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a b s t r a c t

An open reading frame (XylX) with 1131 nucleotides from Paenibacillus campinasensis BL11 was cloned
and expressed in E. coli. It encodes a family 11 endoxylanase, designated as XylX, of 41 kDa. The homol-
ogy of the amino acid sequence deduced from XylX is only 73% identical to the next closest sequence.
XylX contains a family 11 catalytic domain of the glycoside hydrolase and a family 6 cellulose-binding
module. The recombinant xylanase was fused to a His-tag for affinity purification. The XylX activity was
2392 IU/mg, with a Km of 6.78 mg/ml and a Vmax of 4953 mol/min/mg under optimal conditions (pH 7,

◦ ◦ ◦

loning
aenibacillus
aenibacillus campinasensis
hermostability
ylanase

60 C). At pH 11, 60 C, the activity was still as high as 517 IU/mg. Xylanase activities at 60 C under pH
5 to pH 9 remained at more than 69.4% of the initial activity level for 8 h. The addition of Hg2+ at 5 mM
almost completely inhibited xylanase activity, whereas the addition of tris-(2-carboxyethyl)-phosphine
(TCEP) and 2-mercaptoethanol stimulated xylanase activity. No relative activities for Avicel, CMC and d-
(+)-cellobiose were found. Xylotriose constitutes the majority of the hydrolyzed products from oat spelt
and birchwood xylan. Broad pH and temperature stability shows its application potentials for biomass

/pap
conversion, food and pulp

. Introduction

Xylan is the second most common hemicellulose found in plant
ell walls after cellulose. The xylans are complex heteropolysac-
harides consisting of a backbone chain of 1,4-�-d-xylopyranose
nits with a variety of side linkages, including acetyl groups, arabi-
ofuranose, ferulic acid, methyl glucuronic acid, and others [1–3].
everal enzymes are involved in the breakdown of xylan. Endo-1,4-
-xylanases (E.C.3.2.1.8) depolymerize xylan by random hydrolysis
f the xylan backbone, whereas 1,4-�-d-xylosidases (E.C.3.2.1.37)
emove successive d-xylose residues from the non-reducing end

roup. There are also several specific hydrolases that are able to
elease the aforementioned side-groups presented in xylan [4].

The potential uses of microbial xylolytic enzymes have garnered
ignificant attention. Recently, there has been much industrial
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interest in using xylan and its hydrolytic enzymatic complex [4,5] as
a supplement in animal feed; for the manufacture of bread, food and
drinks; in textiles; and in ethanol and xylitol production, especially
for pulp and paper processing [4–6].

Diverse microbes have been explored as invaluable xylanase
resources, e.g., Alicyclobacillus sp. [7], Arthrobacter sp. MTCC 5214
[8], Bacillus coagulans [9], Bacillus pumilus [10], and Neocallimas-
tix patriciarum [11]. Xylanases from thermophilic organisms have
received the most attention due to their greater application poten-
tial rendered by their enhanced stability in wide temperature and
pH ranges [6,12,13].

Paenibacillus species are capable of hydrolyzing plant materials
and are currently isolated and identified from soil- and plant-
related sources [14–17]. Several members of the genus Paenibacillus
secrete diverse assortments of extracellular polysaccharide-
hydrolyzing enzymes, and their xylanolytic systems are gradually
being identified [18–22].

The Paenibacillus campinasensis BL-11 strain was identified and

isolated from a high temperature and alkaline environment [23]. It
is able to produce xylanase, cellulase, pectinase and cyclodextrin
glucanotransferase [23]. In this work, gene cloning and expression
of a xylanase (denoted as XylX) from P. campinasensis BL11 was
conducted. However, the characterization of a purified xylanase

dx.doi.org/10.1016/j.procbio.2010.06.015
http://www.sciencedirect.com/science/journal/13595113
http://www.elsevier.com/locate/procbio
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rom P. campinasensis BL11 has not yet been reported. A 6× histidine
ag was fused to the recombinant XylX to facilitate its purification
y affinity chromatography.

