Received: 31 December 2008,

Revised: 3 April 2009,

Accepted: 10 April 2009,

Published online in Wiley InterScience: 29 June 2009

(www.interscience.wiley.com) DOI 10.1002/poc.1569

Effect of *ortho* substituents on carbonyl carbon ¹³C NMR chemical shifts in substituted phenyl benzoates

Vilve Nummert^a, Mare Piirsalu^a, Vahur Mäemets^a, Signe Vahur^a and Ilmar A. Koppel^a*

¹³C NMR spectra of 37 ortho-, meta-, and para-substituted phenyl benzoates, containing substituents in benzoyl and phenyl moiety, 4 ortho-substituted methyl and 5 ethyl benzoates as well as 9 R-substituted alkyl benzoates have been recorded. The influence of the *ortho* substituents on the carbonyl carbon ¹³C NMR chemical shift, δ_{CO} , was found to be described by a linear multiple regression equation containing the inductive, σ_{ν} , resonance, σ_{R}° , and steric, E_{ν}° , or ν substituent constants. For all the ortho-substituted esters containing substituents in the acyl part as well as the phenyl part, the substituent-induced reverse inductive effect ($\rho_{\rm I}$ < 0), the normal resonance effect ($\rho_{\rm R}$ > 0), and the negative steric effect (δ_{ortho} < 0) with the $E_s^{\rm E}$ were observed. In the case of ortho substituents in the phenyl part, the resonance effect was negligible. Due to inductive effect, the ortho electron-withdrawing substituents showed an upfield shift or shielding of the carbonyl carbon, while the electron-donating substituents had an opposite effect. Because of the sterical consequences, ortho substituents revealed a deshielding effect on the ¹³C NMR chemical shift of the carbonyl carbon. For all the meta- and para-substituted esters, the reverse substituent-induced inductive and resonance effects $(\rho_1 < 0, \rho_R < 0)$ were found to be significant. In alkyl benzoates, the alkyl substituents showed the reverse inductive and steric effects. The log k values for the alkaline hydrolysis in water, aqueous 0.5 M Bu₄NBr and 2.25 M Bu₄NBr, and the IR frequencies, v_{CO} , for the ortho-, meta-, and para-substituted phenyl benzoates and alkyl benzoates were correlated nicely with the corresponding 13 C NMR substituent chemical shifts, $\Delta\delta_{CO}$. Copyright \odot 2009 John Wiley & Sons, Ltd. Supporting information may be found in the online version of this article.

Keywords: carbonyl carbon NMR chemical shifts; NMR spectra of benzoates; *ortho* effect; phenyl benzoates; substituent effects

INTRODUCTION

The influence of substituent effects, especially the *ortho* effect, on the rates of alkaline hydrolysis (as shown in References $^{[1-6]}$ and the references cited therein) and on the infrared stretching frequencies of carbonyl group, $\nu_{\text{COr}}^{[7,8]}$ for esters of benzoic acid containing substituents in the benzoyl and phenyl (alkyl) moiety was addressed in our earlier studies.

It was interesting to study the influence of substituent effects, mainly *ortho* effect, on the carbonyl carbon ¹³C NMR chemical shifts, δ_{CO} , in substituted phenyl benzoates and to compare those with the rates of the alkaline hydrolysis as well as the infrared stretching frequencies of carbonyl group, ν_{CO} , in the case of the corresponding substituted phenyl benzoates.

The main purpose of the present work is to check, how in the case of *ortho* substituents, the carbonyl carbon ¹³C NMR chemical shifts, δ_{CO} , of substituted phenyl benzoates containing substituents in benzoyl and phenyl moiety (X-C₆H₄CO₂C₆H₅, C₆H₅CO₂C₆H₄-X) are influenced by the inductive, resonance, and the steric effects. For comparison the influence of *meta* and *para* substituents as well as alkyl substituents on the ¹³C NMR chemical shift of the carbonyl carbon in substituted phenyl and alkyl benzoates was analyzed as well.

To the best of our knowledge, the influence of *ortho* substituents on the ¹³C NMR chemical shift of the carbonyl carbon in substituted phenyl benzoates using correlation

equations, has not been studied in the literature. The influence of the substituent effects on the carbonyl carbon ^{13}C NMR chemical shifts in substituted phenyl, methyl and ethyl benzoates, and phenyl acetates was investigated more thoroughly for meta and para derivatives. $^{[9-22]}$ In the case of meta- and para-substituted esters, mainly the substituent-induced reverse inductive and resonance effects were observed $(\rho_1 < 0, \ \rho_R < 0)$. $^{[9,11,16,18,19,37]}$ The electron-withdrawing substituents showed shielding leading to a smaller positive charge on the carbonyl carbon. The electron-donating substituents had an opposite effect. In carbonyl compounds, the influence of the substituent-induced resonance effect on the carboxyl carbon ^{13}C NMR chemical shift $(\rho_R < 0, \ \rho_R > 0)$ was found to be dependent on the polarization of the π -electron system in the carbonyl C=O bond. $^{[9,11,19]}$

The influence of the *ortho* effect on the ¹³C NMR chemical shift of the side-chain functional group was studied for substituted methyl benzoates, ^[17,20,21] ethyl benzoates, ^[26] benzoic acids, ^[21,23-25] thiocyanatobenzenes, ^[27] arylacetamides, ^[28-30]

^{*} Correspondence to: I. A. Koppel, Institute of Chemistry, University of Tartu, Jacobi 2, 51014 Tartu, Estonia. E-mail: ilmar.koppel@ut.ee

a V. Nummert, M. Piirsalu, V. Mäemets, S. Vahur, I. A. Koppel Institute of Chemistry, University of Tartu, Jacobi 2, 51014 Tartu, Estonia

acetonitriles, [31] acetophenones, and benzaldehydes. [32–36] Guy [27] obtained excellent correlations for the ¹³C NMR chemical shift in *ortho*-substituted thiocyanatobenzenes with the inductive, resonance, and the steric substituent parameters. The influence of substituents in an alkyl chain on the carbonyl carbon ¹³C NMR chemical shift was studied mainly for the case of esters containing substituents in the acyl part. [37–39]

Earlier (as shown in References [1-6]) we found the log k values for the alkaline hydrolysis of phenyl esters of ortho-substituted benzoic acids, X-C₆H₄CO₂C₆H₅, and substituted phenyl esters of benzoic acid, C₆H₅CO₂C₆H₄-X, to be correlated with the Charton equation using the Taft inductive (σ_I) and resonance (σ°_R) constants, and the steric scale for *ortho* substituents, E_s^B . In the alkaline hydrolysis of substituted benzoates in pure water, the ortho inductive effect and the meta and para polar effect in the acyl part were 1.5-fold and the steric influence was 2.7-fold higher than the corresponding influences in the aryl part of phenyl benzoates. In the alkaline hydrolysis of phenyl esters of ortho-substituted benzoic acids, X-C₆H₄CO₂C₆H₅, in water the resonance term was negligible ((ρ°_{R})_{ortho} ca. 0.3). In the case of phenyl esters of ortho-substituted benzoic acids, X-C₆H₄CO₂C₆H₅, the infrared stretching frequencies of the carbonyl group, v_{CO} for the cis and trans conformers of ortho derivatives appeared to be correlated with dual parameter equations: $(\nu_{CO})_{cis} =$ $(\nu_{CO})_{o} + 16.4\sigma_{l} - 22.6E_{s}^{B}$ and $(\nu_{CO})_{trans} = (\nu_{CO})_{o} + 12.6\sigma_{p}^{+} - 11.9E_{s}^{B}$. [7] Recently, we found $^{[8]}$ good correlations between the $\log k$ values of the alkaline hydrolysis of ortho-substituted phenyl benzoates and the infrared stretching frequencies of the carbonyl group, ν_{CO} , when the additional resonance and steric scales were included.

To study the influence of substituent effects on the carbonyl carbon ^{13}C NMR chemical shifts, the values of the chemical shifts, δ_{CO} , for ortho-, meta-, and para-substituted phenyl benzoates, (X-C₆H₄CO₂C₆H₅,), methyl and ethyl benzoates (X-C₆H₄CO₂CH₃, X-C₆H₄CO₂C₂H₅), phenyl acetates (CH₃CO₂C₆H₄-X), and alkyl benzoates (C₆H₅CO₂R) were submitted to a correlation analysis involving the scales for the corresponding inductive, resonance, and steric factors.

The second purpose of the present work was to compare the substituent effects on the carbonyl carbon ^{13}C NMR chemical shift, δ_{CO} , in substituted phenyl benzoates with those in the rates of the alkaline hydrolysis and the infrared stretching frequencies of carbonyl group, ν_{CO} . For that purpose, the log k values for the alkaline hydrolysis of ortho-, meta-, and para-substituted phenyl benzoates and alkyl benzoates in water, aqueous 0.5 M Bu₄NBr and 2.25 M Bu₄NBr as well as the IR frequencies, ν_{CO} , were correlated with the corresponding carbonyl carbon ^{13}C NMR chemical shift, δ_{CO} .

In the present work, the carbonyl carbon 13 C NMR chemical shifts, δ_{CO} , values for 55 ortho-, meta-, and para-substituted phenyl benzoates, (X-C₆H₄CO₂C₆H₅, C₆H₅CO₂C₆H₄-X), methyl and ethyl benzoates (X-C₆H₄CO₂CH₃, X-C₆H₄CO₂CH₅), and alkyl benzoates (C₆H₅CO₂R) were recorded.

