

Tetrahedron Letters 44 (2003) 9363-9366

TETRAHEDRON LETTERS

An efficient method for the preparation of glycosides with a free C-2 hydroxyl group from thioglycosides

Hai Yu and Harry E. Ensley*

Department of Chemistry, Tulane University, New Orleans, LA 70118, USA Received 4 September 2003; revised 30 September 2003; accepted 30 September 2003

Abstract—A new and efficient method to produce glycosides with a free C-2 hydroxyl group through 1,2-acyl group migration which occurs during the hydrolysis of 4,6-benzylidene protected thioglycosides has been developed. The acyl transfer products allow for further elaboration.

© 2003 Elsevier Ltd. All rights reserved.

Glycosides with a free hydroxyl group at C-2 are useful synthons for the preparation of naturally occurring oligosaccharides and glycoconjugates containing $(1 \rightarrow$ 2)-linked saccharide units.¹ Also, it is well known that to achieve stereochemical control in the formation of β -glycosidic linkages a C-2 ester capable of neighboring group participation must be used.² In some cases special C-2 esters are needed³ and it is very convenient to install these ester groups from glycosides with a free C-2 hydroxyl group. In addition, free C-2 hydroxyl glycosides have been used in the synthesis of glycosylamines.⁴

Several methods have been developed for the preparation of various glycosides with a free C-2 hydroxyl

Scheme 1.

0040-4039/\$ - see front matter $\textcircled{}{}^{\odot}$ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.09.230

group.^{4,5} Here we report a convenient method for the preparation of glycosides with a free C-2 hydroxyl group from 4,6-benzylidene protected thioglycosides.

Thioglycosides are now well established as stable and versatile synthons in the field of synthetic carbohydrate chemistry⁶ since they are stable under a wide range of reaction conditions and also can be used as efficient glycosyl donors. During the course of our work on oligosaccharide assembly, we required a mild, versatile protocol for the conversion of protected thioglycosides into their corresponding hemiacetals, which could then be converted into the corresponding trichloroacetimidate. Subjecting compound 1a to the literature procedure for hydrolysis of thioglycosides (NBS/aqueous acetone)⁷ gave a complex mixture of products with none corresponding to the hydrolysis product. However, 1a was smoothly converted into 1b when treated with 1 equivalent of NBS and a catalytic amount of TMSOTf at 0°C in wet CH₂Cl₂ for 10 min. The process results not only in hydrolysis of the thioglycoside linkage, but also migration of the 2-acyl substituent to the 1-position, presumably via the initially formed oxycarbenium ion C (Scheme 1). Encouraged by the high yield and selectivity of the reaction, we explored the application of this approach for the preparation of glycosides with a free C-2 hydroxyl group from thioglycosides.

Several examples of the hydrolysis of thioglycosides are demonstrated in Table 1. Various 4,6-benzylidene protected thioglycosides, **1a–9a**, bearing different ester groups at C-2 were explored. All reactions proceeded smoothly under the standard reaction conditions to provide the corresponding acyl transfer products, **1b– 9b**, in good yields.

Keywords: thioglycoside hydrolysis; 1,2-acyl migration. * Corresponding author.

 Table 1. Hydrolysis of various 4,6-benzylidene protected thioglycosides

entry	thioglycosides	products	yield(%)
1	Ph TO O TBSO 1a OBz SEt	Ph TO TO TBSO Ib OHOBZ	90%
2	Ph O O O O BZO Za OBZ SEt	Ph TO TO BZO 2b OHOBZ	88%
3	Ph 0 0 0 0 0 0 0 0 0 0	Ph TO TO ACO 3b OHOAC	84%
4	Ph O O O O O O O O O O O O O O O O O O O	Ph O O O Bno 4b OHOBz	88%
5	BnO = 5a OAc SPh	Ph TOTO Bno OHOAc	85%
6	Ph TO OPh TO O TBSO OBZ AcO TO SEt	Ph TO DO Ph TO DO TBSO DOBZ OBZ 6b AcO Tr	92%
7	BZO BZO OBZ 7a OBZ SEt	Bzo Bzo OBz OBz 7b OBz	88%
8	BZO BZO OBZ BZO OBZ 8a OPiv	BZO BZO OBZ 8b OHOPiv	90%
9	Ph TOLO Ph TOLO TBSO DO Ph TOLO OBz OBz SEt 9a	Ph TO Ph TO TO TBSO OBZ OH 9b OBZ	91%

