
Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety: Design, synthesis, nematocidal activities, and pesticide–likeness analysis

Jixiang Chen, Chengqian Wei, Sikai Wu, Yuqin Luo, Rong Wu, Deyu Hu, Baoan Song

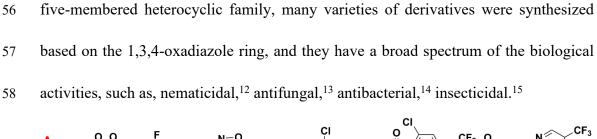
PII:	S0960-894X(20)30098-6
DOI:	https://doi.org/10.1016/j.bmcl.2020.127028
Reference:	BMCL 127028
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	3 January 2020
Revised Date:	5 February 2020
Accepted Date:	11 February 2020

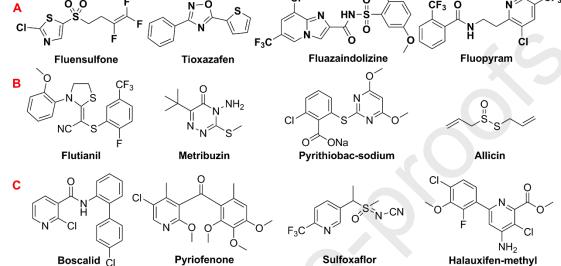
Please cite this article as: Chen, J., Wei, C., Wu, S., Luo, Y., Wu, R., Hu, D., Song, B., Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety: Design, synthesis, nematocidal activities, and pesticide–likeness analysis, *Bioorganic & Medicinal Chemistry Letters* (2020), doi: https://doi.org/10.1016/j.bmcl. 2020.127028

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety:


2	Design, synthesis, nematocidal activities, and pesticide–likeness analysis					
3						
4	Jixiang Chen, Chengqian Wei, Sikai Wu, Yuqin Luo, Rong Wu, Deyu Hu, Baoan Song*					
5						
6	State Key Laboratory Breeding Base of Green Pesticide and Agricultural					
7	Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering,					
8	Ministry of Education, Research and Development Center for Fine Chemicals,					
9	Guizhou University, Huaxi District, Guiyang 550025, China					
10	*CORRESPONDING AUTHOR FOOTNOTE					
11	To whom correspondence should be addressed. Tel.: +86(851)8362-0521; fax:					
12	+86(851)8362-2211. E-mail: <u>basong@gzu.edu.cn</u> .					

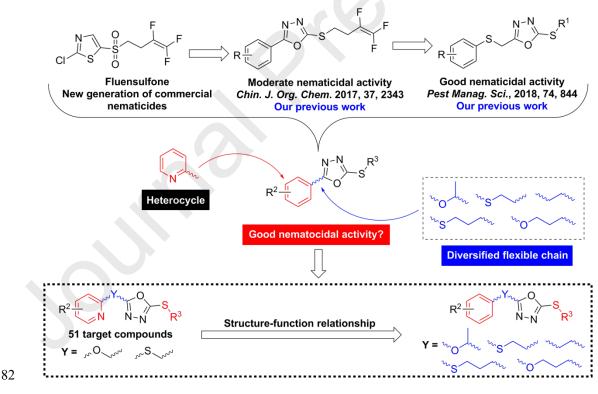

14	ABSTRACT: Seventy-two novel 1,3,4-oxadiazole thioether derivatives containing
15	different flexible-chain moieties were designed and synthesized. The nematicidal
16	activities of all the title compounds were evaluated, and some compounds showed
17	excellent nematicidal activities against citrus nematodes. The compounds 15, 16, 18,
18	27, 41, 42, 44, 53, and 71 had the mortality to citrus nematodes of 92.5, 93.7, 90.3,
19	91.5, 92.6, 92.8, 93.5, 91.3, and 91.0% at the concentration of 100 mg/L, which were
20	better than the control agent of avermectin (85.9%). After the test concentration was
21	reduced to 50 mg/L, the nematicidal activities of the compounds 16, 42, 44, 53, and
22	71 were still superior to avermectin (65.1%), with the mortality of 72.3, 71.3, 70.6,
23	71.1, and 73.9%, respectively. The LC_{50} values of the compounds 16, 42, 44, 53, and
24	71 were 16.3, 18.8, 20.8, 17.5, and 14.7 mg/L, which were better than the commercial
25	positive control agent of avermectin (24.8 mg/L). Meanwhile, the qualitative and
26	quantitative analysis of the pesticide-likeness shows that compound 71 exhibits the
27	potential insecticide-likeness. This work indicates that novel 1,3,4-oxadiazole
28	thioether derivatives containing flexible-chains deserve further research as potential
29	nematicides to protect citrus crops in the future.

30

Keywords: 1,3,4-Oxadiazole, Nematicidal activity, Thioether derivatives,
Flexible-chain, Pesticide-likeness

34	The citrus nematodes (Tylenchulus semipenetrans Cobb) are an important					
35	plant-parasitic nematode with the high degree of specialization and a small range of					
36	host plants, which mainly harm to citrus plants. ^{1,2} There are many obvious					
37	manifestations that serve as the warning when the roots of citrus tree were attacked,					
38	such as, the yellowing of the leaves, short planting, poor growth, and falling flowers					
39	and fruits. ^{3,4} What is more, the fruit cannot bear and the tree may be die when the					
40	trees are seriously endangered by the citrus nematodes, which caused huge losses for					
41	the citrus production. ⁵					
42	In the past ten years, the application of chemical nematicides has played an extreme					
43	important role in the control of nematodes, which greatly reduce the economic losses					
44	caused by the nematodes. ⁶ However, the problems of serious environmental pollution					
45	and drug resistance are raised with the long-term reuse of the high toxic nematicides,					
46	such as dibromochloropropane, methyl bromide, oxamide, and aldicarb. ⁷ Meanwhile,					
47	many high toxic nematicides are restricted or banned in recent years as people					
48	become more aware of human health and environmental protection.8 Therefore, to					
49	meet the requirements of modern agricultural development, many researches were					
50	conducted to discover and develop the nematicides with the merits of high-efficiency,					
51	low-toxicity, and environmentally friendly.9					
52	The five-membered heterocyclic compounds play a very important role in the					
53	development of nematicides. For example, the tioxazafen and fluensulfone (Fig. 1A)					
54	containing the 1,2,4-oxadiazole or thiazole ring have been successfully marketed as					
55	new generation nematicides. ^{10,11} As one of the most important members of the					

