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HEAT CONDUCTION OF SHELLS REINFORCED BY FIBERS 
WITH CONSTANT AND VARIABLE CROSS SECTIONS 

Yu. V. Nemirovskii  and A. P. Yankovski i  UDC 536.21 

We propose a model for heat conduction of a spatially reinforced medium and present its generalization 
to the case of a polyreinforced layer. We consider the heat-conduction equations for fibrous shells and 
construct a procedure for reduction of a three-dimensional problem of heat conduction to a two- 
dimensional one. Analytic solutions of a stationary problem of heat conduction are found lot thin conic 
shells of revolution for various structures of reinforcement, and a graphical comparison of the corre- 
sponding results is performed. We study one of the approaches to rational reinforcement of thin shells, 
according to which the thermal "transparency" of a shell in the transverse direction is taken as a criterion 
of rational design. 

Thin-walled elements of the type of shells and plates are widely used in modern power installations, jet engines 

of aerospace engineering, and laser and magnetohydrodynamic installations tbr efficient accumulation or transfer of 

heat and the assurance of reliable operation of installations and engines at elevated temperatures and high levels of 

loads. The use of homogeneous structural materials in these installations has, in fact, reached the limit of their mod- 
ernization. Considerable further progress is possible by way of the creation of composite structures on the basis of 

synthesis of various materials that ensure discrete, continuous, or discrete-continuous variations in thermal and 

mechanical characteristics and heat sources. This program can be realized by creating multilayer polyreinforced 

structures for which the thermal and mechanical properties of the phases of compositions are different and the 
trajectories of reintbrcement are curvilinear (e.g., spiral reinforcement in shells of revolution). From the technologi- 

cal point of view, the creation of  such laminated fibrous structures is not very difficult. These structures are widely 

used as efficient bearing elements of transport and power installations and as elements of aerospace equipment. The 
active utilization of these structures was promoted by the methods of mathematical simulation and description of the 

mechanical behavior of these systems, which show a good performance, and by the efficient methods developed lbr 

solution of the corresponding boundary-value problems. As usual, in the investigation of the mechanical behavior 
of structures, the temperature field is considered as known [2, 9, 15]. However, for complicated structures of rein- 

forcement, the equations describing mechanical and thermal fields are coupled and cannot be considered separately 

[I 1, 12]. The study of heat conduction of these systems is in an embryonic state and has been restricted, up to the 
present, to simple models of cylindrically or spherically symmetric laminated bodies [I, 7, I0, 13] and unidirectional 

fibrous composites [4]. This does not enable one to consider the problem of the search for systems with the most 
efficient thermal characteristics. 

In the most general form, the heat-conduction equation has the form 

' /1 cpT  t = (HIHzH3)  - l  HIH2H3H~I ~ H f l A i j T j  + w 
i=1 j=l , 

(1) 

in the orthogonal curvilinear coordinate system xi, i = 1, 3, where t is the time, H i are the Lam6 parameters, T 

is the temperature, p and c are, respectively, the density and specific heat capacity of  the material, Ai j ,  

i, j = 1, 3, are the linear thermal conductivities, and w is the specific intensity of the internal heat sources. In the 
indices, the symbol after a comma denotes partial differentiation with respect to the variables t or x i. It is usually 
supposed that the thermal conductivities, heat capacity, and intensity of internal heat sources are known from ex- 
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periments. However, in fibrous composite materials, they essentially depend on the structure of reinforcement and 
vary considerably with variation in this structure. For complicated structures of reinforcement, which are usually re- 
alized in the manufacture of reinforced shells by methods of winding and facing, the material displays not only 
anisotropic but specific inhomogeneous properties that depend on the method of creation of the reinforced structure. 

The present work is devoted to the construction and analysis of heat-conduction equations for arbitrary shells 
manufactured by the most widespread methods of winding and facing on the basis of the assumption that reinforcing 
fibers preserve or change areas of cross sections along trajectories of reinforcement. 

1. Heat  C o n d u c t i o n  of  Unidirect ional ly  Re in forced  Shel ls  

In solving the problem of heat conduction/'or structures with complicated geometry such as shells reinforced 
with fibers whose trajectories are complicated spatial curves, it is quite natural to consider a simple model of heat 
conduction of a reinforced medium that takes into account, in the first approximation, the main thermal characteris- 
tics of phases of the composition. In addition, this model is convenient from the viewpoint of analysis of the corre- 
sponding heat-conduction equation for solution of complicated problems, such as rational and optimal reinforcement 
of structures [ 11, 12]. 

It is known that, in the first approximation, the integral coefficient of longitudinal thermal conductivity of a 
unidirectionally reinlbrced material is determined by the law of simple mixtures [4]. At the same time, the determi- 
nation of the integral coefficients of transverse (with respect to the direction of fibers) thermal conductivity is quite a 
complicated problem which requires a special mathematical apparatus. For example, in [4], this coefficient was de- 
termined on the basis of the energy method with regard for a doubly periodic arrangement of fibers in the plane or- 
thogonal to the direction of reinforcement. In structures such as shells, where reinlbrced layers of  elementary 
thickness have a complicated geometry and the transition from one reinforced layer to another is accompanied by a 
change in the metric, the notion of doubly periodic arrangement of fibers and parameters of the translation symmetry 
which determine this periodicity loses its meaning. In addition, upon solution of problems of rational reintbrcement, 
where the structure of reinforcement is determined in the process of solution, the method proposed in [4] for 
determination of the integral coefficient of transverse thermal conductivity is inefficient because the parameters of 
the translation symmetry are unknown. For this reason, it is expedient to use an approach that does not take the 
translation symmetry into account. 

It is known that the problem of determination of the actual distribution of thermal flows and the temperature 
field in a unidirectionally reinforced material is extremely complicated. For this reason, to find any dependences 
useful for practical purposes in the determination of three independent thermal constants in the form of components 
of the tensor of linear thermal conductivity, it is necessary to make certain assumptions in the form of initial precon- 
ditions, which are similar to those used in [8] for the derivation of components of the tensor of compliance of a uni- 
directionally reinforced material. 

l ~ A unidirectionally reinforced material is a continuous macroscopically quasihomogeneous monotropic 
(transversally isotropic) body. 

,,. The base material (binder) is isotropic and homogeneous and the material of reinforcement is homoge- 
neous and transversally isotropic; moreover, the principal axis of anisotropy coincides with the longitudi- 
nal axis of a fiber. In both phases of the composition, the relation between the vector of thermal flow and 
the temperature gradient is the linear Fourier law of heat conduction. 

3 ~ . Complete adhesion of the binder and reinforcement occurs, and the surface of contact is not heat insulated. 

o. The increment of the averaged temperature T along an arbitrarily oriented elementary segment of length 

A/ is equal to the sum of increments of temperatures in the phases of the composition that are intersected 
by this segment. 
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5 ~ The averaged thermal flow through an arbitrary oriented elementary area is calculated as a simple super- 
position of thermal flows in the phases of the composition. 