EXPERIMENTAL

NMR measurements

The standard ¹H and proton-decoupled ¹³C NMR spectra were recorded using a Bruker Avance II 200 spectrometer at 4.7T magnetic field at the corresponding resonance frequencies for ¹H 200.13 MHz and for ¹³C 50.33 MHz. For the samples, a

Sigma-Aldrich 99.8 atom% deuterated NMR solvent CDCl₃ containing 1% of TMS as internal reference was used. Samples were prepared at a concentration of 0.1 M solute. Both the chemical shifts (¹H and ¹³C) were referenced to internal TMS. The spin-spin coupling constants (J values) are given in Hz. ¹³C NMR spectra of 55 ortho-, meta-, and para-substituted phenyl benzoates, $X-C_6H_4CO_2C_6H_5$ (X = H, 2-NO₂, 2-CN, 2-F, 2-OCH₃, 2-NH₂, 4-NO₂, 4-F, 4-Cl, 4-Br, 4-CH₃, 4-OCH₃, 4-NH₂, 3-NO₂, 3-Cl, $\mbox{3-CH}_3 \mbox{), } \mbox{C_6H}_5\mbox{CO_2C}_6\mbox{H_4-$X} \mbox{ } (\mbox{$X=2$-$NO}_2, \mbox{ 2-CN}, \mbox{ 2-F}, \mbox{ 2-CI}, \mbox{ 2-I}, \mbox{ 2-CF}_3, \mbox{ 2-CF}_3, \mbox{ 2-CN}_3 \mbox{N_3-$CO}_2\mbox{$N_4$-$X} \mbox{N_4-$X} \mbox{$N_4$-$X$ 2-CH₃, 2-C(CH₃)₃, 2-OCH₃, 2-N(CH₃)₂, 2-CO₂CH₃, 4-NO₂, 4-CN, 4-F, 4-Cl, 4-CH₃, 4-OCH₃, 3-NO₂, 3-Cl, 3-CH₃, 3-NH₂), alkyl benzoates, $C_6H_5CO_2R$ (R = CH_3 , $CH_2C_6H_5$, $CH_2CH_2OCH_3$, CH_2CH_2CI , $CH_2C\equiv CH$, CH₂CF₃, CH₂CHCl₂, CH₂CCl₃, CH₂Cl, CH₂CN), methyl benzoates, $X-C_6H_4CO_2CH_3$ (X = H, 2-Cl, 2-Br, 2-I), and ethyl benzoates, $X-C_6H_4CO_2C_2H_5$, (X = H, 2-NO₂, 2-CN, 2-Cl, 2-CF₃) were recorded (as shown in Table S1). Carbonyl carbon ¹³C NMR chemical shifts, δ_{CO} , for phenyl esters of ortho-, meta-, and para-substituted benzoic acids, X-C₆H₄CO₂C₆H₅, ortho-, meta-, and parasubstituted phenyl esters of benzoic acid, C₆H₅CO₂C₆H₄-X, substituted alkyl benzoates, $C_6H_5CO_2R$, and methyl and ethyl esters of substituted benzoic acids (X-C₆H₄CO₂CH₃, $X-C_6H_4CO_2C_2H_5$) are given in Tables 1–3.

Synthesis of compounds

The preparation procedure and characteristics of ortho-, meta-, and para-substituted phenyl benzoates (X-C₆H₄CO₂C₆H₅, C₆H₅CO₂C₆H₄-X) and alkyl benzoates (C₆H₅CO₂R) have been previously described. [4,40-42] Methyl 2-chlorobenzoate, methyl 2-bromobenzoate, and methyl 2-iodobenzoate were obtained commercially (Aldrich). Benzyl benzoate was obtained from Sigma and ethyl 2-(trifluoromethyl)benzoate was a reagent from ABCR GmbH & Co. Cyanomethyl benzoate, $C_6H_5CO_2CH_2CN$, was prepared from benzoic acid and chloroacetonitrile in the presence of triethylamine. $^{[43,44]}$ The yield was 28.8%, b.p. 163–165 $^{\circ}$ C/15 mm Hg (Reference, $^{[43]}$ 152–154 °C/11 mm Hg). IR ν_{CO} = 1731.8 in DMSO. The 2,2,2-trifluoroethyl benzoate, C₆H₅CO₂CH₂CF₃, was obtained by the treatment of 2,2,2-trifluoroethanol with benzoyl chloride in pyridine. The yield was 38.4%, b.p. 107-109 °C/27 mm Hg (Reference, [45] 84–86 °C/19 mm Hg, Reference, [46] 50–52 °C/4 mm Hg). IR $v_{CO} = 1734.8$ in DMSO. The 2,2,2-trichloroethyl benzoate, C₆H₅CO₂CH₂CCl₃, and 2,2-dichloroethyl benzoate, C₆H₅CO₂CH₂ CHCl₂, were synthesized by the treatment of 2,2,2-trichloroethanol or 2,2-dichloroethanol with benzoyl chloride in pyridine as described for the synthesis of 2,2,2-trifluoroethyl benzoate. 2,2,2-Trichloroethyl benzoate, C₆H₅CO₂CH₂CCl₃; yield 84.0%. IR $v_{CO} = 1732.3$ in DMSO. 2,2-Dichloroethyl benzoate, $C_6H_5CO_2CH_2CHCl_2$; yield 36.5%, b.p. 185 °C/27 mm Hg. IR $v_{CO} = 1726.5$ in DMSO. The 2-CO₂CH₃-phenyl benzoate, C₆H₅ CO₂C₆H₄CO₂CH₃, was prepared from methyl salicylate and benzoyl chloride in pyridine at 0 °C with stirring. A white solid was obtained by recrystallization from ethanol, m.p. 92 °C (Reference, [47] 92 °C). Ethyl 2-nitrobenzoate, 2-NO₂-C₆H₄CO₂CH₂CH₃, was synthesized as previously described. [48] Yield 47.4%, b.p. 179–180 °C/25 mm Hg (Reference, [48] 178–179 °C/23 mm Hg). Ethyl 2-chlorobenzoate, 2-CI-C₆H₄CO₂CH₂CH₃, was prepared as previously described, ^[48] b.p. 143–148 °C/25 mm Hg (Reference, [49] 122–125 °C/15 mm Hg). Ethyl 2-cyanobenzoate, 2-CN-C₆H₄CO₂CH₂CH₃, was synthesized from phthalic acid monoamide and ethanol in pyridine in the presence of *p*-toluenesulfonyl chloride.^[50] A white crystalline solid was purified by recrystallization from benzene-pentane: m.p.62-65 °C (Reference, [50] 64.5–66 °C, Reference, [51] 62–65 °C).

Table 1. The carbonyl carbon 13 C NMR chemical shifts, δ_{CO} (in ppm), in CDCl₃ for phenyl esters of *ortho-*, *meta-*, and *para-*substituted benzoic acids, X-C₆H₄CO₂C₆H₅ and substituted phenyl esters of benzoic acid, C₆H₅CO₂C₆H₄-X

	X-C ₆ H ₄ CO ₂ C ₆ H ₅			C ₆ H ₅ CO ₂ C ₆ H ₄ -X			
Substituent X	ortho derivatives	<i>meta</i> derivatives	<i>para</i> derivatives	<i>ortho</i> derivatives	<i>meta</i> derivatives	<i>para</i> derivatives	
Н	165.04	165.04	165.04	165.04	165.04	165.04	
CH ₃	165.76 ^[4]	165.33	165.16	164.76	165.16	165.31	
OCH ₃	164.38	_	164.81	164.69	_	165.45	
F	162.71	_	164.15	164.18	164.73 ^[7]	165.14	
Cl	164.05 ^[4]	163.93	164.25	164.19	164.71	164.86	
Br	164.54 ^[4]	_	164.44	_	_	_	
1	164.74 ^[4]	_	_	164.03	_	_	
NO ₂	164.03	163.05	163.27	164.32	164.53	164.21	
CN	162.49	_	_	164.01	164.50 ^[7]	164.58	
CF ₃	165.23 ^[4]	_	_	164.52	_	_	
NH ₂	166.77	_	165.18	_	165.14		
N(CH ₃) ₂	_	165.80 ^[7]	_	164.84	_	_	
C(CH ₃) ₃	_	_	165.13 ^[7]	165.40	_	_	
C(O)OCH ₃	_	_	_	165.34	_	_	

Table 2. Carbonyl carbon 13 C NMR chemical shifts, δ_{CO} , (in ppm), in CDCl₃ for alkyl benzoates, $C_6H_5CO_2R$

No.	R	δ_{CO}
1	CH₃	167.03
2	CH ₃ CH ₂	166.55
3	CICH ₂	164.52
4	NCCH ₂	165.00
5	$HC \equiv CCH_2$	165.69
6	$C_6H_5CH_2$	166.26
7	CICH ₂ CH ₂	166.14
8	CH ₃ OCH ₂ CH ₂	166.54
9	F ₃ CCH ₂	165.14
10	Cl₃CCH₂	164.87
11	Cl ₂ HCCH ₂	165.53

Table 3. The carbonyl carbon 13 C NMR chemical shifts, δ_{CO} (in ppm), in CDCl₃ for methyl and ethyl esters of substituted benzoic acids

Х	X-C ₆ H ₄ CO ₂ CH ₃	X-C ₆ H ₄ CO ₂ CH ₂ CH ₃
Н	167.03	166.55
2-NO ₂	_	165.33
2-CN	_	164.11
2-Cl	166.19	165.18
2-Br	166.67	_
2-I	167.0	_
2-CF ₃	_	166.94

DATA PROCESSING AND RESULTS

For the study of the influence of substituent effects on the carbonyl carbon 13 C NMR chemical shift, δ_{CO} , in phenyl esters of substituted benzoic acids, $X-C_6H_4CO_2C_6H_5$, substituted phenyl esters of benzoic acid, $C_6H_5CO_2C_6H_4$ -X, and for alkyl benzoates, $C_6H_5CO_2R$, the corresponding δ_{CO} values measured in the present work (Tables 1–3) were correlated with the following Eqns (1)–(3):

$$(\delta_{\mathsf{CO}})_{\mathsf{m},\mathsf{p}} = (\delta_{\mathsf{CO}})_{\mathsf{H}} + (\rho_{\mathsf{I}})_{\mathsf{m},\mathsf{p}} \sigma_{\mathsf{I}} + (\rho_{\mathsf{R}})_{\mathsf{m},\mathsf{p}} \sigma_{\mathsf{R}}^{\circ} \tag{1}$$

$$(\delta_{\text{CO}})_{\textit{ortho}} = (\delta_{\text{CO}})_{\text{H}} + (\rho_{\text{I}})_{\textit{ortho}} \sigma_{\text{I}} + (\rho_{\text{R}})_{\textit{ortho}} \sigma_{\text{R}}^{\circ} + \delta_{\textit{ortho}} E_{\text{s}}^{\text{B}} \quad \text{(2)}$$

$$(\delta_{CO})_{Alk} = (\delta_{CO})_{H} + (\rho_{I})_{Alk}\sigma_{I} + \delta_{Alk}E_{s}^{B}$$
(3)

Comparison of the measured δ_{CO} values with those of Eqn (1) was performed separately for meta and para derivatives. In the data processing, the Taft inductive $\sigma_{l}^{[52]}$ resonance constants σ_{R}° [53] [$\sigma_{R}^{\circ} = (\sigma_{R}^{\circ})_{p} - \sigma_{I}$], and the steric constants E_{S}^{B} for the *ortho* substituents determined using the kinetic data for the acid hydrolysis of ortho-substituted phenyl benzoates, $C_6H_5CO_2C_6H_4$ -X, $^{[54]}$ were employed. For comparison, the Charton steric scale of $v_i^{[55]}$ calculated on the basis of van der Waal's radii, r_{v_0} was used as well (as shown in Table 4). The steric constants, E_s^B were found to be a nearly linear function of the υ values in the case of monoatomic substituents X = H, F, Cl, Br, and I and $X = CH_3$, CH_2CH_3 , $CH(CH_3)_2$, $C(CH_3)_3$, and CF_3 . [4] The polyatomic substituents (NO₂, NH₂, N(CH₃)₂, CN, OCH₃) deviated from this linearity. Therefore, in correlations for polyatomic ortho substituents, the value of v for the isosterical substituents was used. [4] For the variable alkyl substituent in the alcohol component of esters, C₆H₅CO₂R (Eqn (3)), the steric substituent constants, E_s^B , and the Charton steric scale of v for alkyl substituents R were used (Table S4). The steric substituent constants, E_s^B , were calculated as follows: $E_s^B = (\log k_{H+}^R - \log k_{H+}^{CH3})$, where k_{H+}^R and k_{H+}^{CH3} are the rate constants for acid hydrolysis of R-substituted alkyl benzoate, C₆H₅CO₂R, in water. ^[56] To estimate the values of the steric substituent constants, E_s^B , for $R = CH_2CF_3$, CH_2CCI_3 , CH_2CHCI_2 , and ortho- CO_2CH_3 (Tables S4 and S2), the corresponding second-order rate constants k (dm³ mol $^{-1}$ s $^{-1}$) for alkaline hydrolysis of esters of benzoic acid ($C_6H_5CO_2R$, $C_6H_5CO_2C_6H_4$ -X where X = 2- CO_2CH_3) in aqueous 0.5 M Bu₄NBr at 25 °C were measured in the present work (Table S5).

