### Accepted Manuscript

Visible Light Induced Decomposition of Organic Compounds on WO  $_3$  Loaded PtPb Co-catalysts

Takao Gunji, Takashi Tsuda, Arockiam John Jeevagan, Masanari Hashimoto, Toyokazu Tanabe, Shingo Kaneko, Masahiro Miyauchi, Govindachetty Saravanan, Hideki Abe, Futoshi Matsumoto

| PII:           | S1566-7367(14)00275-1             |
|----------------|-----------------------------------|
| DOI:           | doi: 10.1016/j.catcom.2014.07.013 |
| Reference:     | CATCOM 3970                       |
| To appear in:  | Catalysis Communications          |
| Received date: | 30 May 2014                       |
| Revised date:  | 4 July 2014                       |

5 July 2014

Accepted date:



This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



## Visible Light Induced Decomposition of Organic Compounds on WO<sub>3</sub> Loaded PtPb Co-catalysts

Takao Gunji, <sup>a</sup> Takashi Tsuda, <sup>a</sup> Arockiam John Jeevagan, <sup>a</sup> Masanari Hashimoto, <sup>a</sup> Toyokazu Tanabe, <sup>a</sup> Shingo Kaneko, <sup>a</sup> Masahiro Miyauchi, <sup>b,c</sup> Govindachetty Saravanan, <sup>d</sup> Hideki Abe.<sup>c,e</sup> Futoshi Matsumoto\* <sup>a</sup>

<sup>a</sup>Department of Material and Life Chemistry, Kanagawa University,

3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan.

<sup>b</sup>Department of Metallurgy and Ceramic Science, Graduate School of Science and

Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo,

152-8552, Japan

<sup>c</sup>PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi,

Saitama 332-0012, Japan.

<sup>d</sup>CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)

Nehru Marg, Nagpur 440020, India.

<sup>e</sup>National Institute for Materials Science (NIMS), Sengen 1-2-1 Sengen, Tsukuba,

Ibaraki 305-0047, Japan

#### Abstract

Tungsten oxide (WO<sub>3</sub>)-supported ordered intermetallic PtPb nanoparticles (PtPb NPs/WO<sub>3</sub>) were prepared through a co-reduction of Pt and Pb precursors with sodium borohydride in anhydrous methanol containing WO<sub>3</sub>. The PtPb NPs/WO<sub>3</sub> were characterized based on the crystal structure obtained through powder X-ray diffraction (*p*XRD) as well as X-ray photoemission spectroscopy (XPS) and transmission electron microscopy (TEM). The formation of an ordered PtPb intermetallic phase on the WO<sub>3</sub> surface was confirmed. The PtPb NPs/WO<sub>3</sub> were more efficient when decomposing acetic acid (AcOH) and acetaldehyde (AcH) with visible light irradiation compared to the same process over WO<sub>3</sub> loaded with Pt nanoparticles (Pt NPs/WO<sub>3</sub>).

#### Keywords

Photocatalysis, Co-catalyst, Ordered Intermetallic Compound, Photo-decomposition.

#### **Highlights**

- The WO<sub>3</sub> supported PtPb catalysts was synthesized.
- The formation of PtPb catalysts were characterized with TEM and XPS.
- The photocatalytic activities of the PtPb/WO<sub>3</sub> were investigated.