For convenience of further generalization, we assume that the trajectories of reinforcement are parallel to the 

plane ylOY2 of the rectangular Cartesian coordinate system Yi, i = 1, 3, their direction is determined by the angle 

measured from the direction of the axis Oy I, and the intensity of reinforcement is equal to m. 

The statement of hypothesis 4 ~ can be formally represented as follows: 

 xtr = +  X,jTr, (2) 
i j 

where T b and T r are the temperatures of the binder and reinforcement, respectively. The symbol A l denotes the 

increment along the direction of a segment AI given by the unit vector /, the symbols &ti and Atj denote, re- 

spectively, the increments along the direction / on the i th section of length AI/b of the binder intersected by the 

segment ,5/ and on the j t h  section of  length :AI~ of  the reinforcement intersected by the segment kl.  The sum- 

mation is carried out over all sections of  the binder (over i) and reinforcement (over j )  intersected by the segment 

AI. Moreover, the following normalizing condition is satisfied: 

= Z + Z (3) 
i j 

Representation (2) is valid by virtue of hypothesis 3% according to which the following condition for tempera- 

tures of the phases of the composition is valid on the surface of contact F of the reinforcement with the binder: 

Tr(F) = Tb(F). (4) 

We rewrite condition (2) in terms of  differentials. By virtue of assumption 1 ~ we have 

Tldl : Z Tb,I dlib + Z Tr.ldl; = Tb.I Z dlib + Tr.' Z dl;, (5)  
i j i j 

where ~1~1 is the derivative with respect to the direction l and 

responding to the lengths ofsegmcnts ,5/, Al~, and AI~ in (3). 

normalizing condition (3), we get 

dl, dlbi, and dl} are the differentials cot- 

Dividing equality (5) by dl, by virtue of  the 

l g r a d T  = l(agradTt~+cogradTr), a = 1 -  co, (6) 

where a is the specific intensity of the binder. According to hypothesis 4 ~ the first equality in (6) must be valid for 

an arbitrary unit segment l. This yields 

grad T = a grad T b + co grad T r . 

Thus, assumption 4 ~ can be formally represented as three scalar equalities: 

T i = aTb, i + coTr, i, i =  1,---3. (7) 

Here and below, the symbol in the subscript after a comma denotes a partial derivative with respect to the cor- 
responding variable Yi or x i (depending on the meaning). 
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By virtue of assumption 5 ~ , we have 

n 

qi = aqbi + Olqri, i = 1, 3, (8) 

where qi, qbi, and qri are the components of the vector of averaged thermal flow and vectors of thermal flows in 

the binder and reinforcement, respectively. By virtue of  hypothesis 2 ~ it follows from (8) that 

qi =--~'baTb,i--O)[(~',l? +X21y)Tr ,  i + l ,  12( ) ' i - )~2)Tr , j ] ,  J = 3 - i ,  i =  1,2, 

q3 = -- ~'baTb,3 -- K20)Tr.3 ' (9) 

where l I = cosa ,  12 = since, ~'b is the linear thermal conductivity of the binder, and ~'1 and ~2 are the linear 
thermal conductivities of the reinforcement in the longitudinal and transverse directions. For an isotropic material of 
the reinforcement ()q = L2 = ~-r), equalities (9)can be represented in the following vector form: 

q = - ~ , b a g r a d T  b - krogradTr.  (10) 

To determine the thermal conductivities of the reinforced material, it is necessary to find a linear relation 
between the quantities qi in (9) and (10) and the derivatives T/ in (7). For this purpose, we express Tr, i and Tb, i 

in terms of T i and exclude them from (9) and (10). First, we express Tr, i in terms of Tb. i. As was mentioned 

above, on the surface of contact F of the reinforcement with the binder, the condition of continuity (4) is satisfied. 

By virtue of this condition and assumption I ~ we obtain 

lira., +/2T, .2  = ll rb.l + 12 rb.2. (11) 

In addition, according to hypothesis 3 ~ the condition of continuity for thermal flows must be satisfied on F, 
is equivalent to the two scalar equalities 

which 

qrn = qbn, qr3 = qb3, (12) 

where qrn and qbn are, respectively, the components of the vectors of thermal flows in the reinforcement and in 

the binder along the unit vector n = (-/2,  II, 0). By virtue of the Fourier law for both phases of the composition, 
we obtain from relations (12) that 

~,2(-/2Tr,l +/iTr,2) = ~,b(--/2Tb, i +/ITb,2), (13) 

X2 Tr.3 = )'b Tb,3" (14) 

By solving system (11), (13), (14), we obtain the following dependence of Tr. i o n  Tb,i: 

Tr. i = (12+Ll2)Tb, i  + l l l 2 ( l - ~ ) T b ,  j ,  j = 3 - i ,  i =  1,2, 

T~,3 = ~. Tb.3, (15) 
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where )~ = )~b ~,21 i s  a dimensionless quantity. By substituting expressions (15) into equalities (7), we obtain the 
following system of linear algebraic equations for Tb,i: 

[a+o3(12+~.12)]Tb,i+col, 12(1-~,)Tb,j = T i, j = 3 - i ,  i = 1,2, 

ATb.3 = T3,  6 = a + co~., 

the solution of which has the form 

Zb. i "= A - l { [ 1 - f . o l 2 ( l - ~ . ) ] T i - f D l l l 2 ( l - ~ . ) Z j } ,  j = 3 - - i ,  i =  1,2, 

Tb, 3 = A-IT3 . (16) 

Thus, relations (I5) and (16) determine the required dependences of Zr, i and Tb. i on ~ .  Upon the substitution of 

(15) and (16) into (9) and certain transformations, we get 

qi = - A i l  Tj - Ai2 T 2, i = 1, 2, q3 = -A33 T3, (17) 

where 

Aij = lilj(~.lCO+~.ba)+(-l)i+Jlplr(CO~.-21 + a ) ~ l )  -1, p = 3 - i ,  r = 3 - j ,  i , j  = 1,2, 

A33 = ( ~ .21  +a~.~l) -~. (18) 

Thus, within the framework of the accepted assumptions, the integral coefficients of  linear thermal conductivity 
of a unidirectionally reinforced material are determined by relations (18). In the particular case where fibers are ori- 
ented along the axis Oy I (ct = 0), relations (18) are simplified to the form 

Al~ = ~.lOO + )~b a ,  A22 = A33 = (60~.21 +ak~bl) -I ,  A/) = 0, i ~ j .  (19) 

Therefore, the integral coefficient of  longitudinal thermal conductivity is determined as a simple superposition, 
which is in agreement with the well-known fact [4]. The quantity inverse to the integral coefficient of transverse 
thermal conductivity is determined as a superposition of  the quantities inverse to the thermal conductivities of fibers 
and the binder. It is appropriate to note that the coefficient of transverse thermal conductivity obtained in such a 
way formally coincides with the effective modulus of transverse shear of a unidirectionally reinforced material given 
in [8]. In [4], it was shown that the problem on transverse heat conduction is analogous to the problem on transverse 
shear despite the fact that the model of heat conduction used in [4] differs from the model proposed above. 