When the reaction was applied to thioglycosides which lacked the 4,6-benzylidene protecting group, the acyl migration from the 2-position to the 1-position was partially or completely retarded and mixtures of hydrolysis products were sometimes obtained. For example, when peracetate 10a was hydrolyzed under the standard conditions the hydrolysis product 10b was obtained in 56% yield along with a 42% yield of the hydrolysis product which had undergone the 1,2-acyl migration, 10c. Other examples are shown in Table 2. These results indicate that the regioselective acyl transfer depends critically on the presence of the cyclic 4,6-benzylidene protecting group. Crich and coworkers⁸ have observed similar effects of 4,6-benzylidene protecting groups increasing the stability of α -glycopyranosyl triflates. As in the case of α -glycopyranosyl triflates, we propose that the 4,6-benzylidene moiety stabilizes the intermediate oxycarbenium ion C.

Interestingly, we found that the 1,2-acyl group migration which accompanies NBS mediated hydrolysis of the 4,6-benzylidene protected thioglycosides can be easily reversed, in high yield, by treatment with Et_3N in CH_2Cl_2 . For example, compound **1b** was converted into hemiacetal **1c**, which can then be converted into glycosyl trichloroacetimidate **1d**, a widely used glycosyl donor,^{2,11} for the next glycosylation (Scheme 2). The migration reversal procedure is particularly useful in those cases in Table 2 which initially result in a mixture of products. Treatment with Et_3N in CH_2Cl_2 affords a single product in high yield.^{12–14}

In conclusion, we have developed a simple and efficient method for the hydrolysis of thioglycosides which provides glycosides with a free C-2 hydroxyl group through 1,2 migration. The resulting free alcohol can be manipulated to form 1,2-linked saccharides or glycosylamines or install different groups, if desired. The acyl migration can readily be reversed to afford the 2-acylhemiacetal. We believe this method should find wide application in carbohydrate chemistry.

TRSO

Scheme 2. Reagents and conditions: (a) N-bromosuccinimide (1.0 equiv.), TMSOTf (0.1 equiv.), CH₂Cl₂-H₂O (100:1), 0°C, 10 min, 90%; (b) Et₃N/CH₂Cl₂ (1:4), rt, 24 h, 92%; (c) Cl₃CCN, DBU, CH₂Cl₂, rt, 95%.

References

1. (a) Mahato, S. B.; Nandy, A. K. Phytochemistry 1991, 30, 1357-1390; (b) Adinolf, M.; Mangoni, L.; Lanzetta, R.; Parrilli, M. Can. J. Chem. 1988, 66, 2787-2793; (c) Ikeda, T.; Kajimoto, T.; Nohara, T.; Kinjo, J.; Wong, C. Tetrahedron Lett. 1995, 36, 1509-1512; (d) Yamada, H.; Nishizawa, M. J. Org. Chem. 1995, 60, 386-397.

- 1999, 121, 1237-1244; (b) Adinolfi, M.; Barone, G.; Iadonisi, A.; Mangoni, L.; Schiattarella, M. Tetrahedron Lett. 2001, 42, 5967-5969; (c) Seeberger, P. H.; Eckhardt, M.; Gutteridge, C. E.; Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10064-10072.
- 4. Cipolla, L.; Lay, L.; Nicotra, F. J. Org. Chem. 1997, 62, 6678-6681.
- 5. (a) Parrish, J. D.; Little, R. D. Org. Lett. 2002, 4, 1439-1442; (b) Halcomb, R. L.; Wittman, M. D.; Olson, S. H.; Danishefshy, S. J. J. Am. Chem. Soc. 1991, 113, 5080-5082; (c) Liu, M. Z.; Fan, H. N.; Guo, Z. W.; Hui, Y. Z. Carbohydr. Res. 1996, 290, 233-237 and references cited therein.
- 6. (a) Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179-205; (b) Toshima, K.; Tatsuta, K. Chem. Rev. **1993**, *93*, 1503–1531.
- 7. (a) Motawia, M. S.; Marcussen, J.; Moeller, B. L. J. Carbohydr. Chem. 1995, 14, 1279–1294; (b) Kaesbeck, L.; Kessler, H. Liebigs Ann/Recl. 1997, 1, 169-173.
- 8. Crich, D.; Cai, W. J. Org. Chem. 1999, 64, 4926-4930.
- 9. Thiem, J.; Schwentner, J. Tetrahedron Lett. 1976, 17, 3117-3120.