The results of correlations of the carbonyl carbon ^{13}C NMR chemical shifts, δ_{CO} , for phenyl esters of substituted benzoic acids, X-C₆H₄CO₂C₆H₅, substituted phenyl esters of benzoic acid, $C_6H_5CO_2C_6H_4$ -X, and for alkyl benzoates, $C_6H_5CO_2R$ (Tables 1–3) from Eqns (1) to (3) are listed in Table 4. For comparison, the correlations of the carbonyl carbon 13 C NMR chemical shifts, δ_{CO} , for ortho-, meta-, and para-substituted ethyl benzoates, methyl benzoates, and phenyl acetates based mainly on the δ_{CO} values published in the literature (Table 3 and Table S3) with Eqns (1) and (2) are shown in Table 4 as well. The values of δ_{CO} for non-substituted derivatives, $(\delta_{CO})_{H}$, used in correlations were calculated as arithmetic mean values when the $(\delta_{CO})_H$ values in Tables 1, 3, and S3 were involved. The values of the substituent constants σ_1 and E_s^B for alkyl substituents R used to correlate the data for alkyl benzoates, C₆H₅CO₂R, are given in Table S4 of Supporting Information.

To compare the substituent effects in alkaline hydrolysis and in the infrared stretching frequencies of carbonyl group, $(\nu_{CO})_X$, with those in the carbonyl carbon ^{13}C NMR chemical shifts, δ_{CO_7} in the substituted phenyl benzoates, X-C₆H₄CO₂C₆H₅, C₆H₅CO₂C₆H₄-X, and substituted alkyl benzoates, C₆H₅CO₂R, the following relationships were used:

$$\log k_{\text{m,p,ortho}} = \log k_{\text{H}} + a_{1(\text{m,p,ortho})} (\Delta \delta_{\text{CO}})_{\text{X}} + a_{2(\text{m,p,ortho})} \sigma_{\text{R}}^{\circ} + a_{3(\text{ortho})} E_{\text{s}}^{\text{B}}$$

$$(4)$$

$$(\nu_{\text{CO}})_{\text{m,p,ortho}} = (\nu_{\text{CO}})_{\text{H}} + a_{1(\text{m,p,ortho})} (\Delta \delta_{\text{CO}})_{\text{X}}$$
$$+ a_{2(\text{m,p,ortho})} \sigma_{\text{R}}^{\circ} + a_{3(\text{ortho})} E_{\text{s}}^{\text{B}}$$
(5)

$$\log k_{\text{Alk}}((\nu_{\text{CO}})_{\text{Alk}}) = \log k_{\text{CH}_3}((\nu_{\text{CO}})_{\text{CH}_3}) + a_{1(\text{Alk})}(\Delta \delta_{\text{CO}}) \text{Alk} + a_{3(\text{Alk})} E_{\text{s}}^{\text{B}}$$
(6)

where
$$(\Delta \delta_{CO})_X = (\delta_{CO})_X - (\delta_{CO})_H$$
 and $(\Delta \delta_{CO})_{Alk} = (\delta_{CO})_R - (\delta_{CO})_{CH_3}$

In correlations using Eqns (4) and (6), the log k values for alkaline hydrolysis of phenyl esters of substituted benzoic acids, X-C₆H₄CO₂C₆H₅, substituted phenyl esters of benzoic acid, C₆H₅CO₂C₆H₄-X, and substituted alkyl benzoates in water, 0.5 M Bu₄NBr and 2.25 M Bu₄NBr at 25 °C have been reported previously. [1-5,8,40,56,57] The IR stretching frequencies of the carbonyl group, $\nu_{\rm CO}$, used in correlations with Eqns (5) and (6) were reported earlier. In the case of phenyl esters of ortho-substituted benzoic acids, the $\nu_{\rm CO}$ values for cis conformers estimated by the carbonyl stretching frequencies deconvolution were used. The results of data treatment with Eqns (4)–(6) are listed in Table 5. For the data processing, a multiple-parameter linear least-squares (LLSQ) procedure [58] was used.

DISCUSSION

The carbonyl carbon 13 C NMR chemical shifts, δ_{CO} , for phenyl esters of *meta-*, *para-*, and *ortho-*substituted benzoic acids, $X-C_6H_4CO_2C_6H_5$, listed in Table 1 showed good correlations with

Eqns (1) and (2) (Table 4)

$$\begin{array}{l} (\delta_{\rm CO})_{\rm m} = (165.11 \pm 0.10) - (2.91 \pm 0.22)_{\rm m} \sigma_{\rm l} - (1.64 \pm 0.22)_{\rm m} \sigma_{\rm R}^{\circ} \\ R = 0.992, \ s = 0.126, \ n/n_0 = 6/6 \end{array}$$

(7)

$$(\delta_{\rm CO})_{\rm p} = (165.00 \pm 0.10) - (2.18 \pm 0.20)_{\rm p} \sigma_{\rm l} - (1.00 \pm 0.26)_{\rm p} \sigma_{\rm R}^{\circ}$$

 $R = 0.972, \ s = 0.154, \ n/n_0 = 9/9$

(8)

$$\begin{split} (\delta_{\text{CO}})_{ortho} &= (165.32 \pm 0.22) - (5.08 \pm 0.37)_{ortho} \, \sigma_{\text{I}} \\ &+ (1.58 \pm 0.42)_{ortho} \sigma_{\text{R}}^{\circ} - (4.33 \pm 0.51)_{ortho} E_{\text{s}}^{\text{B}} \quad \text{(9)} \\ R &= 0.978, \ s = 0.257, \ n/n_0 = 11/11 \end{split}$$

The calculated sensitivities of chemical shifts, δ_{CO} , for meta, para, and ortho derivatives toward the substituents inductive effect $(\rho_l)_m$, $(\rho_l)_p$, $(\rho_l)_{ortho}$, resonance $(\rho_R)_m$, $(\rho_R)_p$, $(\rho_R)_{ortho}$, and the steric effect, δ_{ortho} (Table 4) were approximately the same in the case of the δ_{CO} values determined in the present work (Tables 1 and 2); the $\delta_{\rm CO}$ values available in the literature (Table S3) were involved in correlations as well. The data treatment with Eqn (2) gave nearly identical results using two steric scales for the *ortho* substituents: E_s^B and the modified Charton υ constants (Table 4). The sensitivities of the chemical shifts, δ_{CO} , toward the inductive effect, $(\rho_l)_{mr}$, $(\rho_l)_{pr}$, $(\rho_l)_{orthor}$ resonance $(\rho_{\rm R})_{\rm mr}$, $(\rho_{\rm R})_{\rm pr}$, $(\rho_{\rm R})_{orthor}$ and the steric effect δ_{orthor} in methyl and ethyl esters of substituted benzoic acids shown in Table 4 are nearly the same as presented in Eqns (7)–(9) for the phenyl esters of meta-, para-, and ortho-substituted benzoic acids. The contribution of the inductive effect from the para position to the chemical shifts, δ_{CO} , in phenyl esters of substituted benzoic acids found in the present work, $(\rho_l)_p = -2.18$, is slightly weaker than that in Reference [9] ((ρ_F)_p = -2.50). In methyl esters of meta- and para-substituted benzoic acids, the susceptibilities of the chemical shifts, δ_{CO} , toward the inductive effect $(\rho_l)_m = -3.11$, $(\rho_l)_p = -2.41$, and resonance, $(\rho_R)_m = -1.10$, $(
ho_{
m R})_{
m p} = -1.04$, estimated in the present paper (Table 4) agree well with those reported in Reference ^[18] (in Reference $(\rho_{\rm I})_{\rm m} = -3.33$, $(\rho_{\rm R})_{\rm m} = -1.06$, $(\rho_{\rm I})_{\rm p} = -2.43$, and $(\rho_{\rm R})_{\rm p} = -1.12$).

It follows from Table 4 that in substituted phenyl esters of benzoic acid, $C_6H_5CO_2C_6H_4$ -X, containing substituents in phenyl moiety, the influence of *meta*, *para*, and *ortho* substituent effects on the carbonyl carbon chemical shifts, δ_{CO} , could be expressed by the following equations:

$$\begin{array}{l} \left(\delta_{\rm CO}\right)_{\rm m} = & \left(165.13 \pm 0.03\right) - \left(0.95 \pm 0.07\right)_{\rm m} \sigma_{\rm l} - \left(0.22 \pm 0.08\right)_{\rm m} \sigma_{\rm R}^{\circ} \\ R = 0.988, \ s = 0.046, \ n/n_0 = 7/7 \end{array}$$

(10)

$$\begin{array}{l} (\delta_{\rm CO})_{\rm p} = (165.16 \pm 0.02) - (1.10 \pm 0.04)_{\rm p} \, \sigma_{\rm l} - (1.48 \pm 0.06)_{\rm p} \, \sigma_{\rm R}^{\circ} \\ R = 0.994, \; s = 0.053, \; n/n_0 = 25/26 \end{array}$$

(11)

$$(\delta_{CO})_{ortho} = (164.90 \pm 0.07) - (1.56 \pm 0.13)_{ortho} \sigma_{I} + (0.33 \pm 0.14)_{ortho} \sigma_{R}^{\circ} - (0.72 \pm 0.11)_{ortho} E_{s}^{B}$$
 (12)
 $R = 0.978, \ s = 0.103, \ n/n_{0} = 12/13$