By rotating the coordinate system about the axis Oy 3 by the angle - t x  and transtbrming quantities (19) ac- 
cording to the rule of transformation of  tensors of the second rank, we arrive at relation (18)/'or A/j in a new coor- 

dinate system. This means that quantities (18) form a symmetric tensor of the second rank. In addition, if the physi- 
cal constraint 

0 < c o < l  

m 

is valid, then the coefficients Aij, i, j = 1, 3, in (19) are nonnegative. Therefore, Aij in relations (18) and (19) 
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are coefficients of a positive-definite quadratic form, i.e., the differential operator on the right-hand side of  the heat- 
conduction equation analogous to (1) for a unidirectionally reinforced medium satisfies the condition of ellipticity. 

All these distinctive features confirm the correctness of  assumptions 1~ ~ and enable one to regard them as 
physically substantiated. 

All calculations made above on the basis of  hypotheses 1 ~176  can be repeated not only for a unidirectionally 

reinforced medium but for any elementary volume d v I dy  2 dy 3 as well. For this reason, the integral thermal con- 
ductivities of  a medium curvilinearly reinforced with one family of fibers can be represented in the lbrm (18) in the 
orthogonal coordinate system x t, x 2, x 3 if the reinforcement is carried out along directions parallel to planes that 
are tangent to the surfaces x 3 = const and make an angle ~ with the direction of the coordinate line x I. Note 
that, as a rule, by virtue of the widespread technological methods of manufacture, this distinctive feature occurs in 
structures such as shells and plates. For such a reinforcement, it is reasonable to say regarding reinforcing layers 
that x 3 = const. 

By using the ordinary scheme of  formation of the equation of thermal balance [7], we obtain the following 
heat-conduction equation for a unidirectionally reinforced body in an orthogonal curvilinear coordinate system: 

[(e )] cr ,  = (H, "2 H3)-' "2/% N7 Hi-' % + w, 
i=1 j=l  ,i 

(20) 

where C = ~CrP r + acbP b is the reduced heat capacity, W = cow r + a w  b is the reduced intensity of internal heat 
sources, c r and ct, are the specific heat capacities of  the materials of the reintbrcement and the binder, Pr and 
Pb are the densitics of the materials of  the reinforcement and the binder, w r and w b are the specific intensities of  

internal heat sources in the reinforcement and binder, and the quantities Aij are determined by relations (I 8). 

2. Heat  C o n d u c t i o n  of  Po lyre in forced  She l l s  

Fibrous composite structures such as the shells and plates used at present are reinforced, as a rule, with not one 
but a few families of fibers of various orientations. Moreover, in many cases, the physical nature of the fibers is 
different. First of  all, this is due to the strength requirements according to which bearing elements (fibers) in 
reinforced shells and plates must be subjected to the action of comparable stresses in planes differently oriented in 
two directions. 

Suppose that a shell (plate) of thickness H is made of  N layers, unidirectionally reinforced by various fami- 

lies, of  thickness h i, i = 1, N ,  of the same order as H. Then the macroscopic mechanical and thermal characteris- 
tics of  this pack discretely vary across the thickness. Assuming that the thermal conductivities of every reinforced 
layer are known from relations (18), we can investigate heat conduction of the structure as a whole by using, e.g., 

the approaches proposed in [1, 7, 13]. 

However, in laminated shells, for which the thickness h i of every layer is comparable with the thickness H of 
the structure and the mechanical and thermal characteristics discretely and considerably vary in passing from one 
layer to the other, various undesirable effects, such as low thermal stability, stratification of the pack, etc., can 
appear. For this reason, it is necessary to create polyreinforced shells such that the thickness of a unidirectionally 
reinforced layer is considerably smaller than the thickness of  the pack and every layer is repeated many times and 
periodically across the thickness of a shell. In this case, regarding a polyreinforced shell, we can say that, across the 
thickness, its structure is quasiregular and its mechanical and thermal characteristics "quasicontinuously" vary. This 

raises the natural question on investigation of  the law of heat conduction for these polyreinforeed structures. 

The integral thermal conductivities for a composite material reinforced with N families of fibers in parallel 
planes can be calculated by using the procedure proposed in [8] for the tensor of  compliance. According to this pro- 

cedure, first, only the reinforcement in one direction (t I with the specific intensity of  reinforcement co I is taken 
into account. Then all thermal conductivities for a unidirectionally reintbrced layer are calculated. Only after this, 
by assuming that the material is anisotropic and macroscopically homogeneous, does one consider its reinforcement 
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with density co 2 in the direction ~2 and determine, respectively, the thermal conductivities just as for a unidirec- 
tionally reinforced material with anisotropic binder, etc. However, this approach is inconvenient because the ex- 
pressions for the effective thermal conductivities of the entire pack are very cumbersome even in the case of two 
families of fibers, to say nothing of an arbitrary number of families (this leads to considerable difficulties in the 
analysis of problems of rational and optimal reinforcement). In addition, within the framework of this approach, it is 

necessary to perform N recalculations of  thermal conductivities, which is inconvenient in the case of inhomoge- 
neous reinforcement of structures. For this reason, it is expedient to develop other approaches to determination of 
the integral thermal conductivities of polyreinforced materials. 

In what follows, we distinguish the notions of unidirectionally reinforced layer and elementary unidirectionally 
reinforced layer. By a unidirectionally reinforced layer, we mean a layer whose thickness h/ is comparable with 

the thickness H of the pack. By an elementary unidirectionally reinforced layer, we mean a layer whose thickness 
is much smaller than the thickness of a polyreinforced layer. For example, by the thickness of an elementary unidi- 
rectionally reintbrced layer, we can mean the thickness of a fiber, etc. 

Thus, to derive the integral thermal conductivities of a polyreinlbrced layer with a structure quasiregular across 
the thickness, formed by periodic and multiple alternation of an elementary unidirectionally reinforced layer with 
various families of fibers, we assume the following: 

1 ~176 The material of a layer is obtained by introducing N families of homogeneous and transversally isotropic 
fibers into the isotropic and homogeneous binder. 

~ The direction of reinforcement with the k th family of fibers in an elementary unidirectionally reinforced 
layer is parallel to the plane YIOY2 in the rectangular Cartesian coordinate system and makes an angle 

~k, i = 1, N, with the direction of  the axis Oy~. 

3 ~176 For each elementary unidirectionally reinforced layer, hypotheses I ~176 of Sec. 1 remain valid. 

4 ~176 A polyreinforced layer is a continuous macroscopically quasihomogeneous anisotropic body, one of the 
principle anisotropy axes of which coincides with the direction orthogonal to the elementary unidirection- 
ally reinforced layer (the direction of the axis Oy3). 

5 ~176 Because of the binder, the complete adhesion between elementary unidirectionally reinforced layers 
occurs. 

6 ~176 Assumptions 4 ~ and 5 ~ of Sec. I remain valid for the entire polyreinforced layer, where an elementary 
unidirectionally reinforced layer should be meant as a phase of the composition. 