#### Introduction

Semiconductor photocatalysts, such as titanium oxide (TiO<sub>2</sub>) and tungsten oxide (WO<sub>3</sub>), have received significant attention for several decades because they are a potential solution for the current energy and environmental problems. Semiconductor photocatalysts are versatile candidates for environment remediation [1], water splitting [2], CO<sub>2</sub> reduction [3] and solar energy conversion [4]. Recently, numerous visible light-driven semiconductor photocatalysts have been developed [5]. Metal oxides, particularly WO<sub>3</sub>, have attracted attention because they act as ideal visible light photocatalysts; this behavior is attributed due to their small band gap energies (2.4-2.8 eV) and the high oxidation power of their valence band holes [6]. However, WO<sub>3</sub> exhibits a low photocatalytic activity due to the rapid recombination of its photoexcited electrons and holes. To suppress this process and significantly increase the photocatalytic efficiency, the consumption of photoexcited electrons and holes should be enhanced using co-catalysts. Abe and co-workers have demonstrated that Pt-loaded WO<sub>3</sub> samples were highly efficient during the decomposition of organic compounds under visible light irradiation with an oxygen reduction, which consumed the photoexcited electrons [7]. Consequently, Pt nanoparticles (NPs) were used as cocatalysts with WO<sub>3</sub> to facilitate a multi-electron reduction of O<sub>2</sub>, allowing O<sub>2</sub> to accept electrons despite the insufficient reduction potential of the conduction band electrons (in WO<sub>3</sub>) during its single-electron reduction; furthermore, photocatalytic activity can be improved by selecting appropriate co-catalysts. Recently, a new approach that prevents the inherent problems of disordered alloy catalysts has been proposed by Abruña et al. toward highly active electrocatalysts for fuel cell applications [8]. In contrast with disordered alloys, intermetallic compounds with definite compositions and structures, such as PtPb and PtBi, exhibit excellent electrocatalytic performances toward FA oxidations in acidic solutions in

terms of their onset potentials and current densities [9, 10]. After the report by Abruña, many papers describing intermetallic NPs, such as PtBi, PtPb, Pt<sub>3</sub>Ti and carbon black (CB)-supported intermetallic NPs, have been published for FA, MeOH and EtOH oxidations and oxygen reduction reactions (ORR) [11-13]. In our previous study, the electrocatalytic activity of the ordered intermetallic PtPb compounds exhibited higher electrocatalytic activity toward formic acid, methanol (MeOH) and ethanol (EtOH) oxidation [14] compared to conventional Pt-based alloys and Pt. In addition, we have recently reported that ordered PtPb intermetallic NPs accelerated oxygen reduction reactions (ORR) in acidic solutions [15]. Therefore, the ordered PtPb ordered intermetallic NPs should be competent co-catalysts at the oxidation and reduction sites on WO<sub>3</sub>. We report a simple one-pot approach toward WO<sub>3</sub>-supported ordered intermetallic PtPb compounds as co-catalysts with photocatalytic activity during the oxidative decomposition of acetic acid (AcOH) and acetaldehyde (AcH).

#### Experimental

The WO<sub>3</sub> particles were purchased from Kojundo Chemical Laboratory Co. Ltd. (Type: WWO04PB). Fine particulate WO<sub>3</sub> particles (50–200 nm) were separated from the commercial WO<sub>3</sub> powder, as reported in Ref. **7**. The photodeposited Pt NPs/WO<sub>3</sub> sample was synthesized as reported by Abe *et al.* [7]. The procedure used to prepare Pt NPs/WO<sub>3</sub> via chemical deposition with a Pt precursor and a reducing agent is described in the ESI<sup>†</sup>. The synthesis of PtPb NPs/WO<sub>3</sub> (PtPb loading: 1.0 wt%) proceeded as follows. WO<sub>3</sub> powder (0.5 g) was suspended in 15 mL of anhydrous methanol for 15 min in a two neck round bottomed flask. Afterwards, 0.013 mmole of chloroplatinic acid (H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O, Wako, Japan) and 0.026 mmole of lead(II) acetate (Pb(CH<sub>3</sub>COO)<sub>2</sub>, Sigma-Aldrich) were dissolved in 15 mL of anhydrous methanol in a shielded vial under

Ar before being transferred to the WO<sub>3</sub> suspensions. The solution was stirred for 30 min to yield a homogeneous yellow solution. Afterwards, 3 mmole of sodium borohydride (NaBH<sub>4</sub>, Sigma-Aldrich) in methanol was injected into the suspension to reduce the precursors. The product was centrifuged and washed with anhydrous methanol three times before being dried under vacuum. The as-prepared PtPb NPs/WO<sub>3</sub> were yellowish green. The other experimental conditions are described in the Supplementary Information.

