β -sito-sterol. (Petrol. ether fraction) Found: m.p. and mxd. m.p. 137–138°, acetate, m.p. and mxd. m.p. 133–134° (MeOH). Ethyl gallate. (0.3 per cent). Hyperoside. (0.06 per cent). Methyl gallate. Two dimensional paper chromatography; 6 co-chromatography with synthetic sample. Leucocyanidin and leucodelphinidin. Identified after conversion to cyanidin and delphinidin chloride—spectral properties and PC comparison.

Bark. Condensed tannins. No crystalline components isolated.

43 67

¹ Wealth of India, Raw Materials, Vol. I, p. 70, Council of Scientific & Industrial Research, New Delhi (1948).

² J. M. WATT and M. G. Breyer-Brandwijk, *The Medicinal and Poisonous Plants of Southern and Eastern Africa*, 2nd edition, p. 43, E. & S. Livingstone, London (1962).

³ F. A. SKINNER, In *Modern Methods of Plant Analysis* (edited by K. PAECH and M. V. TRACEY), Vol. III, p. 660, Springer-Verlag, Berlin (1955).

⁴ J. F. LITTLE, M. W. FOOTE, W. I. ROGERS and D. B. JOHNSTONE, Antibiotics Chemother. 3, 183 (1953).

⁵ G. Harris, *Dictionary of Organic Compounds* (4th Ed.), Vol. III, p. 1494, Eyre & Spottiswoode, London (1955)

⁶ T. WHITE, In The Chemistry and Technology of Leather, Vol. II, p. 98, Reinhold, New York (1958).