FULL PAPERS

DOI: 10.1002/adsc.200900630

Asymmetric Michael Addition Reaction of 3-Substituted Oxindoles to Nitroolefins Catalyzed by a Chiral Alkyl-Substituted Thiourea Catalyst

Xin Li,^a Bo Zhang,^b Zhi-Guo Xi,^b Sanzhong Luo,^{a,*} and Jin-Pei Cheng^{a,b,*}

^a Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China Fax: (+86)-10-6255-4449; e-mail: luosz@iccas.ac.cn

^b Department of Chemistry and State Key Laboratory of Elementoorganic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Received: September 11, 2009; Revised: November 15, 2009; Published online: January 12, 2010

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.200900630.

Abstract: A simple alkylthiourea was found to be an effective catalyst for the Michael addition reaction of 3-substituted oxindole to nitroolefins. A number of 3,3'-substituted oxindole derivatives, which have two **Keywords:** bifunctional thioureas; Michael addition reaction; nitroolefins; organocatalysis; oxindoles

Introduction

With its origin deeply rooted in enzymatic catalysis, small molecular hydrogen bonding catalysis has been evolved as a powerful catalytic motif in asymmetric catalysis over the last ten years.^[1] Chiral thiourea represents one such prominent type of asymmetric Hbonding catalyst. In particular, tertiary amine-thioureas, for example, Takemoto's catalyst and Jacobson's catalyst, have enabled a number of chiral C–C bond forming transformations featuring distinctive bifunctional activations of substrates. In the context of numerous impressive catalytic applications, however, the detailed mechanism of thiourea catalysis remains to be disclosed. In addition, the development of simple and new thiourea catalysts is still highly desirable in order to further extend the synthetic applications and to overcome the limitations of current catalysts with respect to both catalytic efficiency and scope. Recently, we have initialized a program for elucidating a systemic electronic activity-stereoselectivity relationship (EASR) of urea/thiourea catalysis, which eventually would be helpful in guiding the design of new catalysts and in understanding the catalytic mechanism.^[2]

Scheme 1. The identification of a novel alkyl-substituted thiourea catalyst 1b.

416

InterScience[®]

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

During this study, we noticed that thioureas with alkyl side chains such as **1a**, although less acidic than aromatic thioureas such as Takemoto's catalyst, turned out to be favorable, but as yet largely overlooked catalysts for the typical asymmetric bifunctional catalysis (Scheme 1). An optimal and simple catalyst **1b** was then reached *via* simply electronic tuning of the alkyl side chain, demonstrating comparable performance compared with the well-recognized aromatic thioureas (Scheme 1).

Due to their promising biological profiles and interesting structural features, oxindole alkaloids^[3] such as physostigmine, horsfiline, coerulescine, alstonisine chitosenine and strychnofoline have been interesting targets for asymmetric total synthesis and a great deal of asymmetric catalytic reactions, including allylic alkylation,^[4] aldol reactions of oxindoles,^[5] Heck reaction,^[6] Michael addition reaction^[7] and cyanoamidation reaction^[8] etc., have been developed towards the construction of oxindoles bearing quaternary centers at the 3-positions.^[9] However, most of these catalytic methods for the synthesis of oxindoles require the use of transition metals, organocatalytic methods to these valuable structural motifs, especially for the synthesis of 3,3'-substituted oxindoles with two vicinal quaternary-tertiary chiral centers, has been less developed until very recently.^[7a] Barbas reported a Takemototype aromatic thiourea catalyst for this class of reactions with excellent yields and stereoselectivity.^[7a] In this context, it was pleasing to find out that the alkylsubstituted thiourea 1b, identified from our physical organic studies, was also an optimal catalyst for this challenging quaternary-tertiary C-C bond forming Michael addition reaction, leading to a highly efficient and stereoselective protocol for the synthesis of 3,3'-

Table 1. Screening of different thiourea catalysts.^[a]

Entry	Catalyst	Time [h]	Yield ^[b] [%]	$dr^{[c]}$	<i>ee</i> ^[d] [%]
1	1b	12	96	4:1	85
2	1c	12	93	3:1	69
3	1d	12	95	3:1	67
4	1e	12	98	3:1	81
5	1f	12	92	5:1	-76
6	1g	72	nr ^[e]	nd ^[f]	nd
7	1ĥ	72	nr	nd	nd

 [a] The reaction was carried out on a 0.1-mmol scale in 200 μL dry toluene at 4°C, and the molar ratio of oxindole/nitrostyrene is 1/2.

^[b] Isolated yield.

^[c] Determined by ¹H NMR.

^[d] Determined by HPLC.

[e] No reaction.

[f] Not determined.

Adv. Synth. Catal. 2010, 352, 416-424

oxindole compounds.^[11,12] The detailed results from this study are presented herein.