In *meta*- and *para*-substituted phenyl esters of benzoic acid, $C_6H_5CO_2C_6H_4$ -X (Eqns (10)–(12)), and acetic acid, $CH_3CO_2C_6H_4$ -X, containing substituents in phenyl moiety, the estimated susceptibilities toward the inductive effect from *meta* and *para* positions are approximately equal to each other $((\rho_l)_m \approx (\rho_l)_p)$. The corresponding calculated $(\rho_l)_m$ and $(\rho_l)_p$ values are -0.95, -1.16 and -1.10, -1.27, respectively (Table 4). At the same time,

٧r.	$\delta_{H(calc)}$	$ ho_{I}$	$ ho_{R}$	δ	R ^a	R_0^b	s ^c	n/n_0^d
		Phenyl este	rs of <i>ortho</i> -substitu	ted benzoic acids,	$^{\rm e}$ $(\delta_{\rm CO})_{\rm H}$ $=$ 16	55.17		
1	$\textbf{165.32} \pm \textbf{0.30}$	-5.00 ± 0.50	$\boldsymbol{1.43 \pm 0.57}$	-4.40 ± 0.70	0.959	0.723	0.347	11/11
2	$\textbf{165.36} \pm \textbf{0.22}$	-5.20 ± 0.36	$\textbf{1.54} \pm \textbf{0.41}$	$\textbf{2.24} \pm \textbf{0.24}$	0.980		0.250	11/11 ^f
3	$\textbf{165.32} \pm \textbf{0.22}$	-5.08 ± 0.37	$\boldsymbol{1.58 \pm 0.42}$	-4.33 ± 0.51	0.978	0.742	0.257	11/11 ⁹
4	165.38 ± 0.19	-5.25 ± 0.37	$\boldsymbol{1.68 \pm 0.36}$	$\textbf{2.15} \pm \textbf{0.21}$	0.984		0.221	11/11 ¹
5	165.35 ± 0.14	-5.02 ± 0.37	$\boldsymbol{1.68 \pm 0.24}$	-4.13 ± 0.33	0.980	0.726	0.217	23/26 ^h
6	$\textbf{165.38} \pm \textbf{0.13}$	-5.25 ± 0.21	$\textbf{1.66} \pm \textbf{0.21}$	$\boldsymbol{2.10 \pm 0.14}$	0.985		0.190	24/26 ^f
		Methyl este	rs of <i>ortho</i> -substitu	ted benzoic acids,	$^{\rm e}$ $(\delta_{\rm CO})_{\rm H}=16$	57.09		
7	167.50 ± 0.19	-4.99 ± 0.30	$\boldsymbol{1.23\pm0.35}$	-3.91 ± 0.46	0.961	0.807	0.312	23/23
8	167.50 ± 0.18	-5.06 ± 0.28	$\boldsymbol{1.33 \pm 0.33}$	-3.92 ± 0.42	0.969		0.287	22/23
9	$\textbf{167.52} \pm \textbf{0.14}$	-5.19 ± 0.22	$\textbf{1.32} \pm \textbf{0.25}$	$\textbf{2.04} \pm \textbf{0.16}$	0.981		0.220	23/23
			s of <i>ortho</i> -substitut					
0	167.14 ± 0.29	-5.37 ± 0.48	1.18 ± 0.56	-4.05 ± 0.69	0.954	0.812	0.394	14/14
1	167.15 ± 0.27	-5.48 ± 0.45	$\textbf{1.31} \pm \textbf{0.53}$	-4.01 ± 0.64	0.963		0.366	13/13 ^l
2	$\textbf{167.17} \pm \textbf{0.23}$	-5.45 ± 0.38	$\textbf{1.22} \pm \textbf{0.44}$	$\textbf{2.04} \pm \textbf{0.26}$	0.971		0.313	14/14 ¹
		Ortho-subs	tituted phenyl este	rs of benzoic acid, ^l	$(\delta_{CO})_{H} = 16$	5.04		
3	164.78 ± 0.14	-1.52 ± 0.26	0	-0.91 ± 0.24	0.906	0.758	0.205	12/12
4	164.86 ± 0.09	-1.47 ± 0.16	0	-0.62 ± 0.20	0.959		0.123	10/10 ^r
5	$\textbf{164.86} \pm \textbf{0.08}$	-1.47 ± 0.15	0	$\textbf{0.31} \pm \textbf{0.09}$	0.960		0.121	10/12 ^f
6	164.90 ± 0.08	-1.57 ± 0.14	$\textbf{0.37} \pm \textbf{0.16}$	-0.83 ± 0.13	0.966	0.761	0.116	12/13°
7	$\textbf{164.88} \pm \textbf{0.08}$	-1.48 ± 0.14	0	$\textbf{0.30} \pm \textbf{0.08}$	0.963		0.121	11/13 ^{fr}
		Ortho-sub:	stituted phenyl est	ers of acetic acid, I	$(\delta_{CO})_{H} = 169$	0.29		
8	169.18 ± 0.07	-1.50 ± 0.11	0.47 ± 0.19	-0.65 ± 0.12	0.968	0.812	0.110	14/14
9	$\textbf{169.16} \pm \textbf{0.07}$	-1.57 ± 0.13	0	$\textbf{0.23} \pm \textbf{0.09}$	0.962		0.117	12/14 ^f
		Phenyl este	ers of <i>para</i> -substitu	ted benzoic acids,	$(\delta_{CO})_{H} = 16$	5.17		
0	165.00 ± 0.10	-2.18 ± 0.20	-1.00 ± 0.26	_	0.972	0.913	0.154	9/9
1	$\textbf{164.99} \pm \textbf{0.05}$	-2.17 ± 0.09	-1.13 ± 0.09	_	0.984	0.893	0.121	35/38
		Methyl est	ers of <i>para</i> -substitu	ted benzoic acids,	$(\delta_{CO})_{H} = 16$	7.09		
2	166.99 ± 0.06	-2.32 ± 0.13	-1.12 ± 0.12	_	0.968	0.896	0.172	42/42
23	$\textbf{167.00} \pm \textbf{0.04}$	-2.41 ± 0.10	-1.04 ± 0.09	_	0.984		0.122	36/42
		Ethyl este	rs of <i>para</i> -substitut	ed benzoic acids, ($(\delta_{CO})_{H} = 166$.59		
4	166.54 ± 0.07	-2.53 ± 0.14	-1.13 ± 0.12	_	0.975	0.884	0.171	33/34
5	$\textbf{166.48} \pm \textbf{0.05}$	-2.50 ± 0.11	-1.24 ± 0.10	_	0.987		0.131	30/34 ^t
		<i>Para</i> -subst	ituted phenyl ester	s of benzoic acid,	$(\delta_{CO})_{H} = 165$	5.17		
6	$\textbf{165.16} \pm \textbf{0.02}$	-1.10 ± 0.04	-1.48 ± 0.06	_	0.994	0.780	0.053	25/26
		Para-subs	tituted phenyl este	ers of acetic acid, ($\delta_{\rm CO})_{\rm H} = 169.$	43		
7	$\textbf{169.44} \pm \textbf{0.04}$	-1.27 ± 0.08	-1.70 ± 0.09	_	0.991	0.714	0.073	17/19 ^v
		Phenyl este	ers of <i>meta</i> -substitu	ited benzoic acids,	$(\delta_{CO})_{H} = 16$	5.17		
8	165.11 ± 0.10	-2.91 ± 0.22	-1.64 ± 0.22	_	0.992	0.887	0.126	6/6 ^x
		Methyl este	ers of <i>meta</i> -substitu	ited benzoic acids,	$(\delta_{CO})_{H} = 16$	7.09		
9	167.16 ± 0.07	-3.11 ± 0.15	-1.10 ± 0.15	_	0.987	0.920	0.138	21/24
0	$\textbf{167.14} \pm \textbf{0.05}$	-3.04 ± 0.12	-1.04 ± 0.11	_	0.992		0.106	19/24 ²
		Ethyl ester	s of <i>meta-</i> substitut	ed benzoic acids,	$(\delta_{CO})_{H} = 166$	5.59		
1	166.60 ± 0.09	-3.21 ± 0.20	-1.23 ± 0.18	_	0.981	0.931	0.185	19/19
32	166.58 ± 0.07	-3.19 ± 0.16	-0.97 ± 0.16	_	0.987		0.146	17/19 ^a
		<i>Meta</i> -subst	ituted phenyl este	rs of benzoic acid.	$(\delta_{CO})_{H} = 16$	5.17		
3	165.13 ± 0.03	-0.95 ± 0.07	-0.22 ± 0.08		0.988	0.974	0.046	7/7
4	165.16 ± 0.03	-0.93 ± 0.07 -0.97 ± 0.05	-0.22 ± 0.06 -0.23 ± 0.07	_	0.986	0.974	0.047	14/14
т	105.10 ± 0.05						0.04/	14/14
5	169.48 ± 0.04	Meta-subs -1.16 ± 0.07	stituted phenyl estence -0.35 ± 0.09	ers of acetic acid, (δ _{CO}) _H = 169 0.991	.43 0.969	0.045	8/8 ^{bb}
,	109.40 ± 0.04	-1.10 ± 0.07	-0.55 ± 0.09	_	0.331	0.909	0.043	
								(Continu

Table	Table 4. (Continued)									
Nr.	$\delta_{H(calc)}$	$ ho_{l}$	$ ho_{R}$	δ	R ^a	R_0^{b}	s ^c	n/n_0^{d}		
		Alkyl subst	ituted este	ers of benzoic acid, (8	$(c_{CO})_{CH_3} = 166.$	9				
36	166.62 ± 0.21	-4.59 ± 0.42	_	-1.39 ± 0.56	0.966	0.956	0.188	15/15 ^{cc}		
37	166.64 ± 0.22	-4.74 ± 0.43	_	-1.51 ± 0.56	0.971	0.955	0.187	14/14 ^{dd}		
38	166.70 ± 0.19	-4.43 ± 0.41	_	1.74 ± 0.75	0.971	0.956	0.195	12/12 ^{ee}		

The δ_{CO} values in Tables 1–3 and Table S3 used.

in substituted phenyl esters of benzoic and acetic acids, the contribution of the resonance effect from *para* position to the carbonyl carbon chemical shifts, δ_{CO} , surpasses that from *meta* position essentially ((ρ_{R})_m << (ρ_{R})_p).

The determined carbonyl carbon 13 C NMR chemical shifts, δ_{COr} in Table 1 show that electron-withdrawing substituents in *meta* and *para* positions, both in the benzoyl and phenyl parts of an ester, cause an upfield shift of the carbonyl carbon resonance indicating increased shielding at the C=O carbon. The electron-donating substituents have an opposite effect showing the downfield shift and deshielding of the carbonyl carbon as compared to the carbonyl carbon in the unsubstituted ester. The negative values of $\rho_{\rm I}$ and $\rho_{\rm R}$ for all the examined *meta*- and *para*-substituted series imply a reverse substituent effect that

operates through the polar and resonance pathways for the electronic effects of substituents. The reverse polar effect has often been explained on the basis of the through-space polarization of the π -system induced by the substituent dipole $^{[9,11,16,19]}$ (localized polarization). Due to π -polarization, the electron-withdrawing substituents shift the π -electrons in the C=O group toward the carbonyl carbon making the carbonyl group less polar with increase in the strength of the C=O bond as compared to the unsubstituted derivative. Lately the influence of the substituent-induced inductive and resonance effects on the carbonyl carbon 13 C NMR chemical shifts in esters $^{[9,16,37]}$ have been explained in terms of the contribution of different resonance structures. $^{[9,16,37]}$ The electron-withdrawing substituents were found to destabilize the resonance structure

^a *R*—correlation coefficient.