59

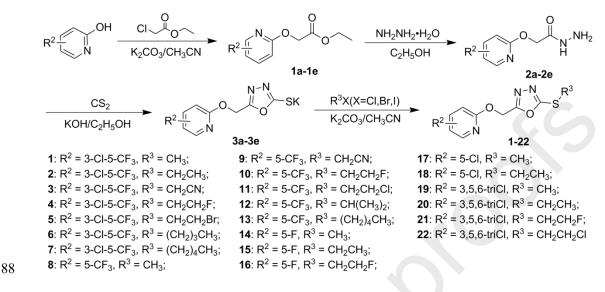

Fig. 1. The structures of the commercial pesticides. (A) The structures of the commercial 60 61 nematicides. (B) The structures of the commercial pesticides containing thioether groups. (C) The structures of the commercial pesticides containing pyridine groups. 62

The thioether groups exhibit a broad spectrum of the biological activities, and 63 receive more and more attention from many researchers.¹⁶ The biological activities 64 and the hydrophilicity of the 1,3,4-oxadiazole compounds can be increased by 65 introducing the thioether groups.¹⁷⁻¹⁹ The flutianil, pyrithiobac-sodium, metribuzin, 66 and allicin containing thioether groups (Fig. 1B) are the representative commercial 67 pesticides, which play an important role in plant protection. 68

In our previous research, a series of 1,3,4-oxadiazole thioether derivatives 69 containing the trifluorobutene moiety were designed and synthesized based on the 70 lead compound of fluensulfone, and some compounds showed moderate nematicidal 71

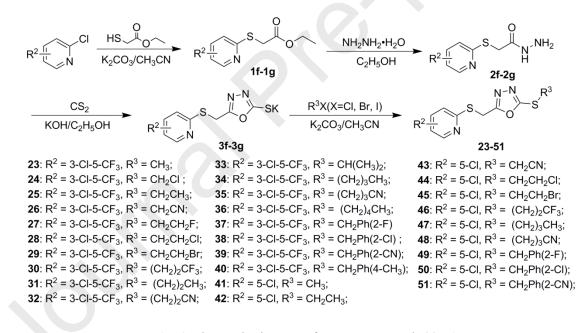
activities against citrus nematodes.¹² Subsequently, a series of 1,3,4-oxadiazole 72 bisthioether derivatives were designed and synthesized through introducing the sulfur 73 74 atom and methylene group to linked the benzene ring and the 1,3,4-oxadiazole ring, and some compounds show good nematicidal activities against Caenorhabditis 75 elegans.²⁰ In addition, some studies show that biological activity of the pyridine 76 moiety is fully reflected in many pesticides,^{21,22} such as boscalid, pyriofenone, 77 sulfoxaflor, and halauxifen-methyl (Fig. 1C). In present work, the pyridine ring was 78 used to instead of the benzene ring, and the methylene group connected to the sulfur 79 or oxygen atom was used as the flexible chain to link the pyridine ring and the 80

81 1,3,4-oxadiazole ring (**Fig. 2**).



83

Fig. 2. The design idea of target compounds.


Therefore, the novel 1,3,4-oxadiazole compounds **1–51** containing the different flexible linker were synthesized (Fig. 3 and 4) according to our previously reported 86 method,^{12,23} and the structures of all target compounds were characterized by ¹H

87 NMR, ¹³C NMR and HRMS spectra.

89

Fig. 3. The synthesis route of target compounds 1-22.

90 91

Fig. 4. The synthesis route of target compounds 23-51.

The nematicidal activities of the target compounds **1–51** were evaluated by reported methods,^{12,24} and the commercial nematicide of avermectin was used as the positive control. The nematicidal activities of the compounds **1–51** against citrus nematodes were listed in **Tables 1** and **2**. Some target compounds showed better

96	nematicidal activities compared to positive control agents. For example, The
97	compounds 15, 16, 18, 27, 41, 42, and 44 showed excellent nematicidal activities
98	against citrus nematodes, with the mortality of 92.5, 93.7, 90.3, 91.5, 92.6, 92.8, and
99	93.5% at the concentration of 100 mg/L, which were better than the control agent of
100	avermectin (85.9%). When the test concentration was reduced to 50 mg/L, some
101	compounds still showed good nematicidal activities against citrus nematodes, which
102	were better than the control agent of avermectin (65.1%). For example, the mortality
103	of the compounds 16, 42, and 44 were 72.3, 71.3, and 70.6% against citrus
104	nematodes, respectively.

105

 Table 1. The nematicidal activities of the compounds 1–22 against citrus nematodes.

~ .	- 2		mortality/% ^a		
Compound	R ²	R ³	100 mg/L	50 mg/L	
1	3-Cl-5-CF ₃	CH ₃	71.3±1.9	43.0±1.9	
2	3-Cl-5-CF ₃	CH ₂ CH ₃	71.6±1.9	40.4±2.1	
3	3-Cl-5-CF ₃	CH ₂ CN	64.2±2.5	33.1±2.5	
4	3-Cl-5-CF ₃	CH ₂ CH ₂ F	74.0±1.0	48.7±2.1	
5	3-Cl-5-CF ₃	CH ₂ CH ₂ Br	70.4±1.6	39.1±2.8	
6	3-Cl-5-CF ₃	(CH ₂) ₃ CH ₃	50.4±1.8	27.6±0.7	
7	3-Cl-5-CF ₃	$(CH_2)_4CH_3$	43.1±2.0	27.7±1.3	
8	5-CF ₃	CH ₃	59.8±1.9	29.7±1.1	
9	5-CF ₃	CH ₂ CN	43.0±2.3	26.2±2.0	
10	5-CF ₃	CH ₂ CH ₂ F	66.2±1.6	40.5±3.0	
11	5-CF ₃	CH ₂ CH ₂ Cl	63.3±1.4	38.9±1.1	
12	5-CF ₃	$CH(CH_3)_2$	51.3±1.4	31.3±1.6	
13	5-CF ₃	(CH ₂) ₄ CH ₃	33.1±2.0	14.6±1.1	
14	5-F	CH ₃	82.2±2.3	53.4±3.6	
15	5-F	CH ₂ CH ₃	92.5±1.0	69.4±1.2	