. Materials and methods

.1. Materials, bacterial strains and plasmids

All chemicals used were either from Sigma (St. Louis, USA) or of analytical
rade from E. Merck (Darmstadt, Germany), unless specified otherwise. Bacteria
ere routinely cultured in Luria–Bertani (LB) medium. LB medium contained 10 g/L
acto-tryptone, 5 g/L yeast extract, and 5 g/L NaCl. P. campinasensis BL11 was isolated

rom a high temperature, alkaline environment and then phylogenically identified
23]. The vector pBCKS(+) was from Stratagene (La Jolla, CA). Vector pET25b and
. coli HMS174 (DE3) were from Novagen (Madison, WI). The PCR primers were
ynthesized by Bio Basic, Inc. (Markham, Ontario, Canada).

.2. DNA isolation, genomic library construction and screening

Genomic DNA of P. compinasensis BL11 was isolated [24]. Sau3AI-digested 3-
o 5-kb fragment pools were recovered and cloned into the BamHI-digested vector
BCKS(+). Ligated DNA was used to transform E. coli NM 522 cells. Transformants
ble to degrade oat spelt xylan were identified by the Congo red assay [25].

.3. DNA sequencing and protein analysis

The nucleotide sequences of both strands were determined by FS DNA poly-
erase fluorescent dye terminator reactions. Sequencing products were detected

sing an Applied Biosystems 377 stretch automated sequencer (Applied Biosys-
ems, Foster City, CA, USA). Nucleotide and deduced amino acid sequences
ere analyzed with the sequence analysis tools of EMBL Computational Services

http://www.ebi.ac.uk/Tools/sequence.html). Related sequences were obtained
rom database searches (SwissPort, PIR, PRF, and GenBank) using the programs
LASTP 2.0 and FASTA. The XylX sequence determined in the present study has
een deposited in the GenBank database under accession No. DQ241676.

Potential proteins encoded by the BL11 xylanase gene were analyzed using var-
ous software programs. The predicted signal peptides and their cleavage sites were
nalyzed using the NN (neural networks) and HMM (hidden Markov models) meth-
ds. Conserved domains were searched using InterProScan (EMBL-EBI) and PSI-CD
NCBI). Finally, multiple alignments of the deduced amino acid sequence of XylX
ith its related xylanases were performed using ClustalW (EMBL-EBI).

.4. Construction of a xylanase expression system

For gene expression in E. coli, a pET25b expression system (Novagen,
adison, WI) was used. The DNA fragment containing the xylanase-encoding

equence was amplified from one of the correct xylanase-positive pBCKS(+) clones
ith primers xylX-F (5′-CTAGCCAGCATATGA AAATCTATGGGA-3′) and xylX-R (5′-
GAATTCACCGGATCTCGAGATAGTCA-3′). The underlined sequences are the NdeI

xylX-F), EcoRI and XhoI (xylX-R) sites, respectively. The 1.1-kb PCR-amplified prod-
ct was subjected to digestion with NdeI and XhoI. The fragments were ligated
etween the NdeI and XhoI sites of pET25b, resulting in the plasmid pETBX. Plasmid
ETBX was then used to transform E. coli strain HMS174 (DE3).

.5. Expression and purification of cloned xylanase

One colony of the expression strain was inoculated into 2 mL of Luria–Bertani
edium containing 100 �g of ampicillin/mL and allowed to grow overnight at 37 ◦C

n a rotary shaker. The overnight culture was then transferred to 30 mL of the same
edium and grown to an A600 of 0.4–0.5. Protein production was induced by the

ddition of IPTG (isopropyl-�-d-thio-galactopyranoside) to a final concentration
f 1 mM and grown for an additional 3, 6 and 12 h at 28 ◦C, after which the cells
ere harvested by centrifugation, washed and disrupted by sonication in 50 mM

BS (sodium phosphate). A clear lysate from the extracts was loaded on a Ni-NTA
garose (Novagen, Madison, WI) column. The resulting protein was then eluted by
ddition of 200 �L elution buffer (300 mM sodium chloride, 50 mM sodium phos-
hate, 50 mM imidazole, pH 7.0). The protein concentration was analyzed by the
radford assay using a spectrophotometer.