#### **Results and discussion**

Fig. 1A shows the powder X-ray diffraction (pXRD) profiles of the WO<sub>3</sub>, Pt NPs/WO<sub>3</sub> and PtPb NPs/WO<sub>3</sub> (Supplement information for the pXRD procedure). To confirm the formation of the ordered PtPb intermetallic NPs on the WO<sub>3</sub> through pXRD, the Pt loading on WO<sub>3</sub> was adjusted to 5 wt% on both the Pt NPs/WO<sub>3</sub> and PtPb NPs/WO3, while 0.1 or 1.0 wt% Pt and ordered intermetallic PtPb were used when testing the photocatalytic activity. The simulated pXRD patterns for the Pt phase (facecentered cubic (fcc), Fm-3m, a = 0.3925 nm, JCPDS 04-0802) and the ordered intermetallic PtPb phase (NiAs structure,  $P6_3/mmc$ , a = b = 0.426 nm, c = 0.548 nm) are denoted by the solid bars below the graph. The pXRD profile (Fig. 1A-(a)) for WO<sub>3</sub> shows several major peaks, which are attributed to monoclinic WO<sub>3</sub> (JCPDS 43-1035) In addition, the pXRD profiles (Fig. 1A-(b, c)) for the Pt NPs/WO<sub>3</sub> and the as-prepared PtPb NPs/WO<sub>3</sub> exhibit small characteristic peaks at 39.8° for Pt and at 41.0° and 42.4° for the ordered intermetallic PtPb phases. The retention of the pXRD peaks at 41.0 and 42.4°, even after heat-treating the as-prepared PtPb NPs/WO<sub>3</sub> (the reason for the heattreatment will be explained in Fig. 3), could be ascribed to the formation of stable, ordered PtPb intermetallic NPs on the WO<sub>3</sub> (Fig. S1).

Figures 1 (B) and (C) show low- and high-resolution (HR)-TEM images of the annealed 1.0 wt% PtPb NPs/WO3. Several low-resolution images were obtained from a PtPb NPs/WO<sub>3</sub> sample, as shown in Fig. S2, to show the particle size and the degree of dispersion of the PtPb NPs on the WO<sub>3</sub>. The size distributions of the PtPb NPs were evaluated based on the sizes of approximately 100 particles in the TEM images. The average diameter of the PtPb NPs was 9.5 nm, and they exhibited a large particle-size distribution. In particular, the PtPb NPs are different sizes within the observation area even when the images were obtained from a single sample, as shown in Fig. S2. However, the Pt NPs (average diameter: 5.4 nm) were well dispersed on the WO<sub>3</sub> surface (the TEM images of the Pt NPs/WO<sub>3</sub> prepared through chemical and photodeposition are shown in Figs. S3 and S4). The HR-TEM image (C) of the interface between the PtPb and WO<sub>3</sub> phases shows clear lattice fringes, indicating that the PtPb NPs have atomically ordered structures on the  $WO_3$  surface. Furthermore, the *d*-value is clearly different from that of WO<sub>3</sub>. The interval of the lattice fringe (0.223 nm) on the PtPb phase is consistent with the *d*-value for the {110} planes of the ordered PtPb intermetallic phase (d = 0.213 nm, ICDD PDF File # 06-0374) but is not consistent with any *d*-values for Pt phases (fcc structure). The fast Fourier-transformation (FFT) pattern (Fig. S5) demonstrates that the atoms in the PtPb NPs are, as expected based on the pXRD data, arranged in a NiAs-type structure. The compositional maps (Fig. 2) based on the STEM images reveal that the Pt and Pb are uniformly distributed in the PtPb NPs. STEM-energy dispersive spectroscopy (EDS) maps in Fig. 2 demonstrate that the average molar ratios of Pt to Pb for the PtPb NPs (Pt:Pb = 56.2:43.8) were consistent with the desired values for PtPb (Pt:Pb = 1:1). Inductively coupled plasma-mass spectroscopy (ICP-MS) showed that the average molar ratio of Pt to Pb for the PtPb NPs on WO<sub>3</sub> was Pt:Pb = 49.8:50.2 for the as-prepared and annealed samples. The

*p*XRD and TEM/STEM data clearly indicate that an ordered intermetallic PtPb phase can be formed on a WO<sub>3</sub> surface through a one-pot process.