 $^{{}^{\}rm b}R_0$ —zeroth correlation coefficient.

^cs—standard deviation.

 $^{^{}d}$ n_{0} reflects the total number of data involved in the correlation; n—the number of points remaining after exclusion of significantly deviating points.

^e For a 2-NH₂ derivative $\sigma_R^\circ = 0$ and for a 2-CH₃ derivative $E_s^B = 0$ and $\sigma_R^\circ = 0$.

^fCharton's modified steric constants, v, were used (Table S2).

 $^{^{\}rm g}$ For 2-Br and 2-I derivatives, the $\delta_{\rm CO}$ values $^{[59]}$ were used.

^h The δ_{CO} values from Tables 1 and S3. The values of δ_{CO} for a 2-Br derivative (Table 1) and 2-OCH₃ derivative^[59] were excluded.

ⁱThe δ_{CO} = 165.1 (Table S3) for the 2-I derivative was excluded.

^j The 2-Br derivative (Table 3) was excluded at the confidence level t = 0.95.

^kThe 2-Br derivative was omitted.

¹ For the 2-CH₃ derivative, $E_s^B = 0$ and $\sigma_1 = 0$. The average value of steric constants, $E_s^B = -0.881$, was used for the 2-CO₂CH₃ substituent. ^m The 2-CO₂CH₃ and 2-I derivatives were omitted.

ⁿ The 2-CO₂CH₃ and 2-I derivatives were excluded at t = 0.97.

 $^{^{\}circ}$ The alternative δ_{CO} value (Table S3) for 2-CH₃ derivative was added.

^pThe 2-I derivative was excluded.

^q The 2-CO₂CH₃ derivative and the alternative δ_{CO} value for 2-NO₂ derivative were excluded at t = 0.95.

^rThe δ_{CO} values (Tables 1 and S3) were included. The 4-NO₂, 4-F, and 4-I derivatives^[59] were excluded at t = 0.97.

^s The 4-NO₂ and 4-N(CH₃)₂ derivatives, ^[60] 4-Cl, 4-Br, 4-OCH₃ derivatives, ^[61] and the 4-I derivative ^[18] were excluded at t = 0.95.

^tThe δ_{CO} = 166.2 (Table S3) for the 4-C(CH₃)₃ derivative was excluded at t = 0.99.

^uThe 4-Cl, 4-COCH₃ and 4-CO₂Et derivatives $^{[62]}$ were excluded at t = 0.97.

^vThe 4-CN derivative (Table 1) was excluded.

 $^{^{\}rm w}$ The 4-C(CH $_3$) $_3$ and 4-CH(CH $_3$) $_2$ derivatives (Table S3) were excluded.

 $^{^{\}rm x}$ The $\delta_{\rm CO}$ value for the 3-OCH₃ derivative (Table S3) was added.

^y For the 3-Cl derivative $\delta_{CO} = 165.5$ and for the 3-l derivative $\delta_{CO} = 165.43$ (Table S3) were excluded at t = 0.99.

^zThe 3-N(CH₃)₂ and 3-Br derivatives^[18] were excluded at t = 0.97.

^{aa} The 3-NH₂ derivative^[22] and 3-N(CH₃)₂ derivative^[19] were excluded at t = 0.95.

 $^{^{\}rm bb}$ The $\delta_{\rm CO}$ value for 3-C(CH₃)₃ was omitted.

^{cc} The δ_{CO} = 166.9^[63] for the derivative R = CH₃ was used. The average values of steric constants, E_s^B = -0.22, -0.43, and -0.27, for F₃CCH₂, Cl₃CCH₂, Cl₂CHCH₂ derivatives, respectively, were used (Table S4). The δ_{CO} values for the derivatives R = CH₂CH₃ and R = CH₂CCl₃ (Table S4) were omitted.

^{dd} The δ_{CO} value for the derivative R = CH₂C₆H₅ (Table 2) was omitted.

^{ee} The Charton steric constants, v, for the alkyl chain R (Table S4) were used. The δ_{CO} value for the derivative R = CH₂Ph (Table 3) was omitted. The δ_{CO} value for derivative R = CH₃ (Table 3) was added.

Table 5. Correlation of the log k values for alkaline hydrolysis and IR streching frequencies of carbonyl group, ν_{CO} , for *ortho-*, *meta-*, and *para-*substituted phenyl benzoates and alkyl benzoates with the carbonyl carbon ¹³C NMR substituent chemical shifts $(\Delta \delta_{CO})_X = (\delta_{CO})_X - (\delta_{CO})_H$ from Eqns (4) to (6)

Medium/IR	$\log k_{\rm H}/(v_{\rm CO})_0$	a_1	a_2	a_3	R	R_0	n
Phenyl esters of orth	no-substituted benzoi	c acids ^{abcd}					
Water	-0.334 ± 0.163	-0.457 ± 0.056	$\textbf{0.92} \pm \textbf{0.32}$	$\textbf{0.99} \pm \textbf{0.41}$	0.960	0.908	11
0.5 M Bu₄NBr	-0.726 ± 0.108	-0.512 ± 0.037	$\textbf{1.53} \pm \textbf{0.21}$	$\textbf{1.23} \pm \textbf{0.27}$	0.987	0.883	11
2.25 M Bu ₄ NBr	-1.058 ± 0.162	-0.591 ± 0.065	2.10 ± 0.31	$\textbf{1.01} \pm \textbf{0.40}$	0.972	0.786	10
IR $(v_{CO})_{ortho}$	1743.5 ± 1.5	-2.90 ± 0.60	$\textbf{8.01} \pm \textbf{3.09}$	-39.1 ± 3.8	0.968	n.c.	9 ^{efg}
	$\textbf{1743.5} \pm \textbf{1.3}$	-2.91 ± 0.54	$\textbf{8.03} \pm \textbf{2.81}$	-39.1 ± 3.4	0.971	n.c.	10 ^{fgh}
Phenyl esters of para	a-substituted benzoio	: acids ^{abi}					
Water	-0.493 ± 0.072	-0.672 ± 0.056	$\boldsymbol{1.25\pm0.12}$	_	0.993	0.829	7
0.5 M Bu ₄ NBr	-0.757 ± 0.080	-0.836 ± 0.062	$\textbf{1.25} \pm \textbf{0.16}$	_	0.992	0.867	6
2.25 M Bu ₄ NBr	-1.180 ± 0.114	-1.119 ± 0.088	$\boldsymbol{1.69 \pm 0.23}$	_	0.991	0.865	6
IR $(\nu_{CO})_{para}$	$\textbf{1741.7} \pm \textbf{0.6}$	-3.29 ± 0.52	7.77 ± 0.84^{j}	_	0.980	0.698	9
•	$\textbf{1742.4} \pm \textbf{0.4}$	-2.81 ± 0.33	$8.41\pm0.52^{\text{j}}$	_	0.994		8 ^k
Phenyl esters of met	a-substituted benzoi	c acids ^{abl}					
Water	-0.451 ± 0.030	-0.550 ± 0.025	0	_	0.997	0.997	4
0.5 M Bu ₄ NBr	-0.696 ± 0.025	-0.704 ± 0.021	0	_	0.999	0.999	4
2.25 M Bu ₄ NBr	-1.176 ± 0.075	-0.917 ± 0.061	0	_	0.993	0.993	4
IR $(v_{CO})_{meta}$	$\textbf{1742.0} \pm \textbf{0.2}$	-3.61 ± 0.18	0	_	0.995	0.995	5
Phenyl esters of met	ta- and <i>para</i> -substitut	ed benzoic acids ^{abl}					
Water	-0.472 ± 0.060	-0.606 ± 0.041	$\textbf{1.25} \pm \textbf{0.11}$	_	0.992	0.852	10
0.5 M Bu₄NBr	-0.723 ± 0.065	-0.763 ± 0.044	$\textbf{1.25} \pm \textbf{0.15}$	_	0.992	0.891	9
2.25 M Bu ₄ NBr	-1.193 ± 0.112	-1.018 ± 0.077	$\boldsymbol{1.57 \pm 0.26}$	_	0.985	0.899	9
Ortho-substituted ph	nenyl esters of benzo	ic acid ^{clmn}					
Water	-0.501 ± 0.114	-0.889 ± 0.098	$\textbf{1.31} \pm \textbf{0.17}$	$\textbf{0.66} \pm \textbf{0.24}$	0.978	0.787	11
0.5 M Bu₄NBr	-0.856 ± 0.126	-0.937 ± 0.108	$\textbf{1.71} \pm \textbf{0.19}$	$\textbf{0.93} \pm \textbf{0.26}$	0.980	0.731	11
2.25 M Bu₄NBr	-1.211 ± 0.158	-1.216 ± 0.136	$\textbf{2.35} \pm \textbf{0.24}$	$\textbf{0.94} \pm \textbf{0.33}$	0.981	0.717	11
IR $(v_{CO})_{ortho}$	1741.3 ± 1.1	-10.63 ± 1.02	$\textbf{4.98} \pm \textbf{1.88}$	-5.50 ± 2.23	0.961	0.915	11°
	$\textbf{1741.9} \pm \textbf{1.0}$	-11.28 ± 0.95	$\textbf{4.60} \pm \textbf{1.67}$	$\mathbf{-6.78} \pm 2.00$	0.969	0.923	11 ^p
Para-substituted phe	enyl esters of benzoic	: acid ^{lmn}					
Water	-0.475 ± 0.050	-1.171 ± 0.070	-0.63 ± 0.15	_	0.994	0.974	7
0.5 M Bu₄NBr	-0.736 ± 0.094	-1.321 ± 0.131	$\mathbf{-0.43} \pm 0.28$	_	0.986	0.982	7
2.25 M Bu ₄ NBr	-1.111 ± 0.080	-2.154 ± 0.119	$\mathbf{-0.77} \pm 0.26$	_	0.993	0.985	9 ^q
IR $(v_{CO})_{para}$	$\textbf{1742.6} \pm \textbf{0.2}$	$\mathbf{-8.30} \pm 0.31$	-4.52 ± 0.62	_	0.998	0.966	6 ^r
Meta-substituted pho	enyl esters of benzoi	c acid ^{lmn}					
Water	-0.446 ± 0.057	-1.139 ± 0.107	$\textbf{0.24} \pm \textbf{0.13}$	_	0.983	0.974	7 ^s
	-0.503 ± 0.049	-1.227 ± 0.114	0	_	0.975		7 ^s
0.5 M Bu₄NBr	-0.808 ± 0.042	-1.435 ± 0.079	$\textbf{0.38} \pm \textbf{0.10}$	_	0.994	0.978	7 ^s
2.25 M Bu₄NBr	-0.973 ± 0.110	-1.988 ± 0.209	$\textbf{0.75} \pm \textbf{0.27}$	_	0.975	0.949	9 ^t
IR $(v_{CO})_{para}$	$\textbf{1741.7} \pm \textbf{0.4}$	-11.3 ± 1.0	0	_	0.977	0.977	7
Alkyl benzoates ^u							
Water	-1.287 ± 0.089	-0.720 ± 0.038	_	$\textbf{0.72} \pm \textbf{0.27}$	0.987	0.967	11 ^v
0.5 M Bu₄NBr	-1.538 ± 0.170	-0.825 ± 0.078	_	1.24 ± 0.49	0.968	0.933	9 ^v
2.25 M Bu ₄ NBr	-1.890 ± 0.131	-0.924 ± 0.060	_	1.03 ± 0.38	0.985	0.956	9 ^v
IR $(v_{CO})_{meta}$	1724.7 ± 2.9	-11.5 ± 1.3	_	18.3 ± 7.0	0.947	0.907	10 ^w
v- co/meta	1726.6 ± 1.8	-11.6 ± 0.8	_	28.8 ± 5.1	0.981	0.507	9 ^v
a Doforos 50 [4]					-		-