.6. SDS-PAGE and zymogram
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was
erformed with a 10% polyacrylamide gel [26]. Proteins were fixed in the gels by
oaking in a solution containing 40% (v/v) methanol and 10% (v/v) acetic acid for
pproximately 1 h and subsequently visualized by Coomassie blue staining. Zymo-
raphic detection of xylanase activity was carried out by modifying the protocol of
lanco et al. [27].
stry 45 (2010) 1638–1644 1639

2.7. Effects of pH and temperature on xylanase activity and stability

His-tagged XylX was used in the remainder of this study for characterization
and application. The effect of pH and temperature on xylanase activity was studied
in the presence of different buffers for 20 min under various conditions. The buffers
used were 100 mM acetate buffer (pH 5–6), 100 mM phosphate buffer (pH 6–8) and
25 mM borate buffer (pH 8–11).

All of the xylanase assays were carried out by the protocols described by König
et al. [28]. A concentration of 1.5% (w/v) oat spelt xylan (Sigma) was used as the
substrate, and it was reacted with the xylanase solution at various pH and temper-
ature values for 20 min. The amount of released sugar was then determined by the
dinitrosalicylic acid (DNSA) method [28].

The effects of temperature and pH on xylanase stability were assessed by incu-
bating the reaction mixtures from 5 min up to 8 h at different temperatures ranging
from 40 to 80 ◦C at pH 7 and at pH values ranging from 4 to 11 at 60 ◦C. The residual
activity of each sample was then quantified by the DNSA method at pH 7, 60 ◦C.

2.8. Effect of additives on xylanase activity

The effect of various additives on XylX xylanase activity was determined by
the presence of metal ions and other reagents. The additives used in this study
were CaCl2, CoCl2, HgCl2, MnCl2, KCl, MgCl2, FeCl2, FeCl3, SrCl2, ZnCl2, CuSO4,
NiCl2, PbCl2, EDTA, tris-(2-carboxyethyl)-phosphine (TCEP), N-bromosuccinimide,
2-mercaptoethanol, Tween 20, Tritone X-100 and SDS at various concentrations.
The reaction mixtures containing the various additives were incubated for 60 min
at 60 ◦C, and the xylanase activity was assayed by the DNSA method. The presented
values are the averages of triplicate assays.

2.9. Substrate specificity

To identify the substrate specificity of XylX under optimal conditions, substrates
including cellobiose, laminarin, barley �-glucan, oat spelt xylan, birchwood xylan,
laminarin, p-nitrophenyl-xylopyranoside and Avicel (Fluka) were employed at 1%
(w/v) in an enzyme assay. The enzyme assays were run for 120 min under optimal
conditions, and the enzyme activities were determined by measuring the generated
reduced sugar using the DNSA method.

2.10. Kinetic parameters

Reactions were conducted at the optimal condition, pH 7 and 60 ◦C, using
5–40 mg/mL oat spelt xylan solutions. Double reciprocal Lineweaver–Burk plots
for xylanase activity versus substrate concentration were constructed to estimate
kinetic parameters (Km and Vmax) by linear regression.

2.11. Xylan hydrolysis and product analysis

A concentration of 10 mg/mL of oat spelt xylan and birchwood xylan were
reacted with 10 IU/mL XylX solution in 100 mM phosphate buffer at pH 7 and 50 ◦C.
Hydrolyzed products were analyzed by a HPLC system equipped with a RI detec-
tor (Jasco RI-930, Tokyo, Japan). A 250 mm × 4.6 mm Asahipak NH2P-50 4E column
(Showa Denko, Tokyo, Japan) was employed. The mobile phase consisted of acetoni-
trile and distilled water (70/30) with a flow rate of 1 mL/min at room temperature.
Xylo-oligomer standards (X2–X5) from Megazyme (Wicklow, Ireland) and xylose
were used for system calibration.