Fig. 3 shows the diffuse reflectance UV-Vis absorption spectra for the Pt NPs/WO<sub>3</sub> prepared from the Pt precursor on a WO<sub>3</sub> support when using NaBH<sub>4</sub> as the reducing agent. To evaluate the influence of the reducing agent on the support after the Pt ions were reduced in anhydrous methanol containing dispersed WO<sub>3</sub>, UV-Vis spectra (Supplement information for the UV-Vis absorption spectroscopy procedure) were collected, as shown in Fig. 3A. Non-treated, pure WO<sub>3</sub> (a) exhibits an apparent absorption edge at 465 nm, as reported previously [16]. The as-prepared Pt NPs/WO3 catalysts exhibit a visible absorption above 450 nm due to the reduction of the  $W^{6+}$  to  $W^{5+}$  or  $W^{4+}$ ; the reducing agent reduced the Pt precursor in anhydrous methanol containing dispersed WO<sub>3</sub>. A significant change in the visible absorption of the Pt NPs/WO<sub>3</sub> is induced through a heat treatment in air at 100 °C over 1 h. Afterwards, the absorption band exhibited no obvious change compared to the pure WO<sub>3</sub>, indicating that the oxidation state on the Pt NPs/WO<sub>3</sub> photocatalyst sample was restored to its original state. The XPS results obtained with the as-prepared and annealed Pt NPs/WO<sub>3</sub> also support our hypothesis regarding the change in the oxidation state of the W ions (Supplement information for the XPS procedure). The XPS spectra showing the W 4f region of (a) non-treated WO<sub>3</sub>, (b) as-prepared Pt NPs/WO<sub>3</sub> and (c) annealed (100 °C) Pt NPs/WO<sub>3</sub> are shown in Fig. 3B. All of the binding energies in Fig. 3B are assigned based on the literature values for WO<sub>3</sub> [17–19]. The XPS spectra were curve-fitted, and each curve was assigned to the corresponding oxidation state in the W 4f level. A doublet was used to fit the W 4f level, as observed in Fig. 3B-(a). The peak for W  $4f_{7/2}$ can be observed at 35.4 eV and is generated by the photoelectrons emitted from W<sup>+6</sup> species  $(WO_3)$ . The spectrum (b) recorded with the as-prepared Pt NPs/WO<sub>3</sub> can be

assigned two doublets: the peak (W  $4f_{7/2}$ ) of the first doublet is located at 35.4 eV and is generated by photoelectrons emitted from W<sup>+6</sup> species; the peak (W  $4f_{7/2}$ ) for the second doublet is located at 34.4 eV and can be attributed to the photoelectrons emitted from tungsten atoms near the oxygen vacancies formed by the reduction reactions when the oxidation state of W is below +6. As observed in (c), the second doublet was removed after treating the Pt NPs/WO<sub>3</sub> at 100 °C, reforming the W<sup>6+</sup>. For the PtPb NPs/WO<sub>3</sub>, a clear absorbance change could be observed between non-treated WO<sub>3</sub> and as-prepared PtPb NPs/WO<sub>3</sub> (Fig. S6-A), but no drastic changes were observed in the oxidation state of WO<sub>3</sub> based on the XPS spectra (Fig. S6-B). The annealing process (in air at 100 °C for 1 h) was applied to the as-prepared PtPb NPs/WO<sub>3</sub> samples to return the optical properties of the WO<sub>3</sub> in PtPb NPs/WO<sub>3</sub> to that of the untreated WO<sub>3</sub> supports. The UV-Vis absorption spectra of the annealed Pt NPs/WO<sub>3</sub> and annealed PtPb NPs/WO<sub>3</sub> are overlaid in Fig. S7 to compare their optical absorption properties. The Pt NPs/WO<sub>3</sub>