Results and Discussion

The Michael addition reaction of oxindole 2a, a commercially available compound, to nitrostyrene was selected as our initial test reaction. A variety of bifunctional tertiary amine-thiourea catalysts 1c-1f, which have been widely applied in a broad range of asymmetric Michael reactions,^[13-16] together with catalyst 1b, were then tested in the model reaction and the results are summarized in Table 1. As shown, all catalysts **1b–1f** exhibited high catalytic activity affording cleanly the desired product 4a (Table 1, entries 1-5, 92-98% yield). Quite surprisingly, the simply alkylthiourea 1b gave the best (85%) ee among these tested catalysts, suggesting a favorable feature of the alkyl side chain on catalytic performance over that of typical 3,5-bistrifluorophenyl groups usually present in catalysts 1c-1f. For comparison, monofunctional thiourea catalysts such as 1g and 1h have also been examined and no reactions were observed in these cases, proving that the tertiary amine group is indispensable for the present Michael addition reaction.

With alkylthiourea **1b** as the optimal catalyst, the reaction was further optimized by screening different solvents (Table 2). Highly polar solvents such as DMSO, DMF and methanol were not applicable leading to totally depleted activity (Table 2, entries 1 and 2) or low enantioselectivity (Table 2, entry 3). The reactions generally proceeded smoothly in less polar solvent such as CH₂Cl₂, CHCl₃, ClCH₂CH₂Cl, C₆H₆ and PhCH₃. Among a number of solvents examined, CH₂Cl₂ was the optimal one, furnishing the best enantioselectivity (Table 2, entry 7, 98% yield, dr = 4:1, 91% ee). When the reaction was conducted with catalyst **1b** in CH₂Cl₂ at -40 °C, the yield and dr value were retained, and the ee value could be further improved to 93% (Table 2, entry 13).

With the optimal conditions in hand, the substrate scope was next explored with different nitroolefins, including twelve substituted nitrostyrenes and two alkyl nitroolefins. As shown in Table 3, the reactions worked well with nitrostyrenes bearing either electron-withdrawing or electron-donating groups to give the desired adducts with high yield (90-99%), moderate diastereoselectivities and excellent enantioselectivities (92-96% ee) (Table 3, entries 1-10). Slightly lower enantioselectivities were observed with 4-nitronitrostyrene (entry 11, 92% yield and 78% ee) and 3nitronitrostyrene (entry 12, 94% yield and 80% ee), probably due to the interference of additional nitro groups on the stereocontrolling H-bonding interactions. Alkyl nitroolefins were also good substrates for the catalysis of 1b. In these cases, the desired products were obtained with excellent yields (95-96%) and

Ph

	CH ₃ N Ph	+ NO2-	10 mol% 1b solvent, 4 °C	NO₂ =0	
Entry	Solvent	Time [h]	Yield ^[b] [%]	$dr^{[c]}$	<i>ee</i> ^[d] [%]
1	DMSO	12	trace	nd ^[e]	nd
2	DMF	12	trace	nd	nd
3	CH ₃ OH	12	81	4:1	45
4	Et ₂ O	12	20	4:1	88
5	CH ₃ CN	12	85	5:1	79
6	Ethyl acetate	12	79	4:1	80
7	CH ₂ Cl ₂	12	98	4:1	91
8	CHCl ₃	12	97	3:1	77
9	CICH ₂ CH ₂ Cl	12	96	4:1	90
10	THF	12	94	5:1	89
11	C_6H_6	12	95	3:1	75
12	PhCH ₃	12	96	4:1	85
13	CH ₂ Cl ₂	48	96	4:1	93 ^[f]

Table 2. Screening of solvents.[a]

[a] The reaction was carried out on a 0.1-mmol scale in 200 µL different solvent at 4°C, and the molar ratio of oxindole/nitrostyrene is 1/2.

[b] Isolated yield.

[c] Determined by ¹H NMR.

[d] Determined by HPLC.

[e] Not determined.

[f] Conducted at -40°C.

asc.wiley-vch.de 418

Table 3. Asymmetric Michael addition reaction of 3-methyl-N-phenyloxindole to different nitroolefins.^[a]

Entry	Nitroolefin	Time [h]	Product: Yield ^[b] [%]	$dr^{[c]}$	<i>ee</i> ^[d] [%]
1	H ₃ CO OCH ₃	72	6 : 93	3:1	96
2	H ₃ CO NO ₂	72	7 : 92	4:1	95
3	H ₃ C	48	8 : 99	5:1	95
4	NO ₂	48	9 : 96	4:1	93
5	CI NO2	48	10 : 95	3:1	92
6	CI NO2	48	11 : 95	3:1	95
7	Br NO2	48	12 : 98	2:1	96
8	Ph NO ₂	60	13 : 90	4:1	94
9	NO ₂	48	14 : 97	4:1	94
10	O NO2	60	15 : 91	5:1	95
11	O ₂ N NO ₂	72	16 : 92	2:1	78
12	NO ₂ NO ₂	72	17 : 94	3:1	80
13	NO ₂	54	18 : 95	3:1	98
14	NO ₂	48	19 : 96	3:1	98

^[a] The reaction was carried out on a 0.1-mmol scale in 200 μ L dry CH₂Cl₂ at -40 °C, and the molar ratio of oxindole/nitroolefin is 1/2.

^[b] Isolated yield.

^[c] Determined by ¹H NMR or weight.

^[d] Determined by HPLC.

enantioselectivities (98% ee) (Table 3, entries 13 and 14).