3. Results and discussion

3.1. Isolation of xylanolytic clones

Genomic DNA of P. compinasensis BL11 was partially digested
with Sau3A, recovered from the agrose gel, and ligated to
BamHI-digested vector pBCKS(+). Recombinant plasmids were
transformed into E. coli NM522 cells. Positive clones, presenting
clear zones around colonies and suggesting xylan hydrolysis, were
obtained. Harvested cells of the clone were subjected to zymo-
graphic analysis, and the results are shown in Fig. 1. The exhibited
extracellular xylanase activity bands of about 41 kDa coincide per-
fectly with our former description [23].
3.2. DNA sequence analysis of the xylanase gene, XylX

The DNA fragments harboring xylanolytic activity were verified
by restriction mapping, subcloning in pUC19 and sequencing.
The determined fragments matched the complete nucleotide

http://www.ebi.ac.uk/Tools/sequence.html
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Fig. 1. The E. coli clones harboring plasmids containing xylanase genes exhibited
xylanase activity. Lane M, molecular mass markers; lanes 1, 2 and 3, crude enzyme
extract of 3 individual clones. Molecular weights of markers (left) and xylanase
(
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Table 1
Similarity of other xylanases in the databases based on the XylX amino acid
sequence.

Strain Similarity (%) Amino acid
differences/compared

Bacillus sp. YA-335 76 83/360
Paenibacillus
curdlanolyticus

71 108/379

Bacillus pumilus 69 69/226
Bacillus sp. HBP8 67 74/225
Bacillus pumilus ATCC 7061 66 81/241
Clostridium papyrosolvens
DSM 2782

65 80/233

Dictyoglomus turgidum
DSM 6724

60 133/340

Dictyoglomus thermophilum
H-6-12

56 148/340

Dictyoglomus thermophilum 55 151/340
Anaerocellum thermophilum
DSM 6725

54 167/365

Caldicellulosiruptor sp. 53 170/362

Compared to temperatures at or below 60 ◦C, the activity also
decreased above 65 ◦C. However, minimal xylanase activity was
right) are denoted next to the respective band.

equences. One open reading frame (ORF) of 1131 bp, desig-
ated XylX (DQ241676), was identified to code for a polypeptide
f 377 amino acids with a molecular mass of about 41 kDa.
his ORF was translated to protein and analyzed in silico for
ts promoter, ribosome-binding site, signal peptide and func-
ional domains. About 200 bp upstream of this ORF, there
ere two predicted promoters (sequence: tgaatttttcaaggtat-

accttaattttgataatggaataataaggcaa from the 45th to 90th base;
equence: tgataatggaataataaggcaaattttgataaattactaattgtaatcgc
rom the 73rd to 118th base) that might modulate the expression of
ylX.

The deduced amino acid sequence of XylX is shown in the
pper part of Fig. 2. The results suggest that the first 39 amino
cids constitute a signal peptide (lower part in the schematics
f Fig. 2). The signal peptidase cutting site was located between
he 39th and the 40th residues and possessed a typical AXA

otif for signal peptidase I. The full molecular mass of the 377-
mino acid protein was predicted to be about 41 kDa, which
orresponded to the results obtained by SDS-PAGE shown in
ig. 1.

Two functional domains were found in the enzyme, as shown in
he schematic shown in Fig. 2: a catalytic domain (glycosyl hydro-
ases domain, family 11) located between 49 and 235 aa (amino
cid) and a unique carbohydrate-binding domain (carbohydrate-
inding module, family 6) located between 263 and 377 aa.