To determine the effective thermal conductivities of a polyreinforced layer, it is necessary, as in Sec. 1, to find 

the relation between the vector of averaged thermal flow q and the gradient of  averaged temperature T. By virtue 

of assumption 6 ~176 we obtain the following relations of the type (7) and (8): 

g,. = rk. , (21)  
k 

qi = s s i = 1, 3, (22) 
k 

where flk = hk H-j is the specific intensity o f a  unidirectionally reinforced layer with the k th family of fibers, T k 

and qki are the temperature and i th components of the vector of thermal flow in an elementary unidirectionally re- 

inforced layer with the k th family of fibers, respectively, hk is the total thickness of elementary unidirectionally 
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reinforced layers with the 
layer). Moreover, the normalizing condition 

k th family of the reinforcement, and H 

Yu. V. NEMIROVSKn AND A. P. YANKOVSKIi 

is the thickness of the pack (polyreinforced 

tain the tbllowing relations from (22): 

where 

is true. Here and below, the summation is carried out over the index mentioned from one to N if the limits are not 
indicated. 

To obtain the required dependence of q on T i, it is necessary to exclude T k and qki from (21) and (22). 

By using the Fourier law for all elementary unidirectionally reintbrced layers, with regard tbr (17) and (18), we ob- 

qi - Z ~-2k A~'kl ) Tk,l -- Z s A{'~" 7" = '~'i2 'k,2, i = 1, 2, (23) 
k k 

A(k) "r 
q3 = Z s qk3 = -- Z ~k 1x33 ~k,3, (24) 

k k 

- -  - I  - 1  

p = 3 - i ,  r = 3 - j ,  i , j  = 1,2, 

At3k) . ,  = ( 2 5 )  

lkl = COS~k, lk2 = sinctk, ~k is the specific intensity of the reinforcement of  an elementary unidirectionally 

reintbrced layer with the k th family of fibers, and Kik and X2k are the linear thermal conductivities of the rein- 

forcement of the k th family in the longitudinal and transverse directions, respectively. 
For further transformations of relations (23) and (24), we use the thermal conditions of continuity of two el- 

ementary unidirectionally reinforced layers with the k th and m th families of fibers on the surface of  contact Fk,,,. 

By virtue of assumptions 2 ~ and 5 ~176 the surface Fk,,, is parallel to the plane Yl OY2, and the conditions 

Tk(Fk,,,) = T,,, (F~.m ), (26) 

qk3(Fkm) = qm3(Fkm), k, m = 1, N, k ~: m, (27) 

are satisfied on it. By virtue of assumption 4 ~ and the fact that an elementary unidirectionally reinforced layer has 
an elementary thickness, system (26), (27) can be replaced by the equivalent system of  equations 

rk= , 

qk3 = q13, k = 2, N. (29) 

By differentiating (26) and (28) with respect to Yl and Y2, which is admissible because F~m is parallel to the 

(28) 

H = ~ h  k ,  I = Z f 2 k ,  f2k > o ,  
k k 
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plane yzOY2, we obtain, in the first approximation, the equalities 

Tk, i = Ti,i, i = 1,2, k = 2, N. (30) 

By virtue of the Fourier law, relations (29) yield 

^(I) [ ̂ (k),~- 1 
Zk.3 = "33 t"33 ) TI.3' k = 2, N. (31) 

By substituting equalities (29)- (31)  into (21), (23), and (24), we obtain the relations for T i and qi in terms of 

TI,i: 

T i = ~ f2~TLi = Tki, i = 1, "~ T 3 = ~ a l.a(I) r^(k)x-' , ~, ,,,33~,,,,~33 ] T~_,3, 
k k 

= = _ A  (1 )  qi - Z ~2k(A(ikl)Tl,i + A(~;)TI,2 )' i = 1,2, q3 = Z f 2 k q l 3  " 3 3 T I . 3  �9 
k k 

After the elimination of TI,j, j = 1,3, from this system, we obtain the final dependence of  q on graddT in the 

form 

qi = - A i l  Ti - Ai2 T.2, i = 1, 2, q3 = - A33 T3, 

where 

] Aij = Z f 2 k - - i j ,  A(t') i, j = I, 2, A33 = f2 k (A(I)) -I , (32) 
k 

A(k) A(~ ) i, j = 1, 2, and "33 are given by relations (25). --/.] �9 

Relations (32) show that effective longitudinal (along elementary unidirectionally reinforced layers) thermal 
conductivities are obtained by averaging the corresponding coefficients of elementary unidirectionally reinforced 
layers proportionally to their percentage (x"-2k) in the pack, and the quantity inverse to the effective coefficient of 
transverse (to elementary unidirectionally reinforced layers) thermal conductivity is obtained by averaging the quan- 
tities inverse to the transverse thermal conductivities of  elementary unidirectionally reinforced layers proportionally 
to the content of  the corresponding elementary unidirectionally reinforced layers in the pack. 

Since thermal conductivities of every elementary unidirectionally reinforced layer form the coefficients of a 
positive-definite quadratic form, the thermal conductivities of the entire pack obtained by the method of averaging 
described above also form coefficients of a positive-definite quadratic form. This means that the differential opera- 
tor on the right-hand side of the heat-conduction equation, analogous to (20), for a polyreinforced layer satisfies the 
condition of ellipticity 

By virtue o f  the fact that the manipulations performed above can be repeated for any elementary volume 

d.v I dy 2 dy 3 by using assumptions 1~176 ~176 the effective thermal conductivities of a polyreinforced layer in the cur- 
vilinear coordinate system x l, x 2, x 3 can be presented in the form (32) if the reinforcement of every elementary 
unidirectionally reinforced layer is carried out along directions parallel to planes which are tangent to surfaces 
x 3 = const and make an angle r k with the direction of the coordinate line x I. 

By deducing the equation of thermal balance according to an ordinary procedure, we obtain the heat-conduction 
equation for a polyreinforced layer, which is similar to Eq. (20) with 
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C = C b P b ( l - - i " 2  ) + 2 0 3 k C k P k ,  W = Wb(l - f2 )  + ~"/.% w~, f /  = ~ 0 ~  t ,  (33) 
k k k 

where C and W are, respectively, the reduced thermal conductivity and intensity of internal heat sources in the 
polyreinforced layer, c b and c k are the specific heat capacities of the materials of the binder and reinforcement of 

the kth family, Pb and Pt are the densities of the materials of the binder and reinforcement of  the k th family, 

w b and w k are the specific intensities of internal heat sources in the binder and reinforcement of  the k th family, 

0~ t is the specific intensity of reinforcement with fibers of the k th family in the polyreinforced layer defined as 

03t = f2t ~ t ,  (34) 

where ~ is the specific intensity of reinforcement of an elementary unidirectionally reinforced layer with the k th 
family of fibers, and the quantities A~/ are determined by relations (25) and (32). 