To further illustrate the synthetic utility of the current reactions, other oxindoles derivatives have also been examined in the reaction (Table 4). Not quite unexpectedly, the reaction with 3-phenyl-substituted oxindole **2b** proceeded very fast, but without any chiral induction (Table 4, entry 1) at 4°C. Improved Table 4. Screening of different oxindole compounds.^[a]

Entry	\mathbb{R}^1	\mathbb{R}^2	Time [h]	Product: Yield ^[b] [%]	$dr^{[c]}$	<i>ee</i> ^[d] [%]
1	Ph	Boc	2	20 : 99	1:1	rac
2 ^[e]	Ph	Boc	8	20 : 94	3:1	53
3	CH ₃	Boc	12	21 : 94	9:1	74
4 ^[e]	CH ₃	Boc	72	21 : 96	19:1	89
5	CH ₃	CH_3	12	22 : 93	3:1	54
6 ^[e]	CH ₃	CH ₃	96	22 : 65	3:1	68

[a] The reaction was carried out on a 0.1-mmol scale in 200 μL dry toluene at 4°C, and the molar ratio of oxindole/nitrostyrene is 1/2.

^[b] Isolated yield.

^[c] Determined by ¹H NMR.

^[d] Determined by HPLC.

^[e] Reaction in CH_2Cl_2 at -40 °C.

stereoselectivity could be obtained when the reaction was conducted at -40 °C (Table 4, entry 2). Under the optimized conditions, the reactions with other *N*-substituted oxindoles such as **2c** and **2d** worked very well (Table 4, entries 3–6). Inspired by the work of Barbas,^[7a] we examined the reaction *N*-Boc protected oxindole **2c**. To our delight, the reaction furnished the desired product in high yield with much improved diastereoselectivity (19:1 dr) and good enantioselectivity (89% ee), results comparable with those of Barbas' aromatic thiourea catalyst^[17] (Table 4, entry 4).

The X-ray crystal structure of product 12 was determined (Figure 1), which proved the (1S,2S) relative and absolute configurations of the major product. The

Figure 1. X-ray crystal structure of 12.

420 asc.wiley-vch.de

© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

configurations of other *syn*-Michael products can therefore be deduced.

Conclusions

We have presented a highly enantioselective Michael addition reaction of 3-methyl-*N*-phenyloxindole to nitroolefins by a simple alkyl-substituted bifunctional tertiary amine-thiourea organocatalyst. The reaction scope is substantial and a number of aryl- or alkyl-nitroolefins could be successfully applied to give multifunctional chiral oxindole compounds bearing an adjacent all carbon-substituted quaternary stereocenter and a tertiary stereocenter with good to excellent enantioselectivities. And our current work is actively under way to expand the use of this alkyl-substituted bifunctional thiourea catalyt **1b** to other valuable transformations.

Experimental Section

General Remarks

Commercial reagents were used as received, unless otherwise stated. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s=singlet, d=doublet, t=triplet, q=quartet, h=heptet, m=multiplet, br=broad. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Mass spectra were obtained using electron ionization (EI) mass spectrometer. The Michael product **21** is a known compound.^[7a,b]

Catalyst **1b** was synthesized by a literature method.^[18] **1b**: $[\alpha]_{25}^{25}$: -64.8° (*c* 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =7.00 (br, 1H), 4.32 (d, *J*=4.67 Hz, 2H), 3.84 (br, 1H), 2.53 (s, 1H), 2.37 (s, 6H), 2.27 (s, 1H), 1.96–1.72 (m, 3H), 1.36–1.18 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ =183.50, 128.60, 124.91, 121.21, 66.28, 54.91, 44.83, 38.91, 31.74, 23.17, 23.08, 21.17; HR-MS (EI⁺): *m*/*z*=283.1328, calcd. for [C₁₁H₂₀F₃N₃S]: 283.1330.

General Experimental Michael Reaction Procedure

To a stirred solution of 3-methyl-*N*-phenyloxindole (0.1 mmol) and nitroolefin (2.0 equiv.) in dry CH_2Cl_2 (200 μ L) was added thiourea catalyst (0.1 equiv.) at -40 °C. After the reaction was completed, the reaction solution was concentrated under vacuum and the crude material was purified by flash chromatography to afford the product.

Compound 6: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 93%. $[\alpha]_D^{25}$: +52.0° (*c* 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =7.48 (t, *J*=7.68 Hz, 2 H), 7.38 (t, *J*=7.68 Hz, 1 H), 7.22–7.14 (m, 3 H), 7.08–6.98 (m, 3 H), 6.72 (d, *J*=7.96 Hz, 1 H), 6.41–6.35 (m, 2 H), 5.09–4.94 (m, 2 H), 4.54

(s, 1H), 3.78 (s, 3H), 3.54 (s, 3H), 1.50 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ =178.06, 160.57, 159.16, 143.18, 134.18, 131.99, 129.56, 128.30, 128.13, 126.59, 123.95, 122.75, 116.03, 109.29, 104.18, 98.78, 75.64, 55.45, 55.33, 50.27, 20.32; HR-MS (EI⁺): m/z = 432.1689, calcd. for [C₂₅H₂₄N₂O₅]: 432.1685. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane=1:4), 1.0 mLmin⁻¹; t_R =11.7 min (minor), 16.5 min (major).