The photocatalytic activities of the photodeposited Pt NPs/WO<sub>3</sub>, chemically deposited Pt NPs/WO<sub>3</sub> and annealed PtPb NPs/WO<sub>3</sub> photocatalysts were examined during a photocatalytic decomposition of AcOH in aerated aqueous suspensions (Supplementary information contains the procedure used to evaluate the decomposition rate of the AcOH). Fig. 4(A) plots the CO<sub>2</sub> generated during the liquid-phase decomposition of AcOH over the Pt NPs- and PtPb NPs-loaded WO<sub>3</sub>. The rates of CO<sub>2</sub> generation over the Pt NPs/WO<sub>3</sub> and PtPb NPs/WO<sub>3</sub> photocatalysts were estimated using the slope of the CO<sub>2</sub> formation *vs*. time plot from 0-100 min. The CO<sub>2</sub> generation rate over the PtPb NPs/WO<sub>3</sub> (115.3  $\mu$ mol·mg-Pt<sup>-1</sup>·h<sup>-1</sup>) was higher than that of the photodeposited- (56.33  $\mu$ mol·mg-Pt<sup>-1</sup>·h<sup>-1</sup>) and chemically deposited (50.24  $\mu$ mol·mg-Pt<sup>-1</sup>·h<sup>-1</sup>) Pt NPs/WO<sub>3</sub>. The low activity of the annealed-chemically deposited Pt NPs/WO<sub>3</sub>

versus the photodeposited Pt NPs/WO3 might be attributed to the reduced tungsten ions in the WO<sub>3</sub> in the annealed-chemically deposited Pt NPs/WO<sub>3</sub>. However, the XPS data in Fig. 3B-c do not show any XPS peaks attributed to reduced tungsten ions (W<sup>5+</sup> or  $W^{4+}$ ) after annealing. Therefore, the contradictory data from the activity test and XPS measurements should be examine. Although the low activity of the annealed-chemically deposited Pt NPs/WO<sub>3</sub> is attributed to a small change in the oxidation state of the tungsten ions that cannot be detected through XPS, we propose that the differences in the deposition sites of the Pt NPs on the WO<sub>3</sub> of the annealed-chemically deposited Pt NPs/WO<sub>3</sub> and photodeposited Pt NPs/WO<sub>3</sub> samples should also be examined. In the annealed-chemically deposited Pt NPs/WO<sub>3</sub> the Pt NPs were randomly deposited on the WO<sub>3</sub> surfaces. On the surfaces of the photodeposited Pt NPs/WO<sub>3</sub> sample, however, the Pt NPs were site-selectively deposited on the WO<sub>3</sub>. Because the Pt NPs were formed by reductive deposition with photoexcited electrons, the Pt NPs were deposited on the site (reduction site) where the photoexcited electrons appear on the surfaces of the WO<sub>3</sub>. The co-catalysts deposited on the reduction site actively catalyze the reduction reaction under visible light. Fig. 4(B) shows the AcH decomposition and CO<sub>2</sub> generation profiles over WO<sub>3</sub> that was annealed after exposure to a reducing agent, photodeposited- and chemically deposited Pt NPs/WO3, and annealed PtPb NPs/WO3 photocatalysts under visible light irradiation ( $\lambda > 420$  nm) (Supplementary information details the procedure used to evaluate the decomposition rate of AcH). With visible light irradiation, the amounts of AcH in the gas phase over the Pt NPs/WO<sub>3</sub> and PtPb NPs/WO<sub>3</sub> decreased rapidly when the CO<sub>2</sub> generation increased versus WO<sub>3</sub>. The complete decomposition of AcH is proven by the molar yield of  $CO_2$  (ca. 530 ppm), which is twice that of the molar amount of AcH injected (ca. 280 ppm). The Pt NPs/WO3 and PtPb NPs/WO3 photocatalysts completely decomposed AcH to form CO<sub>2</sub> over different reaction times.

In contrast,  $WO_3$  could not decompose AcH completely because the catalyst was deactivated by the products that accumulated on its surface [20]. Of the examined samples, PtPb NPs/WO<sub>3</sub> perform the best by completely decomposing AcH to  $CO_2$  within 120 min.