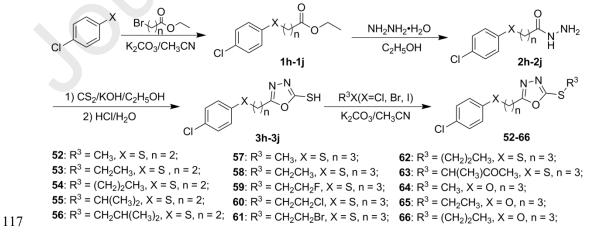
Journal Pre-proofs							
16	5-F	CH_2CH_2F	93.7±1.4	72.3 ± 0.7			
17	5-Cl	CH ₃	79.9±1.6	57.6±2.4			
18	5-Cl	CH ₂ CH ₃	90.3±1.8	65.2±0.6			
19	3,5,6-triCl	CH ₃	35.9±1.5	15.7±1.5			
20	3,5,6-triCl	CH ₂ CH ₃	47.7±3.1	22.3±0.8			
21	3,5,6-triCl	CH ₂ CH ₂ F	56.5±2.1	32.7±1.3			
22	3,5,6-triCl	CH ₂ CH ₂ Cl	45.2±2.6	21.0±1.8			
Avermectin ^b	-	-	85.9±2.5	65.1±1.6			

106 ^a The average of three tests.

108

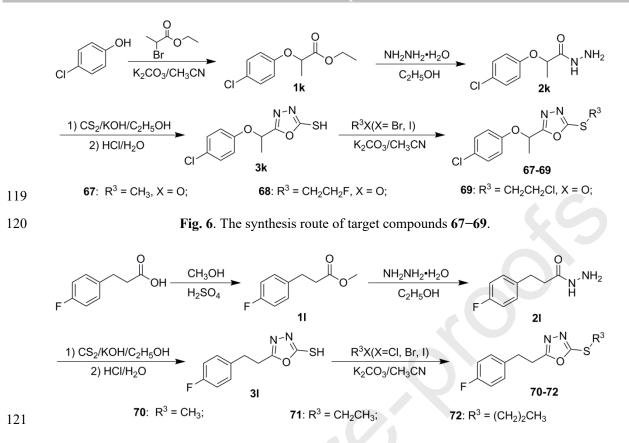
107 ^b The commercial nematicide avermectin was used as a positive control.

Compound	R ²	R ³ -	mortality/% ^a		
Compound		K -	100 mg/L	50 mg/L	
23	3-Cl-5-CF ₃	CH ₃	77.9±2.5	46.4±3.8	
24	3-Cl-5-CF ₃	CH ₂ Cl	83.7±3.0	54.3±2.8	
25	3-Cl-5-CF ₃	CH ₂ CH ₃	83.0±2.1	51.0±3.1	
26	3-Cl-5-CF ₃	CH ₂ CN	71.4±3.1	29.7±1.7	
27	3-Cl-5-CF ₃	CH ₂ CH ₂ F	91.5±3.6	62.7±3.2	
28	3-Cl-5-CF ₃	CH ₂ CH ₂ Cl	89.1±2.6	60.3±1.4	
29	3-Cl-5-CF ₃	CH ₂ CH ₂ Br	85.0±3.3	50.4±2.9	
30	3-Cl-5-CF ₃	$(CH_2)_2CF_3$	72.0±2.1	30.7±1.8	
31	3-Cl-5-CF ₃	$(CH_2)_2CH_3$	58.1±2.0	34.6±2.9	
32	3-Cl-5-CF ₃	(CH ₂) ₂ CN	75.2±3.2	23.1±2.3	
33	3-Cl-5-CF ₃	$CH(CH_3)_2$	54.4±2.8	36.8±3.0	
34	3-Cl-5-CF ₃	(CH ₂) ₃ CH ₃	50.9±2.5	25.9±2.7	
35	3-Cl-5-CF ₃	(CH ₂) ₃ CN	48.6±2.9	17.5±2.6	
36	3-Cl-5-CF ₃	$(CH_2)_4CH_3$	35.2±3.1	14.9±2.1	
37	3-Cl-5-CF ₃	$CH_2Ph(2-F)$	18.8±1.8	6.6±1.8	
38	3-Cl-5-CF ₃	CH ₂ Ph(2-Cl)	15.4±1.3	6.4±2.0	
39	3-Cl-5-CF ₃	CH ₂ Ph(2-CN)	16.3±2.0	5.8±0.9	
40	3-Cl-5-CF ₃	$CH_2Ph(2-CH_3)$	36.5±2.8	16.4±2.0	


Table 2. The nematicidal activities of the compounds 23–51 against citrus nematodes.

Journal Pre-proofs						
		Journal i to proo	10			
41	5-Cl	CH ₃	92.6±2.2	64.2±4.1		
42	5-Cl	CH ₂ CH ₃	92.8±2.9	71.3±2.6		
43	5-Cl	CH ₂ CN	75.0±3.3	38.2±3.6		
44	5-Cl	CH ₂ CH ₂ Cl	93.5±2.8	70.6±2.7		
45	5-Cl	CH ₂ CH ₂ Br	83.3±2.4	62.6±2.2		
46	5-Cl	$(CH_2)_2 CF_3$	78.5±2.7	41.3±3.2		
47	5-Cl	(CH ₂) ₃ CH ₃	66.0±5.4	33.0±2.7		
48	5-Cl	(CH ₂) ₃ CN	42.5±2.9	16.6±2.6		
49	5-Cl	$CH_2Ph(2-F)$	28.2±3.1	11.3±3.0		
50	5-Cl	CH ₂ Ph(2-Cl)	22.6±3.2	10.1±2.3		
51	5-Cl	CH ₂ Ph(2-CN)	26.1±2.4	12.1±1.7		
Avermectin ^b	-	-	85.9±2.5	65.1±1.6		

^a The average of three tests.


^b The commercial nematode avermectin was used as a positive control.

The preliminary structure-activity relationship of the compounds 1–51 showed that R³ is the small alkyl chain or halogen-substituted alkyl chain, the compound has a good nematicidal activity. On the contrary, the large groups, such as benzyl and pentyl, are not conducive to improving the nematicidal activity of the compound. Therefore, the compounds 52–72 were designed and synthesized based on the structure-activity relationship (Fig. 5, 6 and 7).

118

Fig. 5. The synthesis route of target compounds 52–66.

122

Fig. 7. The synthesis route of target compounds 70–72.