When comparing the amino acid sequence of XylX to those
f other xylanases, the highest similarity scores were only 76%
o Bacillus sp. YA-335 and 71% to Paenibacillus curdlanolyticus, as
hown in Table 1. These results suggest that the cloned xylanase is
new xylanase. The difference in homology between xylanases of

. compinasensis BL11 and Xyn11A of P. curdlanolyticus B-6 was also
erified in a recent study [22].
Rt69B.1
Clostridium thermocellum 52 155/325

3.3. Cloning, over-expression and purification of recombinant
xylanase

The positive construct was confirmed and selected for PCR and
sequencing analysis. A Ni-NTA histidine-binding resin was used for
purification of the His-tagged recombinant XylX. The cell lysate
and eluted fractions were analyzed by SDS-PAGE, as shown in
Fig. 3. Under the induction of 1 mM IPTG at 28 ◦C, the yield of
purified recombinant XylX demonstrated a minor portion of the
total soluble protein, shown as the supernatant in the third lane of
Fig. 3. Recombinant enzymes formed inclusion bodies, as shown in
the fourth lane corresponding to the pellet. The soluble recombi-
nant enzyme was effectively eluted from the column with 50 mM
imidazole (lane E50) by loading the sample in the presence of
20 mM imidazole, shown in lane NB and lane W20. In a one-step
purification, the majority of the induced recombinant enzyme was
recovered, and a very high purity was demonstrated in lane E50 in
Fig. 3. Purity was also verified by the observation that no further
protein was eluted by 100 mM imidazole, as shown in the last lane
(E100) in Fig. 3.

3.4. Effect of temperature and pH on xylanase activity

The activities of recombinant XylX at various pH and tempera-
ture values were measured using oat spelt xylan as the substrate.
The reaction pH values were 4.0–11.0, and the temperature ranged
from 40 to 75 ◦C. The purified XylX showed enzymatic activity over
broad pH and temperature ranges, as shown in Fig. 4. The enzyme
functioned reasonably well between 45 and 65 ◦C in the pH range of
5–9 (>60% activity). The activity optima were pH 7.0 and 60 ◦C, with
the activity reaching 2392 IU/mg. The temperature and pH optima
are rather consistent with those of xylanase isolated from all Bacil-
lus spp. reviewed by Sá-Pereira et al. [29]. The optimal activity of
XylX is higher than the values of xylanases from all Bacillus spp.
[29] and of xylanases from the recently reported Paenibacillus sp.
[20] and Alicyclobacillus sp. [7].

The activity of the enzyme decreased dramatically when the
reaction was performed at pH 5. In contrast to acidic conditions,
xylanase activity diminished gradually between pH 7 and pH 11.
observed at 78.7 IU/mg under very strict conditions of pH 11 and
75 ◦C.
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ig. 2. Alignment of predicted amino acid sequences of the XylX xylanase (top). Sc
ndicated in the center. Cutting sites for restriction enzymes of the ORF are shown a

.5. Effect of temperature and pH on xylanase stability

The effect of temperature on recombinant XylX stability was
nvestigated from 40 to 80 ◦C at pH 7 and is shown in the upper part
f Fig. 5. Xylanase activity at pH 7 from 40 to 60 ◦C remained at more
han 88.6% of its initial level for 8 h. At 70 and 80 ◦C, the retained
ctivity of xylanase was around 11 and 8% of its initial level after
h, respectively. The projected half-lives of XylX xylanase activity
rom 40 to 60 ◦C are greater than those of most bacterial xylanases
eviewed [30] and of the recently published Alicyclobacillus sp. A4
7] and Paenibacillus sp. DG-22 xylanases [20]. Even at 70 and 80 ◦C,
he interpolated half-lives were 120 and 50 min, respectively. XylX

ig. 3. XylX xylanase purification. M: marker; NI: non-induced; I: induced; S: super-
atant; P: pellet; NB: non-binding protein; W20: washed by 20 mM imidazole;
50: eluted by 50 mM imidazole; E100: subsequently eluted by 100 mM imidazole.
olecular weights of markers (left) and xylanase (right) are denoted next to the

espective band.
tic representation of the different domains and connecting sequences of XylX are
bottom.

xylanase was more sensitive to metals than was the Alicyclobacillus
sp. A4 xylanase.