Compound 7: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 92%. $[\alpha]_{D}^{25}$: -41.0° (c 0.5, CHCl₃); ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3): \delta = 7.35 - 7.24 \text{ (m, 3H)}, 7.19 - 7.13 \text{ (m,}$ 2H), 7.10–7.05 (m, 1H), 6.78–6.68 (m, 4H), 6.59 (d, J =8.78 Hz, 2H), 6.52 (d, J=7.47 Hz, 1H), 5.09–5.03 (m, 1H), 4.87 (t, J = 11.56 Hz, 1H), 3.97 (dd, J = 4.67, 11.53 Hz, 1H), 3.65 (s, 3H), 1.56 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): $\delta =$ 177.55, 159.51, 143.82, 133.82, 130.16, 129.88, 129.51, 128.85, 128.23, 126.66, 126.52, 123.72, 122.92, 113.54, 109.69, 76.27, 55.25, 51.10, 49.96, 20.60; HR-MS (EI⁺): m/z = 402.1583, calcd. for $[C_{24}H_{22}N_2O_4]$: 402.1580. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm $1.0 \text{ mLmin}^{-1};$ (2-propanol:hexane = 1:4), $t_R = 16.1 \text{ min}$ (minor), 31.8 min (major).

Compound 8: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 99%. $[\alpha]_D^{25}$: -11.0° (c 0.5, CHCl₃); ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3): \delta = 7.33 - 7.22 \text{ (m, 3H)}, 7.18 - 7.12 \text{ (m,})$ 2H), 7.08–7.03 (m, 1H), 6.85 (d, J=7.96 Hz, 2H), 6.71 (d, J = 7.14 Hz, 2 H), 6.65 (d, J = 7.96 Hz, 2 H), 6.5 (d, J =7.68 Hz, 1 H), 5.08–5.03 (m, 1 H), 4.87 (t, J=11.25 Hz, 1 H), 3.96 (dd, J = 4.67, 11.25 Hz, 1H), 2.18 (s, 3H), 1.55 (s, 3H);¹³C NMR (CDCl₃, 75 MHz): $\delta = 177.50$, 143.86, 137.98, 133.84, 131.64, 130.17, 129.48, 128.82, 128.77, 128.67, 128.22, 126.54, 123.73, 122.89, 109.65, 76.22, 50.99, 50.31, 20.98, 20.59; HR-MS (EI⁺): m/z = 386.1634, calcd. for $[C_{24}H_{22}N_2O_3]$: 386.1630. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propa-1.0 mL min⁻¹; $t_R = 9.5$ min nol:hexane = 1:4), (minor), 20.0 min (major).

Compound 9: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 96%. $[\alpha]_D^{25}$: +10.0° (*c* 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =7.50–7.45 (m, 2H), 7.41 –7.36 (m, 1H), 7.33–7.30 (m, 1H), 7.13–7.07 (m, 7H), 7.03–7.00 (m, 2H), 6.51–6.48 (m, 1H), 5.34–5.26 (m, 1H), 5.17–5.11 (m, 1H), 4.06 (dd, *J*=4.67, 10.70 Hz, 1H), 1.66 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ =177.81, 142.65, 134.99, 133.90, 131.91, 129.59, 128.61, 128.27, 128.04, 127.92, 126.34, 123.42, 123.07, 109.44, 75.23, 50.89, 21.92; HR-MS (EI⁺): m/z=372.1478, calcd. for [C₂₃H₂₀N₂O₃]: 372.1474 The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane=1:4), 1.0 mLmin⁻¹; t_R =9.4 min (minor), 23.5 min (major).

Compound 10: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 95%. $[\alpha]_D^{25}$: +19.0° (*c* 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =7.36–7.24 (m, 3H), 7.19–7.14 (m, 2H), 7.10–7.01 (m, 3H), 6.74–6.70 (m, 4H), 6.53 (d, *J*=7.14 Hz, 1H), 5.07–5.01 (m, 1H), 4.85 (t, *J*=12.35 Hz, 1H), 1.55 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ =177.17, 143.74, 134.32, 133.62, 133.27, 130.16, 129.63, 129.12, 128.37, 128.31, 126.34, 123.64, 123.14, 109.89, 75.89, 50.88, 50.04, 20.72; HR-

MS (EI⁺): m/z = 406.1088, calcd. for [C₂₃H₁₉N₂O₃Cl]: 406.1084. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane=1:4), 1.0 mLmin⁻¹; $t_R = 13.2$ min (minor), 27.9 min (major).

Compound 11: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 95%. $[\alpha]_D^{25}$: +72.0° (*c* 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =7.46–7.41 (m, 2H), 7.36–7.30 (m, 3H), 7.21–7.13 (m, 5H), 7.05–6.97 (m, 2H), 6.71 (d, *J*= 7.68 Hz, 1H), 4.84–4.79 (m, 3H), 1.41 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ =177.50, 143.13, 136.42, 133.94, 133.37, 131.44, 130.05, 129.71, 129.33, 128.89, 128.36, 126.82, 126.51, 126.24, 123.59, 123.50, 109.69, 75.76, 49.57, 44.32, 20.87; HR-MS (EI⁺): *m/z*=406.1087, calcd. for [C₂₃H₁₉N₂O₃Cl]: 406.1084. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane=1:4), 1.0 mLmin⁻¹; *t_R*=7.3 min (minor), 8.0 min (major).