^a Reference.^[4]

(Continues)

^b Reference.^[8]

 $^{^{\}rm c}$ The steric constants, $E_{\rm s}^{\rm B\,[4]}$ (Table S2) were used.

^d For 2-NH₂ derivative $\sigma_R^{\circ} = 0$.

^e The 2-I derivative was omitted.

^fThe 2-NH₂ derivative was omitted.

```
<sup>g</sup> For the 2-CH<sub>3</sub> derivative E_s^B = 0 and \sigma_R^\circ = 0.
```

^u The log k values for derivatives (R = CH₂CF₃, CH₂CCl₃, CH₂CHCl₂) in water and 2.25 M Bu₄NBr calculated with the relations: log $k = (-1.315 \pm 0.071) + (3.69 \pm 0.14)\sigma_1 + (0.972 \pm 0.190)E_s^B$, R = 0.995, $s_0 = 0.101$, n = 9; log $k = (-1.956 \pm 0.116) + (4.67 \pm 0.24)\sigma_1 + (1.172 \pm 0.413)E_s^B$, R = 0.995, $s_0 = 0.104$, n = 7, respectively, were added. The average values of steric constants, $E_s^B = -0.22$, -0.43 and -0.27, for F₃CCH₂, Cl₃CCH₂, Cl₂CHCH₂ derivatives, respectively, were used (Table S4). The $E_s^B = -0.41$ for R = CH₂C = CH was used.
^v The CH₂CN derivative was excluded.

^wThe ν_{CO} values for derivatives (R = CH₂CF₃, CH₂CCl₃, CH₂CHCl₂) were calculated with the equation: $\nu_{CO} = (1726.1 \pm 1.5) + (58.4 \pm 3.4)\sigma_1 + (32.6 \pm 4.1)E_s^B$, R = 0.991, $s_0 = 0.138$, n = 8.

 $R_1(C^{\delta+}{-}O^{\delta-})OR_2$ to a great extent. This increases the importance of the less polar structure $R_1(C{=\!\!\!-}O)OR_2$ with an increased shielding of the carbonyl carbon (the upfield ^{13}C NMR chemical shifts). $^{[9,16,37]}$

The contribution of the inductive effect from the *meta* position to the carbonyl carbon chemical shifts, δ_{CO} , surpasses that from the *para* position in phenyl esters as well as in methyl and ethyl esters of substitued benzoic acids i.e., $(\rho_l)_m > (\rho_l)_p$. This could be interpreted in terms of a shorter distance between the substituent and the carbonyl carbon.

Unexpectedly, it appeared (Table 4) that there is no difference between the contributions of resonance effects from meta and para positions to the carbonyl carbon ¹³C NMR chemical shifts, δ_{CO} , in the phenyl, methyl, and ethyl esters of substituted benzoic acids. The corresponding $(\rho_R)_m$ and $(\rho_R)_p$ values are -1.64, -1.10, -1.23 and -1.00, -1.04, -1.23, respectively (Table 4). Contrary to expectation, in substituted phenyl benzoates, the resonance contribution of para substituents to chemical shifts, δ_{CO} , from the phenyl side was found to be stronger (1.4 times) compared to that from the benzoyl side. It was suggested^[9,11] that the resonance effect in the case of para substituents in the benzoyl part could consist of two competitive resonance types. The normal direct resonance effect between the substituent and the carbonyl group for which $\rho_R > 0$ and the substituent-induced reverse resonance effect explained as the resonance induced polar effect ($\rho_{\rm R}$ < 0). [9,11,16,19] In the case of *para* substituents in the benzoyl part, the contribution of the normal direct resonance makes the summary resonance, ρ_R , less negative compared to the $\rho_{\rm R}$ values for the resonance induced polar effect (reverse

In the alkyl part of esters, $C_6H_5CO_2R$, the substituent-induced effect on the carbonyl carbon ^{13}C NMR chemical shifts, δ_{CO} , was

found to be described by the reverse inductive and steric effects as follows (Table 4):

$$(\delta_{CO})_{Alk} = (166.62 \pm 0.21) - (4.59 \pm 0.42)_{Alk} \sigma_{I}$$

 $- (1.39 \pm 0.56) \delta_{Alk} E_s^B$ (13)
 $R = 0.966, \ s = 0.188, \ n/n_0 = 15/15$

We obtained nearly the same results as from Eqn (13) (Table 4) as the correlated data for alkyl substituted benzoates, $C_6H_5CO_2R$, were fitted to Eqn (3), and the Charton steric υ constants for alkyl substituent R (Table S4) were used.

Effects induced by ortho substituents

We found the influence of *ortho* substituents on the carbonyl carbon chemical shifts, δ_{CO} , in the phenyl, methyl, and ethyl benzoates containing *ortho* substituents in benzoyl moiety as well as in phenyl benzoates and phenyl acetates with *ortho* substituents in the phenyl ring (Eqns (9) and (12), Table 4) to be described by the reverse inductive effect ((ρ_l)_{ortho} < 0), the normal resonance effect ((ρ_R)_{ortho} > 0), and the steric effect with the negative sign of the transmission coefficient (the values of E_s^B are negative). When the Charton steric v constants were used, susceptibility to the steric effect, δ_{ortho} was positive and approximately twice smaller as compared to the δ_{ortho} value obtained by using the E_s^B scale. Thus, in the *ortho*-substituted esters, the carbonyl carbon is shielded by the -1 and -R substituent effects and deshielded by the +1 and -R effects as well as by steric effects of *ortho* substituents.

In the case of substituents in the benzoyl moiety, the estimated susceptibilities toward the inductive effect from the *ortho* position, were in the range $-5.00 < (\rho_l)_{ortho} < -5.48$ (Table 4). Approxi-

^h For the 2-I derivative $\nu_{CO} = 1755.9$ was calculated with the relation: $(\nu_{CO})_{ortho-cis} = 1742.7 + 16.4\sigma_I - 22.6E_s^{B.[8]}$

ⁱThe resonance constants, $\sigma_{\rm Rr}^{\rm [64]}$ were used.

^jThe resonance constants^[65] $\Delta \sigma_{R}^{+} = \sigma_{p}^{+} - \sigma_{p}^{\circ}$ were used.

^kThe 4-C(CH₃)₃ derivative was excluded.

¹The resonance constants, σ_{R}° , were applied.

m Reference.[56]

ⁿ Reference.^[3]

[°] For the 2-CH₃ derivative $E_s^B = 0$.

 $^{^{\}rm p}$ For unsubstituted derivative $\delta_{\rm CO}$ = 165.04 was used to calculate the $\Delta\delta_{\rm CO}$ scale.

^q The log k values for 4-Cl, 4-Br, 4-CN, 4-CH₃, 4-OCH₃, and 4-C(CH₃)₃ derivatives were calculated with the equation: log $k = -1.106 + 2.34\sigma^{\circ}$. For the 4-Cl derivative $\Delta\delta_{CO} = -0.22$ (in Table S3 Reference^[1,3]) was used.

^rThe 4-CN derivative was excluded.

 $^{^{\}rm s}$ The log k values for 3-CN and 3-F derivatives were calculated with the equation in Table 1. [3]

^t The log *k* values for 3-F, 3-Br, 3-CN, and 3-OCH₃ derivatives were calculated with the equation in Table 3. ^[1] For the 3-CH₃ derivative, $\Delta \delta_{CO} = 0.12$ was used (Table S3, Reference ^[5]).

mately the same value for $(\rho_l)_{ortho}$ was found for *ortho*-substituted benzoic acids $((\rho_l)_{ortho} = 5.08^{[26]})$. The influence of the *ortho* inductive effect was found to be approximately 1.7 times higher than the corresponding influences from the meta position in both the esters containing substituents in the benzoyl moiety and in the phenyl part. The ratio $(\rho_l)_{ortho}/(\rho_l)_{meta}$ was ca. 2.0 in the case of infrared stretching frequencies, $v_{COr}^{[7]}$ and $(\rho_l)_{ortho}/(\rho_l)_{meta} \approx 1.5$ for the alkaline hydrolysis of substituted phenyl benzoates in water for both series containing the substituents in benzoyl and in the phenyl component of benzoates.^[4] In the case of ortho and meta substituents in the benzoyl moiety, the inductive influence on the carbonyl carbon chemical shifts, δ_{CO} , surpasses by a factor of three the corresponding influence when in the phenyl ring (Table 4). The inductive effect of para substituents from the benzoyl side is ca. twice (2.1 times) as strong as that from the phenyl side. This is in accordance with the generally accepted view that in the substituted benzoyl derivatives, the inductive effect is increased due to the shorter distance between the substituent and carbonyl carbon atom relative to when the substituents are in the phenyl side.

Results of correlations in Eqns (9) and (12), and Table 4 show that due to the steric requirements of *ortho* substituents, the chemical shift of the carbonyl carbon, δ_{CO} , increases (downfield shift) and the carbonyl carbon is deshielded more as compared to the unsubstituted derivative. It could be considered that, due to the bulky *ortho* substituents, the π -electron density around the CO carbon in an *ortho*-substituted ester would be reduced due to the electrostatic repulsion between the orbitals of the substituent and those of the CO bond, with the effect increasing as the substituent increases in size (the van der Waals deshielding [27,34]).