However, relations (25) and (32) lbr integral thermal conductivities of the entire polyreinforced layer can be in- 
efficient tbr solution of problems of rational and optimal reinlbrcement of shells. Indeed, in the solution of these 
problems, in the general case, the specific intensity ~x- of  reinforcement of an elementary unidirectionally rein- 

tbrced layer with the k th family of fibers, the angle of reinforcement t~ k, and the specific intensity f2 k of a unidi- 

rcctionally reintbrced layer in the pack with the k th family of  fibers are unknown. For this reason, in problems of 
rational reintbrcement, it makes sense to use a procedure of  averaging the thermal conductivities of  the pack that 

uses N parameters ~ t ,  k = 1, N, instead of 2N parameters ~ t  and f2 k. 
Assume that the specific intensities o3 k of reinforcement of  the entire polyreinlbrced layer with fibers of the 

k th family are known and satisfy the physical constraints 

o) k > 0, k = I ,N,  f2 < 1. (35) 

By virtue of  assumptions 1 ~176 and 5 ~176 the adhesion between elementary unidirectionally reintbrced layers is 
realized at the expense of the binder, the material of which is the same in all elementary unidirectionally reinforced 
layers. Therefore, the boundary between two elementary unidirectionally reinforced layers is, to a certain extent, 
conditional. This enables us to distribute the reinlbrcement intensity of the binder in the pack, a = 1 - f2, over all 
unidirectionally reinforced layers proportionally to o)k: 

a t = 0 3 k ~ ' 2 - 1 a  = 0 3 k ~ 2 - 1 - - O ) k  . 

Thus, we associate the following part of the reinforcement intensity of a polyreinforced layer with every unidirec- 

tionally reinforced layer including the k th family of the reinforcement: 

f2~ = a t + o t = o t f l  - l ,  k = 1, N. (36) 

To determine the specific intensity ~k of reinforcement of an elementary unidirectionally reinforced layer 

with the k th family of  fibers, it is necessary to exclude f2 t from (34) and (36). This yields 

~k = ~ -  (37) 

By virtue of  inequality (35), the physical constraints 0 < ~k = f2 < 1 are true. According to relation (37), for the 
mentioned distribution of the binder over reinforced layers, the quantity ~k is the same for all families of fibers. 
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By substituting (36) and (37) into (25) and (32), we obtain the following relations for the effective thermal con- 
ductivities for the entire polyreinforced layer: 

Aij = s - ~,b)~'~2 + ~,b] + (--l)i+Jlkplkr[~'2~.2~ +(1- ,Q)~.bl ] - I} ,  
k 

p = 3 - i ,  r = 3 - - j ,  i , j  = 1,2, 

]' 
A33 = (O k ~21 + (1 - ~-2)~.b I . (38) 

Note that quantities (38) form coefficients of a positive-definite quadratic form. 
Thus, representations (38) are the most convenient for solution of problems of rational and optimal reinforce- 

ment of shells�9 The heat-conduction equation for a polyreinforced layer has the previous form (20). For N = 1 in 
(38), f2 = m I and relations (38) are immediately reduced to relations (18) for a unidirectionally reinforced layer�9 

3. Reduction of the Heat-Conduction Equation for Thin Fibrous Shells and Plates 

to a Two-Dimensional  Equation 

To integrate the initial boundary-value problem corresponding to the heat-conduction equation (20), we can use 
various approximate methods, e.g., the method of straight lines [6]. The main difficulty arising in the course of inte- 
gration lies in the fact that Eq. (20) is three-dimensional. For this reason, in the solution of the problem of heat 

conduction in structures such as shells and plates, one usually tries to reduce the problem to a two-dimensional one. 
This can be done by using, e.g., the Bubnov-Galerk in  method. Indeed, let the temperatures T§ x l, x 2) and 

�9 0 0 T_(t, x I, x 2) be given, respectively, on the lateral "external"  (x 3 = x 3 > 0) and "internal" (x  3 = - x  3 < 0) 
surfaces of the shell. Then, following the main idea of the Bubnov-Galerk in  method, we represent the temperature 
in the form 

r = (2x~ + , ~  l 

+ ~f~ {Tcn(t, Xl, X2)COS[(2n + 1)rcx3(2x~ -1] + Tsn(t, xl,.r2)sin[2nrcx3(2x~ 
N=0 

(39) 

and rewrite Eq. (20) in the operator form 

L(T) = 0, (40) 

where L is the parabolic differential operator appearing at the expense of the difference of the left- and right-hand 
sides of Eq. (20). We substitute relation (39) into Eq. (40) and require that 

0 0 
x3 x3 

nT~x 3 L(T)cos (2n + 1)~x 3 L(T)sin ----6- d~3 
I o 2x ~ d~3 = 0, I ~ x 3 

- x  3 - x  3 

= 0, n = 0,1,2 . . . . .  (41) 

By integrating (41), we obtain systems of differential equations for the functions T,. n and Tsn which depend only 

on two spatial coordinates x I and x 2 and time t. 
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Suppose that heat transfer with the environment is realized through the lateral surfaces of the shell by the New- 
ton law 

+ 
q3 = la+(T+ - T+'*), - q 3  = ~ - ( 7 -  - 7 , . ) ,  (42) 

where q~ = q3(t, x I, x2, _+ x~ T+_ = T(t, x t, x 2, + x~ 7"_+o. 

of  the "external" (+)  and "internal" (-) lateral surfaces, and 
reasonable to present a solution of Eq. (20) as follows: 

is the temperature of  the environment from the side 

p._+ are the thermal transfer coefficients. Then it is 

T = ~ T n ( t ,  Xl, X2)(xO) n. 
n=0 

(43) 

We again substitute relation (43) into (40) and require that 

0 
x3 

f L ( T ) ( x ~ ) " d x  3 = O, 
-x~ 

n = 0 , 1 , 2  . . . . .  ( 4 4 )  

Note that this system should be supplemented with two boundary conditions (42). By virtue of the Fourier law, 
these conditions can be represented in the form 

(45) 

where A~3 = A33(Xl, x2, _+x~ The system of equations (44) and (45) determines the functions T n which depend 
only on the time and two spatial coordinates. 

Equations (44) and (45) have the most simple form for thin shells because, in this case, the Lam6 parameters 

H i, i = I, 3, can be approximately considered as independent of  x 3, and it suffices to take only two or three terms 
in expansion (43). 

Consider a thin shell of  constant thickness H = 2h (h = x ~ reinforced along equidistant surfaces. Let x 3 be 
the distance from the reference surface (x 3 = 0) of  the shell to a reinforced layer. Then H 3 = 1. Let H l and 
H 2 and the reinforcement parameters be independent of  x 3. We take only three terms in expansion (43). Then, 

for n = 0, conditions (45) and Eq. (44) take the form 

-T- A33(Tt + 2hT2) = I.t__.(T 0 -I-hT 1 +h2T2 - T+'*), (46) 

CO., = (H1H2)-' Z [HIH2 H'~I Z (H;l AijO.j)].i-(q~-q3)+ HW" 
i=1.2 j=l.2 

(47) 

where 

h 
0 = ~Td.'c 3 = H T  0 + 2h3T2.  