Compound 12: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 98%. $[\alpha]_D^{25}$: +92.3° (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =7.60–7.40 (m, 5H), 7.32–7.23 (m, 4H), 7.20–7.03 (m, 3H), 6.80 (d, *J*=7.96 Hz, 1H), 4.92–4.82 (m, 3H), 1.48 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ = 177.62, 143.13, 135.10, 133.99, 133.45, 131.61, 129.74, 129.65, 129.07, 128.89, 128.40, 128.40, 127.91, 127.56, 126.55, 123.74, 123.57, 109.70, 75.86, 49.56, 47.10, 20.93; HR-MS (EI⁺): m/z=450.0584 and 452.0561, calcd. for [C₂₃H₁₉BrN₂O₃]: 450.0579 and 452.0559. The enantiomeric excess was determined by HPLC with an OD-H column at 210 nm (2-propanol:hexane=1:9), 1.0 mLmin⁻¹; t_R =12.3 min (minor), 31.9 min (major).

Compound 13: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 90%. $[\alpha]_{D}^{25}$: -23.0° (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.51-7.48$ (m, 2H), 7.44–7.40 (m, 2H), 7.36-7.30 (m, 6H), 7.27-7.22 (m, 2H), 7.20-7.15 (m, 1H,), 6.89 (d, J=7.96 Hz, 2H), 6.76-6.73 (m, 2H), 6.55 (d, J = 7.68 Hz, 1H), 5.22–5.16 (m, 1H), 5.02 (t, J = 12.90 Hz, 1 H), 4.14 (dd, J = 4.67, 11.25 Hz, 1 H), 1.69 (s, 3 H, s); ¹³C NMR (CDCl₃, 75 MHz): $\delta = 177.36$, 143.98, 141.25, 140.52, 133.72, 133.67, 129.87, 129.54, 128.17, 128.98, 128.81, 128.28, 127.46, 127.01, 126.81, 126.51, 123.71, 122.99, 109.75, 76.04, 51.18, 50.41, 20.53; HR-MS (EI⁺): *m*/*z* = 448.1791, calcd. for [C₂₉H₂₄N₂O₃]: The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propa- $1.0 \,\mathrm{mL\,min^{-1}}; \quad t_R = 14.1 \,\mathrm{min}$ nol:hexane = 1:4), (minor), 29.3 min (major).

Compound 14: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 97%. $[\alpha]_D^{25}$: -91.6° (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =8.22 (d, *J*=8.51 Hz, 1H), 7.80–7.71 (m, 2H), 7.53–7.41 (m, 2H), 7.31–7.16 (m, 5H), 7.11–7.00 (m, 2H), 7.88 (d, *J*=7.14 Hz, 1H), 6.63–6.59 (m, 3H), 5.32–5.26 (m, 1H), 5.20–5.15 (m, 1H), 5.09–5.01 (m, 1H), 1.65 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ =177.45, 143.74, 133.81, 133.72, 132.56, 131.43, 130.72, 129.44, 128.85, 128.45, 128.08, 126.52, 126.29, 125.82, 124.43, 124.31, 123.82, 123.42, 122.95, 109.60, 76.61, 50.40, 42.70, 20.70; HR-MS (EI⁺): *m/z* = 422.1635, calcd. for [C₂₇H₂₂N₂O₃]: 422.1630. The enantiomeric excess was determined by HPLC with an AD-H column

at 210 nm (2-propanol:hexane = 1:4), 1.0 mL min⁻¹; t_R = 8.7 min (minor), 9.8 min (major).

Compound 15: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 91%. $[\alpha]_{D}^{25}$: -15.0° (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.45 - 7.33$ (m, 3H), 7.27 - 7.12 (m, 3H), 6.95 (d, J=7.68 Hz, 2H), 6.67-6.58 (m, 2H), 6.41-6.34 (m, 2H), 5.86 (d, J = 5.69 Hz, 2H), 5.11-5.06 (m, 1H), 4.89(t, J=12.60 Hz, 1 H), 4.00 (dd, J=4.39, 11.25 Hz, 1 H), 1.61(s, 3H); 13 C NMR (CDCl₃, 75 MHz): $\delta = 177.47$, 147.47, 147.31, 143.72, 133.85, 130.18, 129.59, 128.95, 128.34, 128.27, 126.41, 123.65, 123.04, 122.71, 109.76, 108.95, 107.91, 101.06, 76.31, 50.90, 50.35, 20.81; HR-MS (EI⁺): m/z = 416.1375, calcd. for $[C_{24}H_{20}N_2O_5]$: 416.1372. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane = 1:4), $1.0 \,\mathrm{mL\,min^{-1}};$ $t_{R} = 13.9 \text{ min}$ (minor), 36.2 min (major).

Compound 16: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 92%. $[\alpha]_{D}^{25}$: -8.0° (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.01$ (d, J = 8.51 Hz, 2H), 7.43–7.34 (m, 3H), 7.30-7.26 (m, 2H), 7.23-7.18 (m, 1H), 7.10 (d, J=8.51 Hz, 2H), 6.82 (d, J=7.14 Hz, 2H), 6.65 (d, J=7.68 Hz, 1H), 5.17–5.11 (m, 1 H), 5.00 (t, J = 12.90 Hz, 1 H), 4.22 (dd, J =4.39, 11.25 Hz, 1 H), 1.66 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz): $\delta = 176.77$, 147.80, 143.46, 142.23, 133.35, 129.93, 129.72, 129.47, 129.21, 128.53, 125.99, 123.59, 123.48, 123.19, 110.16, 75.52, 50.66, 50.23, 21.12. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm $1.0 \text{ mLmin}^{-1};$ (2-propanol:hexane = 1:4), $t_R = 24.6 \text{ min}$ (minor), 45.2 min (major).