- Bock, K.; Fernandez-Bolanos Guzman, J.; Refn, S. Carbohydr. Res. 1992, 232, 353–357.
- 11. Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212–235.
- 12. A typical experimental procedure, as applied to ethyl 4,6-O-benzylidene-2-O-benzoyl-3-O-t-butyldimethylsilyl-1-thio- β -D-glucopyranoside 1a, is as follows: Compound 1a (500 mg, 0.94 mmol) was dissolved in 5 mL of CH₂Cl₂-H₂O (100:1) and cooled to 0°C. The solution was treated with 1.0 equiv. of N-bromosuccinimide (167 mg, 0.94 mmol) and 0.1 equiv. of TMSOTf. The resulting mixture was stirred at 0°C, and the reaction was monitored by TLC. After the reaction was complete, aqueous NaHCO₃ was added, and the reaction mixture was extracted with CH₂Cl₂ three times. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, and concentrated by rotary evaporation. The resulting oil was purified by flash column chromatography (hexane/EtOAc 8:1) to yield of 1b (412 mg, 90%) as a white amorphous solid. Compound 1b (400 mg, 0.82 mmol) was dissolved in a mixture of CH₂Cl₂-Et₃N (4:1, v/v, 5 mL). The solution was stirred at room temperature for 24 h. After the reaction was complete, the solution was concentrated and purified by flash column chromatography to give 1c (380 mg, 95%). To a solution of compound 1c (350 mg, 0.72 mmol) in anhydrous CH₂Cl₂ (8 mL) was added trichloroacetonitrile (Cl₃CCN, 0.43 mL, 6.0 equiv.) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 50 µL) at 0°C. After stirring the resulting mixture for 4 h, the solvent was evaporated under reduced pressure and the resulting oil was purified by flash column chromatography to give pure 1d (431 mg, 95%) as a white amorphous solid.
- 13. All compounds gave satisfactory ¹H, COSY and ¹³C NMR spectra. The ¹H NMR signals (400 MHz, CDCl₃) for H-1 and H-2 of the corresponding thioglycosides and products are given: **1a** 5.42 (dd, J=10.0 Hz and 8.4 Hz, 1H, H-2), 4.76 (d, J=10.0 Hz, 1H, H-1); **1b** 6.41 (d, J=4.0 Hz, 1H, H-1), 3.80 (dd, J=9.2 Hz and 4.0 Hz, 1H, H-2); 2a 5.52 (t, J=9.2 Hz, 1H, H-2), 4.82 (d, J=10.0 Hz, 1H, H-1); 2b6.52 (d, J = 4.0 Hz, 1H, H-1), 4.16-4.10 (m, 2H, H-2, H-5);**3a** 5.03 (dd, J=10.0 Hz and 9.2 Hz, 1H, H-2), 4.57 (d, J = 10.0 Hz, 1H, H-1); **3b** 6.19 (d, J = 4.0 Hz, 1H, H-1), 3.84 (dd, J = 10.0 Hz and 4.0 Hz, 1H, H-2); 4a 5.28 (dd, J = 10.0 Hz)Hz and 8.8 Hz, 1H, H-2), 4.83 (d, J = 10.0 Hz, 1H, H-1); **4b** 6.48 (d, J = 3.6 Hz, 1H, H-1), 3.97 (dd, J = 9.2 Hz and 3.6 Hz, 1H, H-2); **5a** 5.82 (dd, J = 10.0 Hz and 8.8 Hz, 1H, H-2), 4.69 (d, J = 10.0 Hz, 1H, H-1); **5b** 6.21 (d, J = 3.2 Hz, 1H, H-1), 3.94-3.84 (m, 3H, H-2, H-3, H-5); 6a 5.76 (d, J = 5.6 Hz, 1H, H-1), 5.03 (dd, J = 9.6 Hz and 6.0 Hz, 1H, H-2); **6b** 6.25 (d, J = 4.0 Hz, 1H, H-1), 3.96–3.89 (m, 3H, H-2, H-5, H-6b); 7a 5.34 (t, J = 10.0 Hz, 1H, H-2), 4.55 (d, J=10.4 Hz, 1H, H-1); 7b 6.36 (d, J=4.0 Hz, 1H, H-1), 4.00-3.91 (m, 3H, H-2, H-5, H-5'); 8a 5.07 (t, J=9.6 Hz, 1H, H-2), 4.40 (d, J=9.6 Hz, 1H, H-1); **8b** 6.11 (d, J=4.0 Hz, 1H, H-1), 3.82-3.68 (m, 3H, H-2, H-4, H-6b); 9a 5.58 (dd, J = 10.0 Hz and 8.0 Hz, 1H, H-2), 4.86 (d, J = 10.0 Hz,1H, H-1); **9b** 6.46 (d, J = 3.6 Hz, 1H, H-1), 4.02 (dd, J = 9.2Hz and 4.0 Hz, 1H, H-2); **10a** 4.99 (t, J=10.0 Hz, 1H, H-2), 4.48 (d, J=10.0 Hz, 1H, H-1); 10b 5.40 (d, J=3.2 Hz, 1H, H-1), 4.84 (dd, J = 10.0 Hz and 3.2 Hz, 1H, H-2); 10c 6.21 (d, J=4.0 Hz, 1H, H-1), 3.87 (dd, J=10.0 Hz and 4.0 Hz,1H, H-2); **11a** 5.39 (t, J = 9.6 Hz, 1H, H-2), 4.68 (d, J = 10.0Hz, 1H, H-1); **11b** 5.65 (d, J = 3.6 Hz, 1H, H-1), 5.24–5.15