#### Conclusion

Samples of WO<sub>3</sub> loaded with Pt and PtPb NPs were used to photocatalyze the decomposition of organic compounds in the liquid and gas phases with visible light irradiation ( $\lambda > 420$  nm). PtPb NPs/WO<sub>3</sub> exhibit a higher photocatalytic activity than the conventional Pt NPs/WO<sub>3</sub> and the pure WO<sub>3</sub>. This enhanced photocatalytic activity might be attributed to the efficient multi-electron ORR and the oxidative decomposition of organic compounds, which induces charge separations in the PtPb. The particles of the ordered PtPb intermetallic NPs on WO<sub>3</sub> are much larger than the Pt NPs on WO<sub>3</sub>; the Pt NPs on WO<sub>3</sub> have much larger surface areas exposed to the AcOH solution and to the gas phase containing AcH than the PtPb NPs fixed on WO<sub>3</sub>. Although the surface area of the PtPb NPs is smaller than that of the reported catalysts utilized in this work, the Pt NPs/WO<sub>3</sub> exhibit a higher visible absorption than the PtPb NPs/WO<sub>3</sub>; PtPb showed enhanced photocatalytic activity relative to the Pt NPs/WO<sub>3</sub>. Therefore, the surfaces of the ordered intermetallic PtPb NPs are more efficient as co-catalysts on WO<sub>3</sub>. Our strategy for preparing PtPb NPs on  $WO_3$  was successful, and the results demonstrate highly efficient visible light-induced photocatalytic systems using ordered intermetallic NP co-catalysts.

#### Acknowledgements

We thank Dr. Akihiro Yoshida and Prof. Shuichi Naito of Kanagawa University for help measuring photocatalytic activity. This work was financially supported by the

Strategic Research Base Development Program for Private Universities of the Ministry

of Education, Culture, Sports, Science and Technology of Japan.

#### Reference

- [1] A. Fujishima, T.N. Rao, D.A. Tryk, J Photoch Photobio C 1(2000) 1-21.
- [2] K. Maeda, K. Domen, J. Phys. Chem. Lett. 1 (2010) 2655-2661.
- [3] K. Mori, H. Yamashita, M. Anpo, RSC Adv. 2 (2012) 3165-3172.
- [4] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110 (2010) 6446-6473.
- [5] K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, J. Am. Chem. Soc. 132(2010) 5858-5868.
- [6] G. R. Bamwenda, H. Arakawa, Appl. Catal. A 210 (2001) 181-191.
- [7] R. Abe, H. Takami, N. Murakami, B. Ohtani, J. Am. Chem. Soc. 130 (2008) 7780-7781.
- [8] E. Casado-Rivera, Z. Gál, A.C.D. Angelo, C. Lind, F.J. DiSalvo, H.D. Abruña, ChemPhysChem 4 (2003) 193-199.
- [9] E.D. Casado-Rivera, J. Volpe, L. Alden, C. Lind, C. Downie, T. Vázquez-Alvarez, A.C.D. Angelo, F.J. DiSalvo, H.D. Abruña, J. Am. Chem. Soc. 126 (2004) 4043-4049.
- [10] Y. Kang, L. Qi, M. Li, R.E. Diaz, D. Su, R.R. Adzic, E. Stach, J. Li, C.B. Murray, ACS Nano 6 (2012) 2818-2825.
- [11] L.D. Shao, W. Zhang, M. Ambruster, D. Teschner, F. Girgsdies, B.S. Zhang, O. Timpe, M. Friedrich, R. Schlogl, D.S. Su, Angew. Chem., Int. Ed. 50 (2011) 10231-10235.
- [12] A.C. Chen, P.H.-Hindle, Chem. Rev. 110 (2010) 3767-3804.

[13] H. Abe, F. Matsumoto, L.R. Alden, S. C. Warren, H. D. Abruna, F.J.DiSalvo, J. Am. Chem. Soc. 130(2008) 5452-5458.

[14] F. Matsumoto, C. Roychowdhury, F.J. DiSalvo and H.D. Abruña, J.Electrochem. Soc. 155 (2008) B148-B154.