The nematicidal activities of compounds **52–72** is shown in **Tables 3** and **4**. The compounds **53** and **71** showed excellent nematicidal activities against citrus nematodes, with the mortality of 91.3 and 91.0% at the concentration of 100 mg/L, which were better than the control agent of avermectin (85.9%). When the test concentration was reduced to 50 mg/L, the compounds **53** and **71** still showed good nematicidal activities against citrus nematodes, with the mortality of 71.1 and 73.9%, respectively.

130 **Table 3.** The nematicidal activities of the compounds **52–66** against citrus nematodes.

Compound	R ³	Х		mortality/% ^a	
			n	100 mg/L	50 mg/L
52	CH ₃	S	2	82.6±5.1	67.6±3.5
53	CH ₂ CH ₃	S	2	91.3±1.7	71.1±2.1
54	$(CH_2)_2CH_3$	S	2	84.1±3.3	65.2±5.8

Journal Pre-proofs						
				<u>.</u>		
55	$CH(CH_3)_2$	S	2	80.5±3.3	36.1±2.9	
56	CH ₂ CH(CH ₃) ₂	S	2	73.7±3.6	31.6±5.0	
57	CH ₃	S	3	77.4±4.3	57.1±6.5	
58	CH ₂ CH ₃	S	3	83.9±3.3	64.9±7.0	
59	CH ₂ CH ₃ F	S	3	86.5±4.2	61.3±3.8	
60	CH ₂ CH ₃ Cl	S	3	85.1±3.8	64.1±3.7	
61	CH ₂ CH ₃ Br	S	3	82.3±4.3	62.7±2.2	
62	$(CH_2)_2CH_3$	S	3	78.1±3.2	35.7±2.8	
63	CH(CH ₃)COCH ₃	S	3	63.1±2.7	43.4±3.8	
64	CH ₃	0	3	79.4±4.8	63.9±3.2	
65	CH ₂ CH ₃	0	3	89.6±4.1	68.7±5.8	
66	(CH ₂) ₂ CH ₃	0	3	82.6±5.1	67.6±3.5	
Avermectin ^b	-	-	-	85.9±2.5	65.1±1.6	

131 ^a The average of three tests.

^b The commercial nematicide avermectin was used as a positive control.

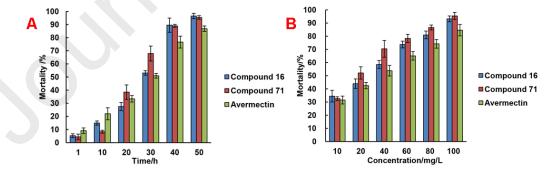
133 **Table 4.** The nematicidal activities of the compounds 67–72 against citrus nematodes.

Compound	R ³	mortality/%ª				
	K [*]	100 mg/L	50 mg/L			
67	CH ₃	78.0±4.4	57.3±7.1			
68	CH ₂ CH ₂ F	89.4±2.1	50.7±6.8			
69	CH ₂ CH ₂ Cl	81.3±4.9	48.2±1.4			
70	CH ₃	85.0±3.4	68.1±7.1			
71	CH ₂ CH ₃	91.0±2.7	73.9±4.7			
72	$(CH_2)_2CH_3$	86.4±4.7	68.0±2.6			
Avermectin ^b	-	85.9±2.5	65.1±1.6			

134 ^a The average of three tests.

^b The commercial nematicide avermeetin was used as a positive control.

The some LC_{50} values of compounds 1–72 were tested to further evaluate the nematicidal activities (**Table 5**). The compounds 16, 42, 44, 53, and 71 showed excellent nematicidal activities, with the LC_{50} of 16.3, 18.8, 20.8, 17.5, and 14.7 mg/L, respectively, which were superior to the control agent of avermectin (24.8


140 mg/L). Meanwhile, the nematicidal activities of the compounds 16 and 71 were also 141 evaluated at different times and concentrations (Fig. 8). The nematicidal activities of 142 the compounds 16 and 71 against citrus nematodes were lower than that of the 143 avermectin at 1 and 10 h at the concentration of 100 mg/L, but after 10 h, the 144 nematicidal activities of the compounds 16 and 71 were better than that of the 145 avermectin. At the same time, the nematicidal activities of the compounds 16 and 71 146 against citrus nematodes were consistently higher than that of avermectin at 48 h at

147 different concentrations.

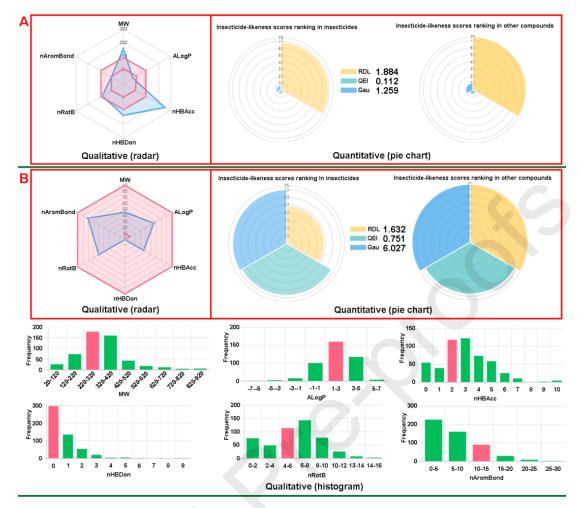
148	Table 5 . The LC_{50} of some compounds against citrus nematodes.	

Compound	LC ₅₀ /mg/L ^a	Compound	LC ₅₀ /mg/L ^a
15	23.9±3.9	44	20.8±7.4
16	16.3±1.3	53	17.5±5.2
42	18.8±3.1	71	14.7±2.2
Avermectin ^b	24.8±5.7	-	-

- 149 ^a The average of three tests.
- 150 ^b The commercial nematicide avermeetin was used as a positive control.

151

Fig. 8 (A) The changes of the nematicidal activities for the compounds 16 and 17 at different times when the concentration was 100 mg/L. (B) The changes of the nematicidal activities for the compounds 16 and 17 at different concentrations when the time was 48 h.