3 
- h  
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Since q.~ are given in (42), Eq. (47) can be rewritten as follows: 

CO,t = (HIH2)-I Z [HIH2H[I Z (H-flAijO,j) ] 
i=1,2 j=l ,2  

- g _ ( T  0 - h T  1 + h 2 T 2  - T o . )  - I t + ( T  0 + h T  I + h 2 T 2  -T+,,,) + HW. (48) 

Note that Eq. (47) can be immediately derived f rom the equation of thermal balance for an element of  a thin 

shell of finite height H H I H 2 dx t dx,. 
Thus, the closed system of equations (46), (48) determines three functions ~, i = 1, 3, independent of  the 

variable x 3. 
Restricting ourselves to two terms in expansion (43), we obtain 

- A 3 3 T I  = It+(To+hT I -T+,,.), A33TI = I t _ ( T 0 - h T  l - T _ ~ )  (49) 

instead of (46). The left-hand sides of thcse equalities indicate that qf  = q3- In view of this fact, Eq. (47) is re- 
duced to thc form 

CTo,t = (HIH2)-~ =~L, [HIH2H71 2 (HfI AqTO,j)] + W. 
i 2 j=l .2 .i 

(50) 

From Eq. (50), we can determine the quantity T 0. However,  in this case, system (49) is overdetermined with 

respect to T I and compatible only in exceptional cases, e.g., if It+ = I t ' ,  T+~, = - T ~ ,  and T o = 0 This means 

that, in the general case, in the solution of the problem of  heat conduction in thin shells, it is reasonable to take three 

terms in expansion (43). 
Ncvcrtheless, if g+ = It_ and T+o, = T_.o, then, neglecting effects of  the second order of smallness in the 

thickness of a thin shell, we can assume that the temperature  T is independent of x 3. In this case, the heat- 
conduction equation can be derived from Eq. (47) as 

CT, t = (HIH2)-I ~_1, [H1H2Hi-I Z(H-flAijTj)] - 2H-IIt+(T-T+o,,) + W, 
i 2 j= I .2  .i 

where T 3 = 0. If the lateral surfaces of the thin shell are thermally isolated, then we can again assume that T 3 = 0. 

In this case, the heat-conduction equation has form (50), where T O = T. 

4. Solution of the Stationary Heat-Conduction Problem for a Thin Conic Shell 
for Various Structures of Reinforcement 

For a more visual demonstration of the influence o f  the structure of  reintbrcement on the distribution of the 
temperature in a shell, we consider some examples for which the heat-conduction problem can be solved analyti- 
cally. We consider a stationary axially symmetric heat-conduction problem (in the absence of internal heat sources) 
for a thin conic shell of  revolution reinforced along equidistant surfaces with fibers of various orientations (circular, 

meridional, or spiral). 
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The surface of a conic shell with conicity angle V is described by the equalities 

Yl = ( x l t a n v  + x3cosv)cosx2,  Y2 = (xltangt + x3cosv)sinx2,  

Y3 = Xl -- x3sinllt, (51) 

where xi and Yi are, respectively, the curvilinear orthogonal coordinates and rectangular Cartesian ones, Oy 3 is 
the axis of revolution of the shell, x I is the distance from points of the midsurface of the shell (x  3 = 0) to the 

plane Y3 = 0 and varies in the interval 0 < yO < Xl < y~, the values x t = yO and x I = y~ specify the lower and 
upper edges of the shell, respectively, x 2 is the polar angle, 0 < x 2 < 2re, and x 3 is the distance between the re- 
inforced layer and the midsurface, - h  < x 3 < h. With regard for equalities (51), the Lame parameters have the 
lbrm 

H I = cos- l lg ,  H 2 = x l t a n V + x 3 c o s ~  -- x l tanV,  H 3 = 1, ~ = const, (52) 

where the approximate equality is admissible by virtue of the assumption on the thinness of the shell. 
In the absence of internal heat sources, the equation of  the stationary axially symmetric problem of  heat con- 

duction Ibr an axially symmetrically reinforced shell with thermally isolated lateral surfaces has the tbrm [see (50)] 

( H  l H2) - I (H2  H / I  A l l  T')" = 0 .  Whence, by using relations (52), we obtain 

H 2 H l l A i t T "  = q. = const or XlAll T'  = Q0 = q . s i n - t v  = const, (53) 

where q, is the constant of integration that has the meaning of the meridian component of the vector of thermal 
flow multiplied by H 2 and is determined from the boundary conditions. The prime denotes differentiation with 
respect to x I. 

We consider that the shell is meridionally symmetrically reinforced with two families of fibers ( cq = - ix  2 = 
tx) made of the same isotropic material ().li =).2t = ).12 =)-22 =) . l )  and wound with the same density 

(tol = ~ = to)- In this case, by virtue of (38), the thermal conductivity Lil in (53) has the form 

All = cosZot[2to)., + (1 -2to);~.bl + sin2 o~[2to).~ z + ( 1 -  2m)).~']- ' .  (54) 

By taking into account the most widespread modem methods of winding or placement of the reinforcement in 
composite shells, we require that fibers preserve areas of cross sections along their trajectories. The condition of 
constancy of cross sections of fibers for thin shells of revolution with axially symmetric structure of  the reinforce- 
merit is [51 

H 2 t o c o s e t  = to .  = cons t ,  (55) 

where to, determines, up to a factor, the total area of cross sections of fibers of  the chosen family. For the edge 
0 Xl = Y3, where fibers enter the shell, condition (55) is reduced to 

H2(Xl)to(Xl)COSCt(X 1) = H2(yO)tO0cosct(y30) = const, (56) 

where to o is the initial value of co at the edge .q = yO. In what follows, we suppose that the shell is wound at a 
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constant angle of reinforcement ~ = const. By using relations (52), we obtain from (56) that 

0 - I  Z-I  03(Xl) = Y3 Xl 030 or 03(Z) = 030- (57) 

X z yO-,-I Here, z = l~. 3: is a new dimensionless variable. In this notation, the edges of the shell are defined as z = 
0( 0 . -1  1. 0 \ -1  zo=Y3 Y3) =1 and z = z i = y 3 t Y 3 )  >1.  Thus, i f theang leof re in fo rcement i sno tequa l to  ~ / 2 ,  t hen the in -  

tensity of reinforcement in a thin conic shell is determined by equality (57). For a circular winding, ct = re/2. 
Therefore, cosec = 0 and Eq. (55) has no sense. In this case, the function co(z) satisfying the physical constraints 
(35) should be specified arbitrarily. 

We construct solutions of the heat-conduction problem for various types of winding. Let the reinforcement of a 

shell be circular (~  = rt/2), and let the function co have a linear distribution in z: 

co = Az  + B, A = ( ~ l - ~ 0 ) ( z l - z 0 )  -I ,  B = ( z t - ~ o - Z o ~ t ) ( z l - z o )  -I ,  (58) 

where ~o and ~1 are the values of the function 03 on the edges z = Zo, zl, respectively. In this case, with 
regard for (54) and (58), a solution of the heat-conduction equation 

ZAIHT" = q0 = const (59) 

(the prime denotes differentiation with respect to z) has the form 

T = 2 A ( k b - k t ) ( z - 1 ) + [ k t + 2 B ( k h - k i ) ] l n z  ( O I - O o )  + | 
2A(kb - ~i)(zl - 1) + [k t + 2B(k b - k l)] In zl 

(60) 

where O o and O t are the boundary values of the temperature on the edges z = z0, zt, respectively. If the den- 
sity of reinforcement co is uniformly distributed over the shell (03 =U0 = ~i =const) ,  then (58) implies that 
A = 0, and relation (60) takes the form 

T = (O i - O 0 ) l n  - l z I l n z + O  0. 