The effect of pH on recombinant XylX stability was investigated
from pH 4 to 11 at 60 ◦C and is shown in the lower part of Fig. 5. At
the 8th hour, retained xylanase activity at 60 ◦C between pH 5 and
pH 9 was more than 69.4% of the initial level. The enzyme stability
at pH 9 was comparable to that of a 43-kDa xylanase from Bacillus
halodurans S7 [31]. At pH 10 and 60 ◦C, the interpolated half-life
of XylX was approximately 45 min, which is less than that value
(3.5 h) of the aforementioned xylanase. Very little activity remained
at both pH 4 and 11 at 60 ◦C. Again, the projected half-lives from
pH 5 to 10 at 60 ◦C were much greater than those of most bacterial
xylanases reviewed [30].

Wide pH adaptability and high thermostability render XylX an

attractive candidate for biomass conversion applications in con-
junction with acid or alkaline pretreatment and for many potential
industrial applications. Stability at alkaline pH and 60–70 ◦C makes
XylX particularly suitable for kraft pulp bleaching pretreatment,

Fig. 4. Xylanase activities of recombinant XylX assayed under the respective pH
values and temperatures.
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Table 2
Effects of various additives on XylX xylanase activity by the presence of metals and
other reagents.

Agent Concentration Residual activity (%)

Control – 100 ± 1.77
Ca2+ 5 mM 88.18 ± 4.14
Co2+ 5 mM 85.30 ± 9.13
Hg2+ 5 mM 2.21 ± 0.77
Mn2+ 5 mM 65.44 ± 3.47
K+ 5 mM 96.39 ± 2.50
Mg2+ 5 mM 98.14 ± 1.21
Fe2+ 5 mM 45.27 ± 2.11
Fe3+ 5 mM 23.21 ± 2.31
Sr2+ 5 mM 85.43 ± 1.70
Zn2+ 5 mM 29.01 ± 1.16
Cu2+ 5 mM 20.29 ± 3.34
Ni2+ 5 mM 70.51 ± 3.19
Pb2+ 5 mM 48.75 ± 2.66
EDTA 5 mM 50.10 ± 3.23
Dithiothreitol 5 mM 67.93 ± 2.29
N-bromosuccinimide 5 mM 0.44 ± 0.03
TCEPa 5 mM 115.09 ± 23.51
TCEPa 0.5 mM 107.15 ± 20.63
2-Mercaptoethanol 0.5% 158.37 ± 10.23
2-Mercaptoethanol 0.05% 131.65 ± 16.20

T
X

ig. 5. Eight-hour stability at pH 7 (A) and at 60 ◦C (B) while assaying under optimal
onditions for the His-tagged XylX xylanase.

ecause the conditions above are within the range of the practical
rebleaching environment [12].

.6. Effect of various additives on xylanase activity

The effects of various additives on XylX xylanase activity due
o the presence of metal ions and other organic reagents are
hown in Table 2. All metal ions used in the present study inhib-
ted XylX xylanase activity to different extents. Mg2+, K+ and Ca2+

lightly inhibited XylX xylanase activities. Cu2+, Fe3+, Zn2+, Fe2+,
b2+ and Mn2+ also led to strong inhibition of XylX xylanase, with
0.29, 23.21, 29.01, 45.27, 48.75 and 65.44% activity remaining,
espectively. XylX xylanase is more sensitive to metals than is Ali-
yclobacillus sp. A4 xylanase [7]. Hg2+ (5 mM) almost completely
nhibited xylanase activity, and this effect might be due to the
resence of the catalytically important cysteine [31]. Increasing
timulations with increasing TCEP and 2-mercaptoethanol are con-
istent with the observations of Sá-Pereira et al. for a Bacillus subtilis
ylanase [32]. TCEP [33] and 2-mercaptoethanol counteract the
xidative effects of S–S linkages from cysteine residues, thereby
tabilizing or even stimulating the xylanase [34]. Complete inhibi-
ion by N-bromosuccinimide, a tryptophan modifier, suggests the
nvolvement of tryptophan residues in the active site of XylX, as
eported for other xylanases [35,36].

.7. Substrate specificity
By conducting a reducing sugar assay with different substrates,
he substrate specificity of the purified XylX was investigated. The
urified xylanase could degrade oat spelt xylan and birchwood
ylan, with 100.00 ± 0.02% and 100.52 ± 0.04% relative activities.
o relative activities for barley �-glucan, laminarin, Avicel, CMC

able 3
ylan hydrolysis products (mg/mL) by XylX.