155 The overall structure-activity relationship of the compounds 1–72 against citrus

156 nematodes at the concentration of 100 mg/L is as follows: (a) When $R^2 = -Cl$, and R^3

157	= $-CH_3$, the nematicidal activities of those compounds decreased gradually with Y =
158	-SCH ₂ -, -SCH ₂ CH ₂ -, -OCH ₂ -, -OCH ₂ CH ₂ CH ₂ -, and -SCH ₂ CH ₂ CH ₂ Such as the
159	nematicidal activities of the compounds 41 (Y = -SCH ₂ -, R^2 = -Cl, R^3 = -CH ₃) > 52
160	$(Y = -SCH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 17 (Y = -OCH_2-, R^2 = -Cl, R^3 = -CH_3) > 64$
161	$(Y = -OCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -Cl, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -CL, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -CL, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -CL, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -CL, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -CL, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^2 = -CL, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2CH_2-, R^3 = -CH_3) > 57 (Y = -SCH_2CH_2-, R^3 = -CH_3-, R^3 = -CH_3) > 57 (Y = -SCH_2-, R^3 = -CH_3) > 57 (Y = -SCH_2-,$
162	-CH ₃). (b) When R^2 and Y are unchanged, the nematicidal activities of those
163	compounds with $R^3 = -CH_3$ is less the compounds with $R^3 = -CH_2CH_3$. Such as the
164	nematicidal activities of the compounds 18 (Y = -OCH ₂ -, R^2 = -Cl, R^3 = -CH ₂ CH ₃) >
165	17 (Y = -OCH ₂ -, R^2 = -Cl, R^3 = -CH ₃). (c) If R^2 and Y have not changed, the
166	nematicidal activities of those compounds can be improved when the R ³ is ethyl, and
167	a H atom on ethyl is substituted by a F atom. such as the nematicidal activities of the
168	compounds 27 (Y = -SCH ₂ -, R^2 = 3-Cl-5-CF ₃ , R^3 = -CH ₂ CH ₂ F) > 25 (Y = -SCH ₂ -, R^2
169	= -3-Cl-5-CF ₃ , R^3 = -CH ₂ CH ₃). In general, changes in the flexible chains (Y =
170	-SCH ₂ -, -SCH ₂ CH ₂ -, -OCH ₂ -, -OCH ₂ CH ₂ CH ₂ -, or -OCH ₂ CH ₂ CH ₂ -) have little effect
171	on the nematicidal activities of those compounds. However, the changes of the
172	substituents R^2 and R^3 can significantly affect the nematicidal activities of those
173	compounds. Meanwhile, when the para-position of those compounds are substituted
174	by a F or Cl atom, and R ³ are substituted by a short-chain alkyl chain containing an
175	electronegative atom, those are beneficial to the improvement of the nematicidal
176	activities.

177 The platform named Insecticide Physicochemical-properties Analysis Database 178 (InsectiPAD) (<u>http://chemyang.ccnu.edu.cn/ccb/database/InsectiPAD/</u>), which covers

179	495 approved insecticides and over 22,200 related physicochemical properties, was
180	used to evaluate the insecticide-likeness of the compound 71 and positive control
181	avermectin based on previously reported methods. ^{25,26} The insecticide-likeness
182	qualitative and quantitative analysis of the compound 71 and positive control
183	avermectin were illustrated in Fig. 9. The scores of Relative drug likelihood (RDL), ²⁷
184	Quantitative estimate of insecticide-likeness (QEI),26 Gaussian scoring function
185	(GAU), ²⁸ for the avermectin (Fig.9A) and compound 71 (Fig.9B) and were 1.884,
186	0.112, 1.259, and 1.632, 0.751, 6.027, respectively. The values of molecular weight
187	(MW), log of the octanol-water partition coefficient (ALogP), number of hydrogen
188	bond acceptors (nHBAcc), number of hydrogen bond donors (nHBDon), number of
189	rotatable bonds (nRotB), number of aromatic rings (nAromBond) for the compound
190	71 were 220-320, 1-3, 2, 0, 4-6, 10-15, respectively, which coincide with Lipinski's
191	Ro5 approach. ²⁹⁻³¹

192

201

202

193 Fig. 9 (A) The insecticide-likeness qualitative and quantitative analysis of the commercial 194 nematicide avermectin. (B) The insecticide-likeness qualitative and quantitative analysis of the 195 compound 71. RDL, Relative drug likelihood, QEI, Quantitative estimate of insecticide-likeness, 196 GAU, Gaussian scoring function, MW, molecular weight, ALogP, log of the octanol-water 197 partition coefficient, nHBAcc, number of hydrogen bond acceptors, nHBDon, number of 198 hydrogen bond donors, nRotB, number of rotatable bonds, nAromBond, number of aromatic rings. 199 It can be known from the analysis of insecticide-likeness that the avermectin has lower QEI (0.112) and GAU (1.259), but it has a higher RDL (1.884), which may be 200

caused by the characteristics of the avermectin (large molecular weight, lower AlogP

and nAromBond, high nRotB, nHBDon, and nHBAcc). Meanwhile, the compound 71

- exhibits potential insecticide-likeness, with the RDL, QEI, and GAU of 1.632, 0.751,
- 204 6.027, respectively, which may be determined by the better AlogP, nAromBond, and
- 205 nRotB.

206	In summary, seventy-two novel 1,3,4-oxadiazole thioether derivatives containing
207	flexible-chain moieties were designed and synthesized. The results of the nematicidal
208	activity assay showed that compounds 16, 42, 44, 53, and 71 had the better
209	nematicidal activities against citrus nematodes than the positive control agent of
210	avermectin. The structure-activity relationship of the compounds was analyzed and
211	the compound 71 exhibits the potential insecticide-likeness. This work demonstrates
212	that novel 1,3,4-oxadiazole sulfide derivatives containing flexible chain moieties have
213	the potential to protect citrus trees, and deserve further consideration in future
214	research.

215 Acknowledgments

216 The authors are grateful to the National Key Research and Development Program of

217 China (2018YFD0200100) and National Natural Science Foundation of China (No.

218 21672044) for supporting the project.

219 Abrreviations

LC₅₀, Median lethal concentration, RDL, Relative drug likelihood, QEI, Quantitative
estimate of insecticide-likeness, GAU, Gaussian scoring function, MW, molecular weight, ALogP,
log of the octanol-water partition coefficient, nHBAcc, number of hydrogen bond acceptors,
nHBDon, number of hydrogen bond donors, nRotB, number of rotatable bonds, nAromBond,
number of aromatic rings.