Compound 17: The Michael product was synthesized according to the general procedure as a white solid; overall yield: 94%. $[\alpha]_{D}^{25}$: +44° (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 8.11$ (td, J = 1.92, 7.41 Hz, 1H), 7.65 (s, 1H), 7.44–7.35 (m, 5H), 7.33–7.21 (m, 3H), 6.82 (d, J=7.14 Hz, 2H), 6.65-6.62 (m, 1H), 5.17-5.11 (m, 1H), 5.05-4.97 (m, 1 H), 4.23 (dd, J = 4.39, 11.25 Hz, 1 H), 1.66 (s, 3 H); ¹³C NMR (CDCl₃, 75 MHz): $\delta = 176.85$, 147.76, 143.36, 137.07, 135.94, 133.38, 129.70, 129.57, 129.14, 128.48, 126.06, 123.61, 123.29, 122.98, 110.10, 75.59, 50.63, 50.13, 21.03. The enantiomeric excess was determined by HPLC with an AD-Η column at 210 nm (2-propanol:hexane=1:4), 1.0 mLmin⁻¹; $t_R = 13.0$ min (minor), 29.5 min (major).

Compound 18: The Michael product was synthesized according to the general procedure as colorless oil; overall yield: 95%. $[\alpha]_D^{25}$: +53.2° (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ =7.57–7.52 (m, 2H), 7.46–7.37 (m, 3H), 7.29–7.19 (m, 5H), 7.14–7.10 (m, 2H), 6.85 (d, *J*=7.68 Hz, 1H), 4.65–4.59 (m, 1H), 4.49–4.42 (m, 1H), 3.05–2.97 (m, 1H), 2.71–2.54 (m, 2H), 2.06–1.95 (m, 1H), 1.77–1.64 (m, 1H), 1.54 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz): δ =178.14, 143.16, 140.95, 134.13, 131.43, 129.71, 128.64, 128.52, 128.32, 126.51, 126.20, 123.42, 109.91, 49.96, 44.04, 33.98, 30.92, 22.19; HR-MS (EI⁺): m/z=400.1790, calcd. for [C₂₅H₂₄N₂O₃]: 400.1787. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane=1:4), 1.0 mLmin⁻¹; t_R =10.8 min (minor), 17.6 min (major).

Compound 19: The Michael product was synthesized according to the general procedure as colorless oil; overall yield: 96%. $[\alpha]_D^{25}$: +40.2° (*c* 1.0, CHCl₃); ¹H NMR

(300 MHz, CDCl₃): δ =7.57–7.52 (m, 2H), 7.45–7.38 (m, 3H), 7.28–7.22 (m, 2H), 7.14–7.09 (m, 1H), 6.85 (d, *J*= 7.68 Hz, 1H), 4.61–4.55 (m, 1H), 4.36–4.30 (m, 1H), 3.05–2.97 (m, 1H), 1.61–1.50 (m, 4H), 1.44–1.35 (m, 1H), 1.29–1.19 (m, 1H), 0.89 (q, *J*=6.31, 11.53 Hz, 6H); ¹³C NMR (CDCl₃, 75 MHz): δ =178.23, 143.21, 134.19, 131.49, 129.71, 128.53, 128.25, 126.48, 123.46, 123.29, 109.79, 50.11, 42.33, 37.92, 25.91, 23.47, 22.01, 21.64; HR-MS (EI⁺): *m*/*z*= 352.1790, calcd. for [C₂₁H₂₄N₂O₃]: 352.1787. The enantiomeric excess was determined by HPLC with an OD-H column at 210 nm (2-propanol:hexane=1:19), 1.0 mLmin⁻¹; *t_R*= 8.9 min (minor), 15.8 min (major).

Compound 20: The Michael product was synthesized as a white solid; overall yield: 99%. ¹H NMR (300 MHz, CDCl₃): δ =7.70 (d, *J*=8.23 Hz, 1H), 7.63–7.60 (m, 2H), 7.45–7.32 (m, 6H), 7.17–7.12 (m, 1H), 7.09–7.03 (m, 3H), 6.78 (d, *J*=7.41 Hz, 2H), 5.00–4.86 (m, 2H), 4.75 (dd, *J*=1.65, 11.25 Hz, 1H), 1.45 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ =173.85, 148.30, 141.02, 135.44, 132.85, 129.65, 129.27, 128.89, 128.80, 128.64, 128.40, 128.04, 127.90, 126.60, 125.19, 125.73, 124.22, 115.72, 84.24, 75.83, 60.14, 50.89, 28.10, 27.87; HR-MS (EI⁺): *m*/*z*=458.1845, calcd. for [C₂₇H₂₆N₂O₅]: 458.1842. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane=1:19), 1.0 mLmin⁻¹; *t_R*=7.2 min (minor), 8.2 min (major), racemic.