(m, 4H, H-3', H-4, H-4', H-2); **12a** 4.99 (t, J = 10.0 Hz, 1H, H-2), 4.25 (d, J = 10.0 Hz, 1H, H-1); **12b** 5.40 (d, J = 3.2Hz, 1H, H-1), 4.69–4.62 (m, 2H, H-6a, H-2); **12c** 6.07 (d, J = 3.6 Hz, 1H, H-1), 3.77 (dd, J = 9.6 Hz and 4.0 Hz, 1H, H-2); **13a** 5.33 (dd, J = 9.2 Hz and 8.0 Hz, 1H, H-2), 4.84 (d, J = 8.0 Hz, 1H, H-1); **13b** 5.41 (d, J = 3.6 Hz, 1H, H-1); 4.79 (dd, J = 10.0 Hz and 3.6 Hz, 1H, H-2).

14. Complete spectral data for selected compounds: 6a ¹H NMR δ 8.01–7.40 (m, 15H), 5.76 (d, J = 5.6 Hz, 1H, H-1), 5.69 (s, 1H), 5.34 (s, 1H), 5.33 (t, J = 7.2 Hz, 1H, H-2'), 5.16(d, J=7.2 Hz, 1H, H-1'), 5.03 (dd, J=9.6 Hz and 6.0 Hz,1H, H-2), 4.46–4.36 (m, 4H), 4.25–4.20 (m, 2H), 4.03 (dd, J=8.3 Hz and 7.4 Hz, 1H, H-3'), 3.93 (t, J=9.6 Hz, 1H), 3.87-3.81 (m, 3H), 3.56 (m, 1H), 2.63 (m, 2H, CH₂), 2.16 (s, 3H), 2.02–1.98 (m, 2H), 1.34 (t, J=7.6 Hz, 3H), 1.30 (s, 3H), 1.29 (s, 3H), 0.85 (s, 9H), 0.06 (s, 3H), 0.00 (s, 3H); ¹³C NMR δ 176.3, 171.2, 165.2, 137.4, 137.4, 133.3, 130.1, 130.0, 129.5, 129.1, 128.6, 128.5, 128.3, 126.5, 126.4, 102.0, 101.6, 99.5, 82.3, 81.3, 79.8, 75.7, 74.1, 73.8, 73.3, 68.9, 66.3, 62.9, 61.6, 40.9, 38.1, 25.8, 25.2, 25.2, 24.4, 21.3, 18.1, 15.0, -4.05, -4.76; **6b** ¹H NMR δ 8.21–7.41 (m, 15H), 6.25 (d, J=4.0 Hz, 1H, H-1), 5.72 (s, 1H), 5.67 (s, 1H), 5.43 (dd, J = 8.8 Hz and 8.0 Hz, 1H, H-2'), 5.12 (d, J = 8.0 Hz, 1H, H-1'), 4.44–4.36 (m, 2H), 4.24–4.01 (m, 4H), 3.96–3.89 (m, 3H, H-2, H-5, H-6b), 3.88–3.77 (m, 3H), 3.58 (m, 1H), 2.12 (s, 3H), 1.98–1.84 (m, 2H), 1.18 (s, 3H), 1.13 (s, 3H), 0.81 (s, 9H), 0.09 (s, 3H), 0.00 (s, 3H); 13 C NMR δ 180.3, 176.1, 171.2, 142.0, 138.3, 134.8, 134.7, 134.2, 134.1, 133.5, 133.3, 133.2, 131.3, 130.8, 107.5, 106.8, 106.2, 96.3, 86.2, 85.4, 84.9, 81.2, 77.8, 75.5, 73.7, 73.6, 71.5, 69.9, 66.1, 45.9, 43.1, 30.5, 30.3, 29.7, 