225 **Declaration of interest**

226 The authors declare no competing financial interest.

227 Supporting information

228 The Materials and Methods of this article can be found online at <u>https://doi.org/</u>.

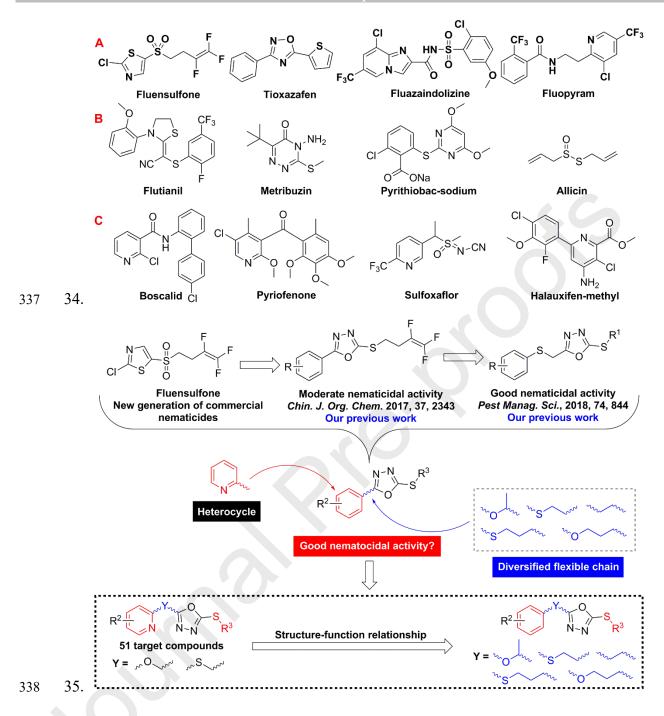
229 **References**

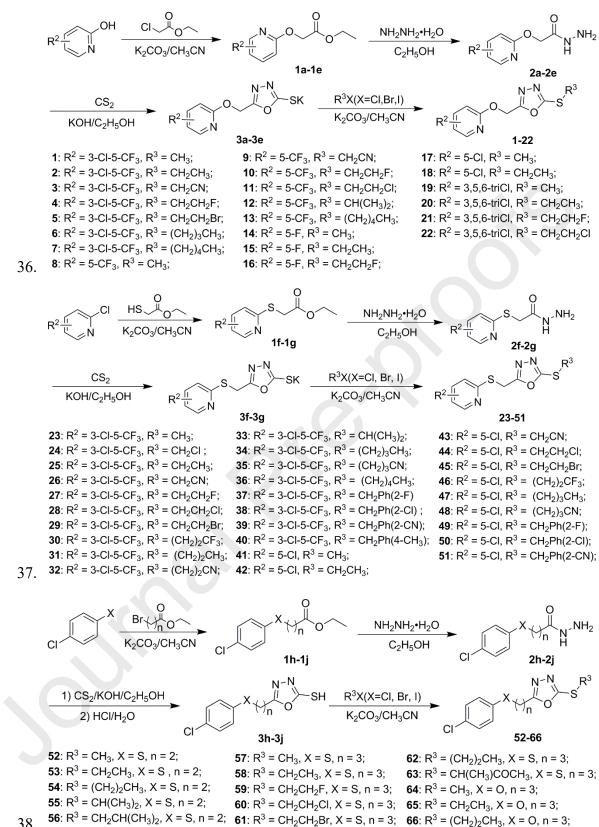
- Inserra RN, Vovias N, O'Bannon JH. A classification of *Tylenchulus semipenetrans* biotypes. *J. Nematol.* 1980; 12:283–287.
- 232 2. Irshad U, Mukhtar T, Ashfaq M, et al. Pathogenicity of citrus nematode
- 233 (*Tylenchulus semipenetrans*) on *Citrus jambhiri. J. Anim. Plant Sci.* 2012;
 234 22:1014–1018.
- 3. O'Bannon JH, Tarjan AC. Preplant fumigation for citrus nematode control in
 Florida. J. Nematol. 1973; 5:88–95.
- 4. Labiadh M, Aidi R, M'hamdi B, et al. Occurrence and functional diversity of
 bacteria in rhizosphere of citrus trees infested by *Tylenchulus semipenetrans* in a
- citrus-growing area of Tunisia Eur. *Eur. J. Plant Pathol.* 2019; 155:475–488.
- 240 5. Le Roux HF, Ware AB, Pretorius MC, et al. Comparative efficacy of preplant
- fumigation and postplant chemical treatment of replant citrus trees in an orchard
 infested with *Tylenchulus semipenetrans*. *Plant Dis*. 1998; 82:1323–1327.
- Pree DJ, Townshend JL, Archibald DE. Carbamate and organophosphorus
 nematicides: acetylcholinesterase inhibition and effects on dispersal. *J. Nematol.* 1989; 21:483–489.
- 246 7. Qiao K, Shi XG, Wang HY, et al. Managing root-knot nematodes and weeds with
- 1,3-dichloropropene as an alternative to methyl bromide in cucumber crops in
 China. J. Agric. Food Chem. 2011; 59:2362–2367.
- 249 8. Wang GL, Li Z, Xu XY, et al. Synthesis and nematicidal activity of

- 250 1,2,3-benzotriazin-4-one derivatives against *Meloidogyne incognita*. J. Agric.
- 251 Food Chem. 2015; 63:6883–6889.
- 252 9. Jeschke P. Progress of modern agricultural chemistry and future prospects. Pest
- 253 *Manag. Sci.* 2016; 72:433–455.
- Liu AC, Feng JL, He XL, et al. Study of synthetic process of novel pesticides
 Tioxazafen. *Agrochemicals*. 2014; 53:561–563.
- 11. Oka Y. Nematicidal activity of fluensulfone against some migratory nematodes
 under laboratory conditions. *Pest Manag. Sci.* 2014; 70:1850–1858.
- 258 12. Chen XW, Chen JX, Song BA, et al. Synthesis and nematicidal activity of novel
- 1,3,4-oadiazole (thiadiazole) thioether derivatives containing trifluorobuten
 moiety. *Chin. J. Org. Chem.* 2017; 37:2343–2351.
- 13. Xu WM, Yang S, Song BA, et al. Inhibition of tobacco bacterial wilt with sulfone
 derivatives containing an 1,3,4-oxadiazole moiety. *J. Agric. Food Chem.* 2012;
 60:1036–1041.
- 14. Li P, Shi L, Song BA, et al. Antibacterial activities against rice bacterial leaf
 blight and tomato bacterial wilt of
 2-mercapto-5-substituted-1,3,4-oxadiazole/thiadiazole derivatives. *Bioorg. Med. Chem. Lett.* 2015; 25:481–484.
- 15. Tok F, Becnel JJ, Bloomquist JR, et al. Synthesis and structure-activity
 relationships of carbohydrazides and 1,3,4-oxadiazole derivatives bearing an
 imidazolidine moiety against the yellow fever and dengue vector. *Pest Manag. Sci.* 2018; 74:413–421.