[15] T. Gunji, G. Saravanan, T. Tanabe, T. Tsuda, M. Miyauchi, G. Kobayashi, H. Abe, F. Matsumoto, Catal. Sci. Technol. 4(2014) 1436-1445.

[16] D. Tsukamoto, M. Ikeda, Y. Shiraishi, T. Hara, N. Ichikuni, S. Tanaka, T. Hirai, Chem. Eur. J. 17 (2011) 9816-9824.

[17] W. Li, J. Li, X. Wang, Q. Chen, Applied Surface Science 263 (2001) 157-162.

[18] A. Mozalev, V. Khatko, C. Bittencourt, A.W. Hassel, G. Gorokh, E. Llobet,

X. Correig, Chemistry of Materials 20 (2008) 6482-6493.

[19] W. Li, Z. Fu, Applied Surface Science 256 (2010) 2447–2452.

[20] T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, J.Phys. Chem. C 111(2007) 7574-7577.

#### **Figure captions**

**Fig. 1** (A) pXRD diffractograms of the WO<sub>3</sub> (a), Pt NPs/WO<sub>3</sub> (b) and PtPb NPs/WO<sub>3</sub> (c) (for b and c, 5 wt% Pt on WO<sub>3</sub>). (B) TEM image of the annealed PtPb NPs/WO<sub>3</sub> photocatalyst (1.0 wt% PtPb on WO<sub>3</sub>) and (C) a high-resolution (HR)-TEM image of the interface between the PtPb and WO<sub>3</sub> phases. The marks (\* and #) in (A) correspond to the peaks for Pt and PtPb, respectively.

**Fig. 2** Scanning transmission electron microscopy (STEM) image of the annealed PtPb NPs/WO<sub>3</sub> (PtPb loading weight on WO<sub>3</sub>: 1.0 wt%) and the corresponding compositional mapping images.

**Fig. 3** (A) Diffuse reflectance UV-Vis absorption spectra for the (a) non-treated WO<sub>3</sub>, (b) as-prepared Pt NPs/WO<sub>3</sub> and (c) annealed (100° C) Pt NPs/WO<sub>3</sub> (for b and c, 1.0 wt% Pt on WO<sub>3</sub>). (B) XPS spectra (red lines) and fitted curves (blue lines) in the W 4*f* region for the (a) non-treated WO<sub>3</sub>, (b) as-prepared Pt NPs/WO<sub>3</sub> and (c) annealed (100° C) Pt NPs/WO<sub>3</sub>.

**Fig. 4** (A) The time courses of the CO<sub>2</sub> evolution during the decomposition of AcOH over the chemically deposited Pt NPs/WO<sub>3</sub> (solid circle, 1 wt % Pt), photodeposited Pt NPs/WO<sub>3</sub> (solid triangle, 1 wt % Pt) and annealed PtPb NPs/WO<sub>3</sub> (1 wt% PtPb, solid square) photocatalysts suspended in aqueous AcOH in the presence of O<sub>2</sub> with visible light irradiation ( $\lambda > 420$  nm). (B) The time trials for the decomposition of AcH (open symbol) and the evolution of CO<sub>2</sub> (solid symbol) in the presence of O<sub>2</sub> over WO<sub>3</sub> (cross), Pt/WO<sub>3</sub> (triangle, Pt was deposited by photo deposition, 0.1 wt % Pt), Pt NPs/WO<sub>3</sub> (circle, Pt was deposited by chemical deposition, 0.1 wt % Pt) and annealed PtPb NPs/WO<sub>3</sub> (square, 0.1 wt% PtPb) photocatalysts with visible light irradiation ( $\lambda > 420$  nm).

### Figures



T. Gunji et al.



Fig. 2

T. Gunji *et al.* 





## **Graphical Abstract**



### Highlights

- The WO<sub>3</sub> supported PtPb catalysts was synthesized
- The formation of PtPb/WO<sub>3</sub> catalysts were characterized with TEM and XPS
- The photocatalytic activities of the PtPb/WO<sub>3</sub> were investigated
- PtPb/WO<sub>3</sub> showed higher catalytic activity for decomposition of AcOH and AcH than Pt/WO<sub>3</sub>

A CER MAN