Reaction time (h) X6 X5

Oat spelt xylan
3 0.405 0.532
6 0.494 0.621
12 0.561 0.700
24 0.622 0.777
48 0.622 0.887
72 0.714 0.973

Birchwood xylan
3 1.498 0.915
6 1.788 0.892
12 1.353 1.472
24 1.149 1.742
48 1.279 1.724
72 1.423 1.739
Tritone X-100 0.25% 91.02 ± 7.78
SDS 0.25% 36.46 ± 0.90

a Tris-(2-carboxyethyl)-phosphine.

and d-(+)-cellobiose were found. Trace relative activity for p-
nitrophenyl-�-d-xylopyranoside was found to be 2.24 ± 0.01%. The
absence of cellulase activity renders XylX an excellent candidate for
pulp bleaching pretreatment [30].

3.8. Kinetic parameters

The kinetic parameters of xylanase were determined from a
Lineweaver–Burk double reciprocal plot of xylanase activity at
60 ◦C, pH 7. The Km of the purified xylanase was 6.78 ± 0.59 mg/mL,
and the Vmax was 4953 ± 73 mol/min/mg. The kinetic parameters
of XylX were higher than the values obtained for all Bacillus spp.
xylanases reviewed by Beg et al. [4], except those from Ther-
momyces sp. and from Thermotoga sp.

3.9. Xylan hydrolysis product analysis

Hydrolysis products of oat spelt xylan and birchwood xylan

by XylX were analyzed by HPLC, and the results are shown in
Table 3. Fig. 6 shows the chromatogram of the hydrolysis prod-
ucts of oat spelt xylan by XylX at the 72nd hour. For oat spelt
xylan, the concentrations of xylobiose (X2), xylotriose (X3), xylotet-
rose (X4), xylopentose (X5), and xylohexose (X6) increased with

X4 X3 X2 X1

0.455 0.437 0.184 0.00
0.562 0.560 0.267 0.00
0.643 0.720 0.416 0.00
0.707 0.858 0.542 0.018
0.714 1.059 0.766 0.023
0.783 1.224 1.042 0.076

1.259 1.389 0.674 0.00
1.325 1.664 0.825 0.00
1.376 2.006 1.105 0.00
1.267 2.103 1.244 0.003
0.970 2.223 1.633 0.020
0.925 2.337 1.688 0.024
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ncreasing hydrolysis time. Xylotriose was the major hydrolytic
roduct of oat spelt xylan, with 1.224 mg/mL produced after 72 h of
ydrolysis. Of the total hydrolysis products, 25.42% were xylotriose.
he late appearance of xylose after the 12th hour correlated with
he observation of trace relative activities for p-nitrophenyl-�-d-
ylopyranoside in Section 3.7. More xylo-oligomers were produced
y XylX hydrolysis from birchwood xylan than from oat spelt xylan,
s shown in Table 3. Xylotriose was also the major hydrolytic
roduct of oat spelt xylan, with 2.337 mg/mL produced after 72 h
f hydrolysis. A total of 28.72% of the hydrolysis products were
ylotriose. The above result demonstrates that XylX is an endo-type
ylanase. It also validates that XylX can be employed to produce
ylo-oligomers, which are increasingly important prebiotic food
dditives.

. Conclusions

A high temperature, alkaline environment is best for isolat-
ng microorganisms and associated enzymes for specific industrial
pplications. This concept is also proposed in a recent study [37].
his is the first report of a 41-kDa xylanase identified from Paeni-
acillus sp. with only 73% homology to the next closest sequence in
CBI database. Wide pH adaptability, high thermostability, specific
ylanase activity and a complete lack of cellulase activity render
ylX an excellent candidate for many potential applications, espe-
ially kraft pulp bleaching pretreatment. The crude xylanase from
aenibacillus sp. BL-11 was already proved successful for applica-
ion in hardwood kraft pulp bleaching pretreatment [38].
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