- 272 16. Shi J, Luo N, Ding MH, et al. Synthesis, *in vitro* antibacterial and antifungal
 273 evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the
 274 6-fluoroquinazolinylpiperidinyl moiety. *Chin. Chem. Lett.* 2019;
- 275 https://doi.org/10.1016/j.cclet.2019.06.037.
- 276 17. Du QR, Li DD, Fang F, et al. Novel 1,3,4-oxadiazole thioether derivatives
- targeting thymidylate synthase as dual anticancer/antimicrobial agents. *Bioorg. Med. Chem. Lett.* 2013; 21:2286–2297.
- 18. Li YH, Zhang B, Yang HK, et al. Design, synthesis, and biological evaluation of
- 280 novel alkylsulfanyl-1,2,4-triazoles as cis-restricted combretastatin A-4 analogues.
- 281 *Eur. J. Med. Chem.* 2017; 125:1098–1106.
- 19. Bogolubsky AV, Moroz YS, Mykhailiuk PK, et al. One-pot parallel synthesis of
 alkyl sulfides, sulfoxides, and sulfones. *ACS Comb. Sci.* 2015; 17:348–354.
- 284 20. Li P, Yang S, Song BA, et al. Novel bisthioether derivatives containing a
 1,3,4-oxadiazole moiety: design, synthesis, antibacterial and nematocidal
 activities. *Pest Manag. Sci.* 2018; 74:844–852.
- 287 21. Wang BL, Zhang Y, Li ZM, et al. Synthesis and structure-insecticidal activity
 288 relationship of novel phenylpyrazole carboxylic acid derivatives containing
 289 fluorine moiety. *Chin. Chem. Lett.* 2019;
 290 https://doi.org/10.1016/j.cclet.2019.07.064.
- 291 22. Li S, Shao XS, Li Z, et al. Azopyridine-imidacloprid derivatives as
 292 photoresponsive neonicotinoids. *Chin. Chem. Lett.* 2016; 27:635–639.
- 293 23. Liu F, Song BA, Yang S, et al. Synthesis and antifungal activity of novel

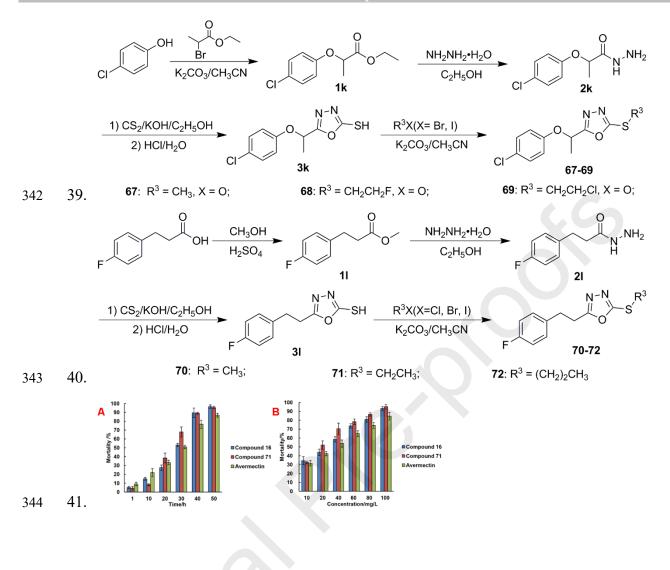
Joi	irn	<u>a</u>	Ð	$\mathbf{r}\mathbf{e}_{-}$	n1	rn	\cap	$\pm c$
100	4111	aı		10-	-D1	ιU	U	


294	sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole
295	and 1,3,4-oxadiazole moiety. Bioorgan. Med. Chem. 2008; 16:3632-3640.
296	24. Chen JX, Hu DY, Song BA, et al. Synthesis, nematicidal activity, and 3D-QSAR
297	of novel 1,3,4-oxadiazole/thiadiazole thioether derivatives. Chin. J. Chem. 2018;
298	36:939–944.
299	25. Jia CJ, Hao GF, Yang GF, et al. InsectiPAD: a web tool dedicated to exploring
300	physicochemical properties and evaluating insecticide-likeness of small
301	molecules. J. Chem. Inf. Model. 2019; 59:630-635.
302	26. Avram S, Funar-Timofei S, Borota A, et al. Quantitative estimation of
303	pesticide-likeness for agrochemical discovery. J. Cheminf. 2014; 6:42.
304	27. Yusof I, Segall MD. Considering the impact drug-like properties have on the
305	chance of success. Drug Discov. Today. 2013; 18:659–666.
306	28. Singh N, Sun HM, Chaudhury S, et al. A physicochemical descriptor-based
307	scoring scheme for effective and rapid filtering of kinase-like chemical space. J.
308	<i>Cheminf</i> . 2012; 4:4.
309	29. Tice CM. Selecting the right compounds for screening: does Lipinski's Rule of 5
310	for pharmaceuticals apply to agrochemicals? <i>Pest Manag. Sci.</i> 2001; 57:3–16.
311	30. Clarke ED, Delaney JS. Physical and molecular properties of agrochemicals: an
312	analysis of screen inputs, hits, leads, and products. Chim. Int. J. Chem. 2003;
313	57:731-734.
314	31. Hao G, Dong Q, Yang G. A comparative study on the constitutive properties of
315	marketed pesticides. Mol. Inform. 2011; 30:614-622.


Declaration of interests

318 The authors declare that they have no known competing financial interests or personal
319 relationships that could have appeared to influence the work reported in this paper.