In the case of phenyl, methyl, and ethyl esters of orthosubstituted benzoic acids, we found that ortho substituents exert the normal substituent-induced resonance effect ($\rho_R > 0$) on the carbonyl carbon ¹³C NMR chemical shifts, which is different from that for *meta*- and *para*-substituted esters (ρ_R < 0) (Table 4). In the case of the ortho substituents in the phenyl part, the resonance effect was negligible. In previous studies, [4,7] on the basis of the kinetic data for alkaline hydrolysis, IR stretching frequencies, v_{CO} , and calculations with the density functional theory (DFT) method, we found that in phenyl esters of ortho-substituted benzoic acids, the resonance between the carbonyl group and the ortho-substituted phenyl ring was inhibited by the bulky ortho substituents. Therefore, we suggest that the effect of the direct conjugation between the carbonyl group, where $\rho_R > 0$ in the esters considered, is suppressed and the observed substituent-induced positive resonance effect in ortho-substituted esters is caused by the normal conjugation between the ortho substituent and the phenyl ring. Due to the reduced resonance effect between the phenyl ring and the carbonyl group, the resonance stabilization within the carbonyl group is increased. This is associated with an increase in the electron density at the carbon atom where the measurement is made. It was shown that for compounds with a less polarized carbonyl bond, the normal substituent-induced resonance effect is favored (similar to acetophenones).[11,19]

Correlation of the rates of alkaline hydrolysis and IR carbonyl stretching frequencies, $\nu_{\rm CO}$, with the carbonyl carbon $^{13}{\rm C}$ NMR substituent chemical shifts, $\Delta\delta_{\rm CO}$

The rates of alkaline hydrolysis for the phenyl esters of *orthometa*-, and *para*-substituted benzoic acids, X-C₆H₄CO₂C₆H₅,

ortho-, meta-, and para-substituted phenyl esters of benzoic acid, $C_6H_5CO_2C_6H_4$ -X, and substituted alkyl benzoates, $C_6H_5CO_2R$, in water, 0.5 M Bu₄NBr and 2.25 M Bu₄NBr aqueous solutions as well as the IR carbonyl stretching frequencies, ν_{CO} , with Eqns (4)–(6) showed a good correlation with the corresponding carbonyl carbon ^{13}C NMR substituent chemical shifts, $\Delta\delta_{CO}$ (0.960 < R < 0.999, Table 5). The correlation equations obtained in Table 5 enable one to predict the reaction rates for the alkaline hydrolysis and the IR stretching frequencies using the carbonyl carbon ^{13}C NMR substituent chemical shifts, $\Delta\delta_{CO}$, for the esters considered.

The log k values of alkaline hydrolysis and the IR stretching frequencies were correlated well with the corresponding chemical shifts, $\Delta \delta_{CO}$, and in the case for *meta*- and *para*substituted derivatives with the additional resonance term and for ortho derivatives with the additional resonance and steric terms. In the case of alkyl benzoates, C₆H₅CO₂R, the log k values gave a good correlation with the $(\Delta \delta_{\text{CO}})_{\text{Alk}}$ values when an additional steric term for alkyl substituents was included. The slope a_1 in Eqn (4) for the *ortho*, *meta*, and *para* derivatives as well as for alkyl derivatives in Eqn (6) represents the ratio of the inductive effects in alkaline hydrolysis and in the corresponding chemical shifts, $\Delta \delta_{CO}$. Similarly, the slope a_1 in Eqn (5) for *ortho*, meta, and para derivatives as well as for alkyl derivatives in Eqn (6) represents the ratio of the inductive effects in the IR carbonyl stretching frequencies, v_{CO} , and in the corresponding carbonyl carbon ¹³C NMR substituent chemical shifts, $\Delta \delta_{CO}$.

The log k values of the alkaline hydrolysis for the phenyl esters of ortho-substituted benzoic acids in water were correlated with the corresponding substituent chemical shifts, $\Delta\delta_{\text{CO}}$, as follows (Table 5):

log
$$k_{ortho} = (-0.334 \pm 0.163) - (0.457 \pm 0.056) \Delta \delta_{CO}$$

 $+ (0.92 \pm 0.32) \sigma_{R}^{\circ} + (0.99 \pm 0.41) E_{s}^{B}$ (14)
 $R = 0.960, \ n = 11$

The correlation between the IR carbonyl stretching frequencies, $\nu_{\rm CO}$, and the corresponding substituent chemical shifts, $\Delta\delta_{\rm CO}$, for the phenyl esters of *ortho*-substituted benzoic acids is shown by Eqn (15) (Table 5)

$$\begin{split} (\nu_{\text{CO}})_{\textit{ortho}} &= (1743.5 \pm 1.3) - (2.91 \pm 0.54) \Delta \delta_{\text{CO}} \\ &\quad + (8.03 \pm 2.81) \sigma_{\text{R}}^{\circ} - (39.1 \pm 3.4) E_{\text{s}}^{\text{B}} \end{split} \tag{15}$$

$$R = 0.971, n = 10$$

The magnitudes of the parameters a_1 , a_2 , and a_3 in Table 5 calculated with Eqns (4)–(6) coincide quite well with the following relations: $a_1 = \rho_l(AH)/\rho_l(NMR)$, $a_2 = \rho_R(AH) - a_1\rho_R(NMR)$, $a_3 = \delta(AH) - a_1\delta(NMR)$ and $a_1 = \rho_l(IR)/\rho_l(NMR)$, $a_2 = \rho_R(IR) - a_1\rho_R(NMR)$, $a_3 = \delta(IR) - a_1\delta(NMR)$ where alkaline hydrolysis is denoted by (AH), the carbonyl carbon ¹³C NMR substituent chemical shifts, $\Delta\delta_{CO}$, by (NMR) and the infrared stretching frequencies, ν_{CO} , by (IR). Using the alkaline hydrolysis of the phenyl esters of substituted benzoic acids, X-C₆H₄CO₂C₆H₅, $\rho_l(AH)_{ortho} = 2.13$, $\rho_R(AH)_{ortho} = 0.31$, and $\delta(AH)_{ortho} = 2.67$ in water at 25 °C, ^[4,8] as well as $\rho_l(NMR)_{ortho} = -5.0$, $\rho_R(NMR)_{ortho} = 1.43$, and $\delta(NMR)_{ortho} = -4.1$ (Table 5), we obtained the values of $a_1 = -0.420$, $a_2 = 0.90$, and $a_3 = 0.82$, which are approximately the same as shown by Eqn (14).

The parameter a_1 in Eqn (4) found for the *ortho* derivatives in all media studied (pure water, aqueous 0.5 M and 2.25 M Bu₄NBr) are lower as compared to the parameter a_1 for *para* and *meta*

derivatives. Therefore, in the case of ortho derivatives, the ratio of the susceptibilities to the inductive effect in the alkaline hydrolysis and in the corresponding carbonyl carbon ¹³C NMR substituent chemical shifts, $\Delta\delta_{\rm CO}$, is lower compared with the same parameter for para and meta derivatives (Table 5). At the same time, the magnitude of a_1 in Table 5 for meta and para derivatives was found to vary with media to a greater extent as compared to that for the ortho derivatives. When going from water to aqueous 2.25 M Bu₄NBr, the increase in the a_1 parameter for the phenyl esters of meta- and para-substituted benzoic acids was by ca. 0.4 unit of a_1 (Table 5). In the same change of the solvent, the a_1 value for phenyl esters of ortho-substituted benzoic acids become larger by ca. 0.15 unit only. The variation of the parameter a_1 with the media characterizes the increase in the inductive effects in the alkaline hydrolysis of substituted phenyl esters with decrease in the electrophilic solvating power of the solvent. In a previous study, [3] the ortho inductive effect was found to vary with solvent by ca. three times less as compared to meta and para polar effects. When going from water to aqueous 0.5 M and 2.25 M Bu₄NBr, the increase in the susceptibility to the meta and para polar effects, $\rho_{m,p}$ in the alkaline hydrolysis of the phenyl esters of substituted benzoic acids was found to be 0.34 and 0.99 units of ρ .^[8] For the same change in the solvent, the inductive effect of ortho substituents, $(\rho_{\rm I})_{ortho}$, grows by 0.07 and 0.43 units of ρ_1 only. The negative value of the parameter a_1 shows that the influence of the inductive effect of substituents on the carbonyl carbon $^{\rm 13}{\rm C}$ NMR chemical shifts, $\delta_{\rm CO}$, is opposite to that in the alkaline hydrolysis of the esters and in the IR carbonyl stretching frequencies, ν_{CO} . With increase in the σ values of substituents, the carbonyl carbon ¹³C NMR chemical shifts, δ_{CO} , were found to diminish, but the rates of both alkaline hydrolysis and IR carbonyl stretching frequencies, v_{CO} , of esters grow when the electron-withdrawing substituents are involved.

The obtained good correlations of the log k values for the alkaline hydrolysis and the infrared stretching frequencies, ν_{CO} , with the carbonyl carbon ^{13}C NMR substituent chemical shifts, $\Delta\delta_{\text{CO}}$, for substituted phenyl benzoates, prove that the same substituent factors (inductive, resonance, steric) are responsible for the substituent effects so in the alkaline hydrolysis as in the infrared stretching frequencies, as well as in the carbonyl carbon ^{13}C NMR chemical shifts.

CONCLUSIONS

The influence of the *ortho* substituents on the carbonyl carbon ^{13}C NMR chemical shift, δ_{CO} , in substituted phenyl benzoates $(X-C_6H_4CO_2C_6H_5, C_6H_5CO_2C_6H_4-X)$, methyl benzoates, ethyl benzoates, and phenyl acetates was found to be described by the reverse inductive, the normal resonance, and the steric effects leading to negative susceptibility constants (the steric substituent constants, E_s^B , are negative). For meta and para derivatives, the reverse substituent-induced inductive and resonance effects were found to be responsible in influencing the carbonyl carbon electron density. Due to the inductive effect, the electron-withdrawing ortho, meta, para as well as alkyl substituents increase the electron density at the carbonyl carbon while the electron-donating substituents cause the deshielding. The steric effect of ortho substituents and alkyl substituents causes the deshielding of the carbonyl carbon. The bulky ortho substituents in the benzoyl part of esters were considered to twist the plane of the carbonyl group out of the phenyl ring plane causing inhibition of resonance between the carbonyl group and the phenyl ring. Therefore, in the case of the *ortho* derivatives the normal resonance between the *ortho* substituent and the benzene ring could occur. The electron-donating *ortho* substituents increase the electron density at the benzene ring and inductively enhance the electron density at the carbonyl carbon. The logk of alkaline hydrolysis and the IR carbonyl stretching frequencies, ν_{CO} , for *ortho* derivatives show good correlations with the carbonyl carbon ¹³C NMR substituent chemical shift, $\Delta\delta_{\text{CO}}$, when the additional resonance and steric terms are included.