Compound 22: The Michael product was synthesized as yellow oil; overall yield: 65%. ¹H NMR (300 MHz, CDCl₃): δ =7.27–7.14 (m, 3H), 7.11–7.09 (m, 3H), 7.04 (d, *J*=7.41 Hz, 1H), 7.00–6.96 (m, 2H), 6.61–6.58 (m, 1H), 5.15–5.07 (m, 1H), 4.98–4.91 (m, 1H), 3.98 (dd, *J*=4.67, 10.98 Hz, 1H), 3.05 (s, 3H), 1.47 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ =178.49, 142.61, 134.95, 131.71, 128.50, 128.39, 127.89, 127.84, 123.43, 122.59, 108.11, 75.37, 50.60, 26.02, 21.79; HR-MS (EI⁺): *m*/*z*=310.1321, calcd. for [C₁₈H₁₈N₂O₃]: 310.1317. The enantiomeric excess was determined by HPLC with an AD-H column at 210 nm (2-propanol:hexane=3:97), 0.5 mLmin⁻¹; *t_R*=24.5 min (minor), 25.7 min (major).

X-Ray Crystallographic Determination of Compound 12

Single crystals of enantiopure **12** suitable for X-ray analysis were obtained by recrystallization from *i*-PrOH/hexane at room temperature. Crystal data for **12**: C₂₃H₁₉BrN₂O₃ (451.31), orthorhombic, space group: *P*2(1)2(1)2(1), *a*= 9.839(2), *b*=10.575(2), *c*=19.779(4) Å, *U*=2057.9(7) Å³, *Z*=4, specimen 0.41 × 0.39 × 0.33 mm³, *T*=173(2) K, absorption coefficient: 2.024 mm⁻¹, reflections collected: 16670, independent reflections: 4649 [R_{int} =0.0421], refinement by full-matrix least-squares on *F*², data/restraints/parameters 4649/0/262, goodness-of-fit on *F*²=1.127, final *R* indices [*I* > 2 σ (*I*)] *R*1=0.0341, *wR*2=0.0782, *R* indices (all data) *R*1= 0.0365, *wR*2=0.0795, largest diff. peak and hole 0.295 and -0.280eÅ⁻³. CCDC 739992 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

The project was supported by the Natural Science Foundation (NSFC 20632060, 20702052 and 20902091) and MOST (2008CB617501, 2009ZX09501-018).

References

- a) A. G. Doyle, E. N. Jacobsen, *Chem. Rev.* 2007, 107, 5713; b) P. R. Schreiner, *Chem. Soc. Rev.* 2003, 32, 289; c) M. S. Taylor, E. N. Jacobsen, *Angew. Chem.* 2006, 118, 1550; *Angew. Chem. Int. Ed.* 2006, 45, 1520; d) S. J. Connon, *Chem. Commun.* 2008, 2499.
- [2] X. Li, H. Deng, B. Zhang, J. Y. Li, L. Zhang, S. Z. Luo, J.-P. Cheng, *Chem. Eur. J.* **2010**, *16*, 450–455.
- [3] For reviews see: a) A. B. Dounay, L. E. Overman, Chem. Rev. 2003, 103, 2945; b) H. Lin, S. J. Danishefsky, Angew. Chem. 2003, 115, 38; Angew. Chem. Int. Ed. 2003, 42, 36; c) C. V. Galliford, K. A. Scheidt, Angew. Chem. 2007, 119, 8902; Angew. Chem. Int. Ed. 2007, 46, 8748. Other selected examples: d) X. Zhang, C. D. Smith, Mol. Pharmacol. 1996, 49, 228; e) H. C. Malinakova, L. S. Liebeskind, Org. Lett. 2000, 2, 4083; f) X. Z. Wearing, J. M. Cook, Org. Lett. 2002, 4, 4237; g) B. K. Albrecht, R. M. Williams, Org. Lett. 2003, 5, 197; h) A. H. Abadi, S. M. Abou-Seri, D. E. Abdel-Rahman, C. Klein, O. Lozach, L. Meijer, Eur. J. Med. Chem. 2006, 41, 296; i) S. E. Reisman, J. M. Ready, M. M. Weiss, A. Hasuoka, M. Hirata, K. Tamaki, T. V. Ovaska, C. J. Smith, J. L. Wood, J. Am. Chem. Soc. 2008, 130, 2087.
- [4] a) B. M. Trost, Y. Zhang, J. Am. Chem. Soc. 2006, 128, 4590; b) B. M. Trost, N. Cramer, S. M. Silverman, J. Am. Chem. Soc. 2007, 129, 12396; c) B. M. Trost, Y. Zhang, J. Am. Chem. Soc. 2007, 129, 14548, and references cited therein.
- [5] S. Ogawa, N. Shibata, J. Inagaki, S. Nakamura, T. Toru, M. Shiro, Angew. Chem. 2007, 119, 8820; Angew. Chem. Int. Ed. 2007, 46, 8666, and references cited therein.
- [6] A. B. Dounay, K. Hatanaka, J. J. Kodanko, M. Oestreich, L. E. Overman, L. A. Pfeifer, M. M. Weiss, J. Am. Chem. Soc. 2003, 125, 6261, and references cited therein.
- [7] a) T. Bui, S. Syed, C. F. III Barbas, J. Am. Chem. Soc. 2009, 131, 8758; b) Y. Kato, M. Furutachi, Z. Chen, H. Mitsunuma, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 9168; c) R. He, C. Ding, K. Maruoka, Angew. Chem. 2009, 121, 4629; Angew. Chem. Int. Ed. 2009, 48, 4559.
- [8] Y. Yasui, H. Kamisaki, Y. Takemoto, Org. Lett. 2008, 10, 3303.
- [9] Other selected examples of catalytic asymmetric synthesis of oxindoles with quaternary carbon stereocenters: a) S. Lee, J. F. Hartwig, J. Org. Chem. 2001, 66, 3402; b) I. D. Hills, G. C. Fu, Angew. Chem. 2003, 115, 4051; Angew. Chem. Int. Ed. 2003, 42, 3921; c) S. A. Shaw, P. Aleman, E. Vedejs, J. Am. Chem. Soc. 2003, 125, 13368; d) E. P. Kündig, T. M. Seidel, Y.-X. Jia, G. Bernardinelli, Angew. Chem. 2007, 119, 8636; Angew. Chem. Int. Ed. 2007, 46, 8484; e) T. B. Poulsen, L. Ber-