That is, in the case of a circular winding for co = const, the temperature is independent of the thermal characteris- 
tics of the phases of the composition and volume content of the reinforcement as in the case of the isotropic material 
of the shell. 

We consider the shell reinforced along meridional directions (c~ = 0). In this case, with regard for (54) and 
(57), a solution of the heat-conduction equation (59) has the form 

(kb Z +2(kl - Kb)030) ( kbZ l  + 2 ( k l -  kb)CO0 ] (61) 

For the shell with spiral winding at an angle ~ = ~ /4 ,  by using (54) and (57), we obtain the following 

solution of Eq. (59): 

T = Q0{ln[2k, kbz 2 + 2 ( k , -  ~ .b )2030Z-4 (k , -  kb)2030] 

k t - 3 K b  In 4 K t k b Z + 2 ( k t - k b ) 2 0 3 ~  l 

~/(~.1 _~.b)2 +8~.l~.b ~ll~.bZ+2(~.l_~.b)2030 +.vr ~ j + QI, 
(62) 
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where D = 4o~2(~,, - ~.b)2[(kl - ~.b) 2 + 8X I ~'b] > 0, Q0 and Ql are the constants of  integration determined from 

the thermal boundary conditions: by using the temperatures T(z0) = O 0 and T(zj) = O I on the edges or the ther- 
mal flow q(z0) and temperature T(zo) (the expressions for Q0 and Q1 are omitted here in view of  their awk- 
wardness). 

Distributions of  the temperature in a thin metal-composite conic shell made of copper (~-b = 400 W / m .  deg, 

c b = 419J/kg.  deg, and Pb = 8940 kg/m 3 [14]) reinforced with steel fibers (Xl = 45 W/m-  deg, c I = 568 J /kg.  

deg, and Pl = 7780 kg/m3) are shown in Fig. 1. The faces of the shell are thermally isolated, and the thermal flow 

q0 characterized by the value y~  ~ q 0  = 14,000 W/m and the temperature T(zo) = 300~ are given on the 
edge z0 = 1. Curve 1 corresponds to the structure with circular (r = n/2)  and uniform windings of  the reinforce- 
merit ( co = 14.4/99). Curve 2 corresponds to a circular winding with linear distribution of the intensity of  the rein- 
forcement: moreover, 2~  0 = 0.015 and 2 ~  I = 0.22. Curves 3 - 5  describe distributions of  the temperature in the 
shell with circular (r = n /2) ,  meridional ( ~  = 0), and spiral ( ~  = x /4)  structures of reinforcement, respec- 
tively, for the reinlbrcement density defined by (57) with the initial condition 2o) 0 = 0.8. The condition of equal 
total consumption of the reinforcement in these shells defined by the relation 

2/t Y.~ Zl 

f2 = 2h ~ d.r2 ~ 2to(x,)H, Hzdx , = 8nh(y~ ~ o3(z)zdz 
0 : y~) =() 

is taken as a criterion of comparability for these projects. 

T,~ 
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Fig. 1 

Comparison of  curves 1-3 shows that the intensity of reinforcement has a considerable effect on the tempera- 
ture distribution for the same direction of winding ( ~  = n/2). Comparison of curves 4 and 5 with curves 1 and 2 is 

useful for the visualization of the behavior of  T with variation in the entire structure of reinforcement (the direction 

and density of  reinforcement). Comparison of  curves 3 - 5  illustrates the variation in T versus the angle of  
reinforcement for the same density (57). If  we calculate the total amount of  heat accumulated by a shell with 
various structures of  reinforcement by the formula 
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2n Y~ z, 

Q : 2h f dx2 I CTHIH2d'rl = 4 ~ h ( Y ~ 1 7 6  I C(z)T(z)zdz" 
0 yO zo 

where the quantity C is known from (33), we make sure that the structures corresponding to curves 2 and 3 accu- 

mulate, respectively, the maximum and minimum amount of  heat Q, which is well seen in Fig. 1. 
Thus, the solutions of the stationary heat-conduction problem (60)-(62) for a thin conic shell and the curves 

displayed in Fig. 1 show that the temperature field in the shell considerably depends on the structure of  reinforce- 
ment (o~ and co) and thermal characteristics of the composition phases (~,l and ~'b). Therefore, by varying the 
structure of reinforcement, we can formulate problems of purposeful control by using various thermal-physical cri- 
teria. Below, we consider one of these problems of rational reinforcement. 

5. Design of Thermally "Transparent" Thin Shells 

We consider the stationary variant of  Eq. (50), 

[ HIH2Hf-t E(H-f~A~iTO,j)] = -H~H2,W, 
i 2 j=l ,2  i 

(63) 

under conditions (49). This case of the distribution of temperature is of interest because the thermal flow q3 in the 
transverse direction does not change across the thickness of a shell (q3,3 = 0). In addition, the amount of heat en- 

tering the shell through one lateral surface completely leaves the shell through another lateral surface of it [as 
demonstrated by the left-hand sides of  relations (49)]. That is, the shell is as if "transparent" lbr the thermal flow in 
the transverse direction. However, the specific feature of system (49), (63) lies in the fact that three equations 
contain only two unknown functions, T O and T l, which determine the temperature in the shell. This means that 
the system is overdetermined. To close this system, we suppose that the thermal conductivity A33 is an unknown 
function that must be lbund in the process of solution. Since A33 is expressed in terms of the intensities of 
reinforcement cot` according to relation (38), we can speak in this case about a solution of the problem of rational 
reinforcement. Moreover, the condition of ~'transparency'" of a thin shell with respect to the thermal flow in the 
transverse direction serves as a criterion of rational design. 

To obtain the system of solving equations for the problem on rational reinforcement, we translbrm system (49) 
to the form 

A33(it+ - ~/._)T I = g+it_(2To - T+oo - T_o~), 

A33(it+ + g _ ) T  1 = I t + i t _ ( - 2 h T  1 + T+,,. - T_~.). (64) 

First, we assume that g+ = It_ = It. Then, from the first equation of system (64), we obtain the following 
expression for To: 

(T+** + T_~.) 
T O = (65) 

2 

If  T O ~e const, then the substitution of (65) into (63) implies the equation of the first order with respect to the 
reinforcement parameters cot, and eck: 
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=~I.2[HI H2 H71 Z(HfI  Aij(T+** + T-**).j ] = -2Hill2 W, 
i j=l,2 ,i 

(66) 

where A/j are expressed in terms of  cot, and cz k by relations (38). To close Eq. (66), it is necessary to impose 

additional constraints on the reinforcement parameters, for example, the condition of  constancy of cross sections of  
fibers. It has the form div(coklk) = 0 [3] in the general case, where l k is the unit vector setting the direction of 

reinforcement with fibers of the k th family. For thin shells, this condition acquires the form 