Supplementary material

The following tables are available as supplementary material deposited with Wiley Interscience: Table S1: 13 C NMR spectra for *ortho-, meta-,* and *para-substituted* phenyl benzoates (X-C₆H₄CO₂C₆H₅, C₆H₅CO₂C₆H₄-X), methyl benzoates, and ethyl benzoates; Table S2: The *ortho, meta,* and *para* substituent constants used in the correlations; Table S3: Literature values for the carbonyl carbon 13 C NMR chemical shifts, δ_{CO} , in CDCl₃ for phenyl X-benzoates, methyl X-benzoates, ethyl X-benzoates, X-phenyl benzoates, and X-phenyl acetates used in the correlations; Table S4: Values for the alkyl substituent constants and the carbonyl carbon 13 C NMR chemical shifts, δ_{CO} , for alkyl benzoates (C₆H₄CO₂R) in CDCl₃ used in the data analysis; Table S5: The second-order rate constants k (dm³ mol $^{-1}$ s $^{-1}$) for alkaline hydrolysis of esters of benzoic acid, C₆H₅CO₂R, in aqueous 0.5 M Bu₄NBr at 25 °C.

Acknowledgements

This work was supported by grants Nos. 6701 and 6705 of the Estonian Science Foundation.

REFERENCES

- [1] V. Nummert, M. Piirsalu, J. Chem. Soc. Perkin Trans. 2000, 2, 583-594.
- [2] V. Nummert, M. Piirsalu, Collect. Czech. Chem. Commun. 2002, 67, 1833–1857.
- [3] V. Nummert, M. Piirsalu, V. Mäemets, I. Koppel, J. Phys. Org. Chem. 2005, 18, 1138–1144.
- [4] V. Nummert, M. Piirsalu, V. Mäemets, I. Koppel, Collect. Czech. Chem. Commun. 2006, 71, 107–128.
- [5] V. Nummert, M. Piirsalu, I. A. Koppel, Collect. Czech. Chem. Commun. 2006, 71, 1557–1570.
- [6] V. Nummert, M. Piirsalu, I. A. Koppel, J. Phys. Org. Chem. 2007, 20, 778–790.
- [7] V. Nummert, O. Travnikova, S. Vahur, I. Leito, M. Piirsalu, V. Mäemets, I. Koppel, I. A. Koppel, J. Phys. Org. Chem. 2006, 19, 654–663.
- [8] V. Nummert, M. Piirsalu, S. Vahur, O. Travnikova, I. A. Koppel, Collect. Czech. Chem. Commun. 2009, 74, 29–42.
- [9] H. Neuvonen, K. Neuvonen, P. Pasanen, J. Org. Chem. 2004, 69, 3794–3800.
- [10] C. K. Lee, J. S. Yu, H. J. Lee, J. Heterocyclic Chem. 2002, 39, 1207–1217.
- [11] C. Dell'Erba, F. Sancassan, G. Leandri, M. Novi, G. Petrillo, A. Mele, Gazz. Chim. Ital. 1989, 119, 643–647.
- [12] C. J. O'Connor, D. J. McLennan, D. J. Calvert, T. D. Lomax, A. J. Porter, D. A. Rogers, Aust. J. Chem. 1984, 37, 497–510.
- [13] G. Llabrès, M. Baiwir, J.-L. Piete, L. Christiaens, Spectrochim. Acta A 1982, 38, 595–598.
- [14] I. Bauerová, M. Ludwig, Collect. Czech. Chem. Commun. 2000, 65, 1777–1790.
- [15] S. P. Srivastava, A. K. Bhatnagar, G. C. Joshi, Spectrochim. Acta A 1983, 39, 713–715.

- [16] H. Neuvonen, K. Neuvonen, P. Pasanen, J. Org. Chem. 2002, 67, 6995–7003.
- [17] M. Buděšínský, J. Kulhánek, S. Böhm, P. Cigler, O. Exner, Magn. Reson. Chem. 2004, 42, 844–851.
- [18] M. Buděšínský, O. Exner, Magn. Reson. Chem. 1989, 27, 585–591.
- [19] J. Bromilow, R. T. C. Brownlee, D. J. Craik, P. R. Fiske, J. E. Rowe, M. Sadek, J. Chem. Soc. Perkin Trans. 2, 1981, 753–759.
- [20] K. S. Dhami, J. B. Stothers, Can. J. Chem. 1967, 45, 233-238.
- [21] D. Monti, F. Orsini, G. S. Ricca, Spectrosc. Lett. 1986, 19, 91–99.
- [22] R. A. Nyquist, D. I. Hasha, Appl. Spectrosc. 1991, 45, 849-859.
- [23] S. K. Sen Gupta, R. Shrivastava, Magn. Reson. Chem. 2007, 45, 1035–1039.
- [24] J. Kulhánek, O. Pytela, A. Lyčka, Collect. Czech. Chem. Commun. 2000, 65, 106–116.
- [25] R. Noto, L. Lamartina, C. Arnone, D. Spinelli, J. Chem. Soc. Perkin Trans. 2, 1988, 887–892.
- [26] D. Leibfritz, Chem. Ber. 1975, 108, 3014-3024.
- [27] R. G. Guy, R. Lau, A. U. Rahman, F. J. Swinbourne, Spectrochim. Acta A 1997, 53, 361–374.
- [28] E. Kolehmainen, K. Laihia, R. Kauppinen, J. Phys. Org. Chem. 1995, 8, 577–586.
- [29] A. Perjéssy, D. Rasala, D. Loos, D. Piorun, Monatsh. Chem. 1997, 128, 541–551.
- [30] C. W. Fong, S. F. Lincoln, E. H. Williams, Aust. J. Chem. 1978, 31, 2623–2628.
- [31] P. Žáček, A. Dransfeld, O. Exner, J. Schrami, Magn. Reson. Chem. 2006, 44, 1073–1080.
- [32] R. J. Abraham, S. Angioloni, M. Edgar, F. Sancassan, J. Chem. Soc. Perkin Trans. 2, 1997, 41–48.
- [33] S. Patterson-Elenbaum, J. T. Stanley, D. K. Dillner, S. Lin, D. Traficante, Magn. Reson. Chem. 2006, 44, 797–806.
- [34] K. S. Dhami, J. B. Stothers, Can. J. Chem. 1965, 43, 479-497.
- [35] K. S. Dhami, J. B. Stothers, Tetrahedron Lett. 1964, 12, 631-639.
- [36] D. Rasala, R. Gawinecki, *Magn. Reson. Chem.* **1992**, *30*, 740–745.
- [37] H. Neuvonen, K. Neuvonen, J. Chem. Soc. Perkin Trans. 2, 1999, 1497–1502.
- [38] L. Tasic, R. J. Abraham, R. Rittner, Magn. Reson. Chem. 2002, 40, 449–454.
- [39] L. Tasic, R. Rittner, J. Mol. Struct. 2005, 723, 245–248.
- [40] T. O. Püssa, V. M. Nummert (Maremäe), V. A. Palm, Reakts. Sposobnost Org. Soedin. (Tartu) 1972, 9, 697–728.

- [41] V. M. Nummert, M. V. Piirsalu, *Reakts. Sposobnost Org. Soedin. (Tartu)* **1975**, *11*, 899–910.
- [42] T. O. Püssa, V. M. Nummert (Maremäe), V. A. Palm, Reakts. Sposobnost Org. Soedin. (Tartu) 1973, 9, 871–889.
- [43] L. Chen, J. Li, C. Luo, H. Liu, W. Xu, G. Chen, O. W. Liew, W. Zhu, C. M. Puah, X. Shen, H. Jiang, *Bioorg. Med. Chem.* **2006**, *14*, 8295–8306.
- [44] S. K. Bagal, M. de Greef, S. Z. Zard, Org. Lett. 2006, 8, 147–150.
- [45] N. Mori, H. Togo, Tetrahedron 2005, 61, 5915-5925.
- [46] E. Liepins, I. Ziimane, E. Ignatovics, L. I. Gubanova, M. G. Voronkov, Zh. Obshch. Khim. 1983, 53, 1789–1792.
- [47] W. Wasmer, Chem. Ber. 1949, 82, 342-348.
- [48] P. P. P. Sah, W. H. Yin, Recueil Trav. Chim. 1940, 59, 238-245.
- [49] CRC Handbook of Chemistry and Physics, 76th edn (Ed.: D. R. Lide), CRC Press, Boca Raton, New York, London, Tokyo, 1995–1996, 3–70.
- [50] L. A. Carpio, J. Am. Chem. Soc. 1962, 84, 2196-2201.
- [51] C. K. Sauers, R. J. Cotter, J. Org. Chem. 1961, 26: 6-10.
- [52] R. W. Taft, Jr., I. C. Lewis, J. Am. Chem. Soc. 1958, 80, 2436-2443.
- [53] R. W. Taft, Jr., S. Ehrenson, I. C. Lewis, R. E. Glick, J. Am. Chem. Soc. 1959, 81, 5352–5361.
- [54] V. Nummert, M. Piirsalu, V. Palm, Reakts. Sposobnost Org. Soedin. (Tartu) 1975, 11, 921–932.
- [55] M. H. Aslam, A. G. Burden, N. B. Norman, B. Chapman, J. Shorter, J. Chem. Soc. Perkin Trans. 2, 1981, 500–508.
- [56] V. Nummert, M. Piirsalu, J. Phys. Org. Chem. 2002, 15, 353-361.
- [57] V. Nummert, M. Piirsalu, Org. Reactiv. 1995, 29, 109-115.
- [58] V. Palm, J. Chem. Inf. Comput. Sci. 1990, 30, 409–412.
- [59] I. Bauerová, M. Ludwig, Collect. Czech. Chem. Commun. 2001, 66, 770–784.
- [60] C. Dell'Erba, G. Sancassan, M. Novi, G. Petrillo, A. Mugnoli, D. Spinelli, G. Consiglio, P. Gatti, J. Org. Chem. 1988, 53, 3564–3568.
- [61] R. Lerebours, C. Wolf, J. Am. Chem. Soc. 2006, 128, 13052–13053.
- [62] C. Cai, N. R. Rivera, J. Balsells, R. R. Sidler, J. C. McWilliams, C. S. Shultz, Y. Sun, Org. Lett. 2006, 8, 5161–5164.
- [63] S. W. Pelletier, Z. Djarmati, C. Pape, Tetrahedron 1976, 32, 995–996.
- [64] S. Ehrenson, R. T. C. Brownlee, R. W. Taft, Prog. Phys. Org. Chem. 1973, 10. 1–80.
- [65] Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions (Ed.: V. A. Palm), Publishing House of VINITI, Moscow, 1979, 5(2), 164–165.