nardi, J. Alemán, J. Overgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2007, 129, 441; f) B. K. Corkey, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 2764; g) X. Tian, K. Jiang, J. Peng, W. Du, Y.-C. Chen, Org. Lett. 2008, 10, 3583; h) E. C. Linton, M. C. Kozlowski, J. Am. Chem. Soc. 2008, 130, 16162; i) T. A. Duffey, S. A. Shaw, E. Vedejs, J. Am. Chem. Soc. 2009, 131, 14; j) P. Galzerano, G. Bencivenni, F. Pesciaioli, A. Mazzanti, B. Giannichi, L. Sambri, G. Bartoli, P. Melchiorre, Chem. Eur. J. 2009, 15, 7846–7849.

- [10] a) A. Berkessel, F. Cleemann, S. Mukherjee, Angew. Chem. 2005, 117, 7632; Angew. Chem. Int. Ed. 2005, 44, 7466; b) T.-Y. Liu, H.-L. Cui, J. Long, B.-J. Li, Y. Wu, L.-S. Ding, Y.-C. Chen, J. Am. Chem. Soc. 2007, 129, 1878.
- [11] During preparation of this manuscript, Barbas and Shibasaki reported elegant organocatalytic asymmetric 1,4-additions of oxindoles to nitroalkenes, see: refs.^[7a,b]
- [12] C. J. Douglas, L. E. Overman, Proc. Natl. Acad. Sci. USA 2004, 101, 5363, and references cited therein.
- [13] For leading examples of catalyst 1c: a) T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672; b) T. Okino, Y. Hoashi, T. Furukawa, X.-N. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119; c) T. Inokuma, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2006, 128, 9413; d) T. Okino, S. Nakamura, T. Furukawa, Y. Takemoto, Org. Lett. 2004, 6, 625; e) Y. Hoashi, T. Yabuta, Y. Takemoto, Tetrahedron Lett. 2004, 45,

9185; f) Y. Hoashi, T. Yabuta, P. Yuan, H. Miyabe, Y. Takemoto, *Tetrahedron* **2006**, *62*, 365.

- [14] For leading examples of catalyst 1e: a) B. Vakulya, S. Varga, A. Csámpai, T. Soós, Org. Lett. 2005, 7, 1967;
 b) B. J. Li, L. Jiang, M. Liu, Y. C. Chen, L. S. Ding, Y. Wu, Synlett 2005, 603; c) S. H. McCooey, S. J. Connon, Angew. Chem. 2005, 117, 6525; Angew. Chem. Int. Ed. 2005, 44, 6367; d) J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481; e) Y.-Q. Wang, J. Song, R. Hong, H. M. Li, L. Deng, J. Am. Chem. Soc. 2006, 128, 8156;
 f) J. Song, Y. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 6048; h) J. Wang, H. Li, X. H. H Yu, L. S. Zu, W. Wang, Org. Lett. 2005, 7, 4293.
- [15] For leading examples of catalyst 1f: a) T.-Y. Liu, J. Long, B.-J. Li, L. Jiang, R. Li, Y. Wu, L.-S. Ding, Y.-C. Chen, *Org. Biomol. Chem.* 2006, *4*, 2097; b) B. Han, Q.-P. Liu, R. Li, X. Tian, X.-F. Xiong, J.-G. Deng, Y.-C. Chen, *Chem. Eur. J.* 2008, *14*, 8094; c) X. Li, S. Z. Luo, J.-P. Cheng, *Org. Biomol. Chem.* 2010, *8*, 77–82.
- [16] For leading example of catalyst 1g: Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, *Tetrahedron Lett.* 2004, 45, 5589.
- [17] Our catalyst 1b is also better than "Takemoto's catalyst" 1c in the currently studied Michael addition reaction of 2b to nitrostyrene. See Scheme S1 in the Supporting Information.
- [18] C.-J. Wang, X.-Q. Dong, Z.-H. X, H.-L. Teng, J. Am. Chem. Soc. 2008, 130, 8606.