25.9, 22.9, 0.82, 0.00; **13a** ¹H NMR δ 7.96–7.15 (m, 25H), 5.58 (t, J = 9.2 Hz, 1H, H-3'), 5.53 (t, J = 9.2 Hz, 1H, H-4'), 5.33 (dd, J=9.2 Hz and 8.0 Hz, 1H, H-2'), 5.12 (t, J=9.6 Hz, 2H, H-2, H-3''), 5.00 (t, J=9.6 Hz, 1H, H-4''),4.92 (dd, J=9.2 Hz and 8.0 Hz, 1H, H-2"), 4.84 (d, J=8.0 Hz, 1H, H-1'), 4.83 (t, J = 9.6 Hz, 1H, H-4), 4.56 (dd, J = 12.4Hz and 3.2 Hz, 1H), 4.59 (d, J=8.0 Hz, 1H, H-1"), 4.43 (dd, J=12.4 Hz and 5.2 Hz, 1H), 4.33 (d, J=10.0 Hz, 1H, H-1), 4.21 (dd, J=12.4 Hz and 4.4 Hz, 1H), 4.13–3.99 (m, 3H), 3.83-3.47 (m, 3H), 2.58-2.46 (m, 2H), 2.00 (s, 3H), 1.98 (s, 3H), 1.95 (s, 3H), 1.93 (s, 3H), 1.92 (s, 3H), 1.06 (t, J = 7.6 Hz, 3H); ¹³C NMR δ 170.9, 170.4, 169.9, 169.7, 169.7, 166.3, 165.9, 165.3, 165.2, 164.6, 133.7, 133.5, 133.1, 130.0, 129.9, 129.8, 129.6, 129.4, 129.3, 128.8, 128.7, 128.6, 128.5, 128.3, 101.3, 101.0, 83.5, 80.0, 77.9, 73.1, 73.0, 72.1, 72.0, 72.0, 71.9, 71.3, 69.8, 69.2, 69.0, 68.5, 63.3, 62.0, 24.0, 21.0, 20.9, 20.9, 20.8, 15.0; **13b** ¹H NMR δ 7.99–6.94 (m, 25H), 5.70 (t, J=9.6 Hz, 1H, H-3'), 5.61 (t, J=9.6 Hz, 1H, H-4'), 5.49–5.38 (m, 2H, H-1, H-2'), 5.14 (t, J=9.6 Hz, 1H, H-3"), 5.05 (d, J=8.0 Hz, 1H, H-1'), 5.01 (t, J=9.6 Hz, 1H, H-4"), 4.91–4.78 (m, 3H, H-2", H-4, H-2), 4.59 (dd, J = 12.0 Hz and 2.8 Hz, 1H, 4.48 (d, J = 8.0 Hz, 1H, H-1''), 4.45-4.38 (m, 2H), 4.18-4.03 (m, 4H), 3.81-3.78 (m, 1H), 3.64-3.60 (m, 1H), 3.51-3.47 (m, 1H), 2.00 (s, 3H), 1.98 (s, 3H), 1.95 (s, 3H), 1.93 (s, 3H), 1.90 (s, 3H); ¹³C NMR δ 171.1, 170.5, 170.3, 170.0, 169.7, 166.4, 165.9, 165.3, 165.3, 165.1, 133.8, 133.7, 133.6, 133.4, 133.0, 130.0, 130.0, 129.9, 129.8, 129.6, 129.5, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 101.8, 101.5, 89.9, 76.3, 74.2, 73.2, 72.7, 72.2, 72.1, 71.9, 71.5, 69.7, 69.7, 68.8, 68.6, 68.3, 63.3, 61.8, 29.8, 21.0, 20.9, 20.9, 20.8.