(H2cokCOSOt,).l +(Hlcoksin~l.).2 = 0, k = 1, N. (67) 

For N = 1, the system of two equations of the first order (66) and (67) is closed with respect to two functions 
col and cq. For N = 2, this system is underdetermined because it consists of three equations and contains four 
reinforcement parameters ok and cz k, where k = 1, 2. In this case, we can close the system by assuming that 
one of the reinforcement parameters, e.g., cx l, is a known function or by specifying additional conditions that relate 
the reinforcement parameters. For example, one can place fibers along symmetric trajectories 

cz 2 = - c z  t (68) 

or along orthogonal directions 

Ct'2 = Cf'I + _.K. (69) 
2 

For N > 3, to close system (66), (67), it is necessary to use conditions of the type (68) and (69) and to 
arbitrarily specify a part of the reinforcement parameters. For fibers with the area of  cross sections varying with 
length, we can impose constraints of the type (68) and (69) on the trajectories of reinforcement and quite arbitrarily 
set the intensities of reinforcement provided that they satisfy the physical constraints (35) and Eq. (66). 

Suppose that system (66), (67) is already integrated with respect to co~ and cc k. Then (38) implies the ex- 
pression for A33, and the second equation in (64) gives 

T 1 = It2(T+** - T_**)(2ItA33 +I t2H)- I .  (70) 

Thus, for It+ = It_ = It and T O *: const, the problem of  rational reinforcement is reduced to the system of equa- 
tions (65)--(67), (38), and (70). 

For T O = const, Eq. (66) is identically true only for W = 0. In this case, an arbitrary reinforcement satisfies 
the conditions of rational design and T l is determined from (70) lbr arbitrary A33 depending only on the structure 
of reinforcement. 

Remark 1. In the above-mentioned case, ~t+ = It_ = It, and the function T O is uniquely determined from 
relation (65); moreover, the boundary conditions for it on the edges of the shell are not considered. This means that 
local effects revealed near the edges should actually be neglected in this case, which is admissible if T O determined 
by relation (65) slightly differs on the edges from the boundary values. The mentioned specific features are absent if 
the thermal flows are given on the edges or thermal exchange is realized by the Newton law because, in this case, 
the thermal boundary conditions pass into the boundary conditions for reinforcement parameters. 

Now let It+ ,: I t .  In this case, by using the second equation in (64), we obtain the following dependence of 

T I on A33: 



HEAT CONDUCTION OF SHELLS REINFORCED BY FIBERS WITH CONSTANT AND VARIABLE CROSS SECTIONS 

Tt = It+ It_ (T+oo - T_oo)[A33 (it+ + It_) + It+ It_ H] - I .  

1689 

To determine the dependence of T O on A33, we use the first equation in (64) and the equation 

It+(T0 + ~ h - T + _ )  = - ~ _ ( T 0  - rl h - T _ . ) ,  

which follows from (49). As a result, we obtain 

(It+ - I t_)hT! = It+ T+= + It_T_= - ~ i t + +  g _ ) T  0. (71) 

By using Eq. (71) and the first equation in (64), we obtain 

(It+ - It_)Tg 

This implies that 

= A; It,O_(2To r + . - T _ . ) =  h-'[It+r+.+It_v__-(It++It_)ro]. 

A33 (It+ T+. + It_ T_.)  + hit+ g_(T+oo + T_.)  
T O = , H = 2h, 

Hit+it._ + (it+ + Lt_)A33 
(72) 

where A33 has the form (38). By substituting the last relation into the heat-conduction equation (66), we obtain the 
differential equation of the second order with respect to co k and of the first order with respect to ~. :  

i j=l,2 Hi t+I t -  + (It+ + It-)A33 ,j ,i 

-I 
A33 = (~b  l a  + Z~ '~ l f '0k  . 

k 
(73) 

By supplementing Eq. (73) with the conditions of constancy of cross sections of  fibers (67), we obtain the system of 
equations for the parameters of rational reinforcement. However, unlike the case It+ = It_, the boundary condi- 
tions for T O on the edges of the shell must be taken into account in this case. Owing to relation (72), these 
conditions determine the boundary values for A33 and, what is the same, for o~ k. 

Now we consider a solution of the problem of rational rcinforcement (73), (67) for thin shells of revolution with 
axially symmetric structure of reinforcement and axially symmetric distribution of  temperature. Let the variable x t 
specify the meridional direction. Then Eq. (73) has the tbrm 

d (hg+it_(T+~.+T_**) + (__it+T+. + It___T_~)[Kb' (1 - 20h)+ K~ 20h ] - '  
A-II R-I(xl)HI(Xl)Qo (74) 

dx I ~, Hit+~_ + (it+ + ~ _ ) [ X b t ( l -  2oll) +)L112r -I ) 

/'or N = 2  W = 0 ,  o~ 2 = - a l ,  ~ =r-~ and Xki=kk2,  k = l ,  2, where 

- "~ -1  - 1  
All  = [~ .b( l -  2r + ~.II20)I]COS 2 (X I + sin-Ctl[~.bl(l -- 20)i)  + ~122t01] , (75) 
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R(x l) is the distance from points of  the reference surface of  the shell to the axis o f  revolution, and Qo is the con- 
stant of  integration that has the meaning of  a thermal flow multiplied by R(x  l) .  We supplement Eq. (74) with the 

condition of  constancy of  cross sections of  fibers: 

R(xl)o~tcosct l  = CO*I = const. (76) 

By using (75) and (76), we obtain the following relation for All :  

All  = [~Lb(1-2COl)+~.tI2COl]CO21(RCOl) -2  +[I-CO~I(RCOl)-2][),.bI(1--2COl)+~L/212COl] - I .  (77) 

With regard for (77), the differential equation (74) contains only one unknown funct ion Col, and the two-point 

boundary-value problem for it can be approximately solved by the shooting method. I f  the thermal flow q0 and 

temperature T0(x ~ = Tin are given on the edge Xl = x ~ then Qo = - q o  R - I ( x ~  in Eq. (74) and the initial con- 
dition for Col is defincd by the equality following from (72): 

(~..~ _ ~.bt )C01 = IX+ T+~. + Ix_ T_~. - (Ia+ + Ix_)T o _ ~.bl ' (78) 

hix+ IX_ (2T o -T+~, -T_n) 

where x I = . t  o and T O = Tin. If T O has the same value To(x ~ = To(x~) = Tin on both edges of  the shell (.q = 

x ~ and ,q = x I > x~ then, in the absence o f  internal heat sources ( W = 0), the solution o f  the heat-conduction 

equation (63) is a constant function, T O = Tin = const .  This follows lu the max imum principle for elliptic differ- 

ential equations o f  the second order and the fact that the operator on the left-hand side o f  Eq. (63) is elliptic for 
arbitrary reinforcement parameters satisfying the physical constraints (35). In this case, T O is known, and, by using 

relation (78), we can determine coj lbr the entire shell. The expression tbr the angles o f  reinforcement cq follows 

from (76). Thus, for T O = const, the problem of  rational reinforcement is so lved analytically in the axially 
symmetric statement. 
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