- 321 The authors declare the following financial interests/personal relationships which may be
- 322 considered as potential competing interests:


324	
325	
326	
327	
328	32.
329	1. Seventy-two 1,3,4-oxadiazole thioether derivatives containing flexible-chain
330	moieties were designed and synthesized.
331	2. The LC_{50} values of the compounds 16, 42, 44, 53, and 71 were 16.3, 18.8, 20.8,
332	17.5, and 14.7 mg/L.
333	3. The structure-activity relationship of the series of the compounds was analyzed.
334	4. The pesticide-likeness analysis shows that the compound 71 exhibits the potential
335	insecticide-likeness.
336	33.

38.

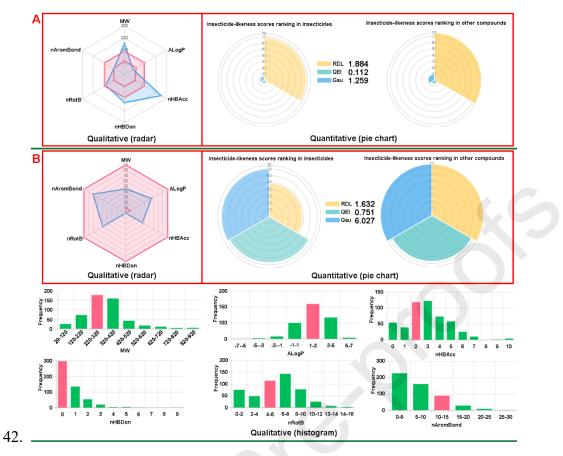


Table 1. The nematicidal activities of the compounds 1–22 against citrus nematodes.

L 50 mg/L 9 43.0±1.9
9 43.0±1.9
9 40.4±2.1
5 33.1±2.5
0 48.7±2.1
6 39.1±2.8
8 27.6±0.7
0 27.7±1.3
9 29.7±1.1
3 26.2±2.0
6 40.5±3.0
4 38.9±1.1
4 31.3±1.6
0 14.6±1.1

Journal Pre-proofs				
14	5-F	CH ₃	82.2±2.3	53.4±3.6
15	5-F	CH ₂ CH ₃	92.5±1.0	69.4±1.2
16	5-F	CH ₂ CH ₂ F	93.7±1.4	72.3±0.7
17	5-Cl	CH ₃	79.9±1.6	57.6±2.4
18	5-Cl	CH ₂ CH ₃	90.3±1.8	65.2±0.6
19	3,5,6-triCl	CH ₃	35.9±1.5	15.7±1.5
20	3,5,6-triCl	CH ₂ CH ₃	47.7±3.1	22.3±0.8
21	3,5,6-triCl	CH ₂ CH ₂ F	56.5±2.1	32.7±1.3
22	3,5,6-triCl	CH ₂ CH ₂ Cl	45.2±2.6	21.0±1.8
Avermectin ^b	-	-	85.9±2.5	65.1±1.6

^a The average of three tests.

^b The commercial nematicide avermectin was used as a positive control.

349

350

351

Table 2. The nematicidal activities of the compounds 23–51 against citrus nematodes.

Compound	R ²	R ³ -	mortal	ity/%a
Compound	K	K –	100 mg/L	50 mg/L
23	3-Cl-5-CF ₃	CH ₃	77.9±2.5	46.4±3.8
24	3-Cl-5-CF ₃	CH ₂ Cl	83.7±3.0	54.3±2.8
25	3-Cl-5-CF ₃	CH ₂ CH ₃	83.0±2.1	51.0±3.1
26	3-Cl-5-CF ₃	CH ₂ CN	71.4±3.1	29.7±1.7
27	3-Cl-5-CF ₃	CH ₂ CH ₂ F	91.5±3.6	62.7±3.2
28	3-Cl-5-CF ₃	CH ₂ CH ₂ Cl	89.1±2.6	60.3±1.4
29	3-Cl-5-CF ₃	CH_2CH_2Br	85.0±3.3	50.4±2.9
30	3-Cl-5-CF ₃	$(CH_2)_2CF_3$	72.0±2.1	30.7±1.8
31	3-Cl-5-CF ₃	$(CH_2)_2CH_3$	58.1±2.0	34.6±2.9
32	3-Cl-5-CF ₃	$(CH_2)_2CN$	75.2±3.2	23.1±2.3
33	3-Cl-5-CF ₃	CH(CH ₃) ₂	54.4±2.8	36.8±3.0
34	3-Cl-5-CF ₃	(CH ₂) ₃ CH ₃	50.9±2.5	25.9±2.7
35	3-Cl-5-CF ₃	(CH ₂) ₃ CN	48.6±2.9	17.5±2.6
36	3-Cl-5-CF ₃	$(CH_2)_4CH_3$	35.2±3.1	14.9±2.1

		Journal Pre-proc	fo	
		Journal Fie-proc	018	
37	3-Cl-5-CF ₃	$CH_2Ph(2-F)$	18.8 ± 1.8	6.6±1.8
38	3-Cl-5-CF ₃	CH ₂ Ph(2-Cl)	15.4±1.3	6.4±2.0
39	3-Cl-5-CF ₃	CH ₂ Ph(2-CN)	16.3±2.0	5.8±0.9
40	3-Cl-5-CF ₃	$CH_2Ph(2-CH_3)$	36.5±2.8	16.4±2.0
41	5-Cl	CH ₃	92.6±2.2	64.2±4.1
42	5-Cl	CH ₂ CH ₃	92.8±2.9	71.3±2.6
43	5-Cl	CH ₂ CN	75.0±3.3	38.2±3.6
44	5-Cl	CH ₂ CH ₂ Cl	93.5±2.8	70.6±2.7
45	5-Cl	CH ₂ CH ₂ Br	83.3±2.4	62.6±2.2
46	5-Cl	$(CH_2)_2 CF_3$	78.5±2.7	41.3±3.2
47	5-Cl	(CH ₂) ₃ CH ₃	66.0±5.4	33.0±2.7
48	5-Cl	(CH ₂) ₃ CN	42.5±2.9	16.6±2.6
49	5-Cl	$CH_2Ph(2-F)$	28.2±3.1	11.3±3.0
50	5-Cl	CH ₂ Ph(2-Cl)	22.6±3.2	10.1±2.3
51	5-Cl	CH ₂ Ph(2-CN)	26.1±2.4	12.1±1.7
Avermectin ^b	-	<u> </u>	85.9±2.5	65.1±1.6

352	^a The average of three tests.
-----	--

^b The commercial nematode avermectin was used as a positive control.

	Dana ana	a fra
Journal	Pre-nro	α is
Joannar		OID

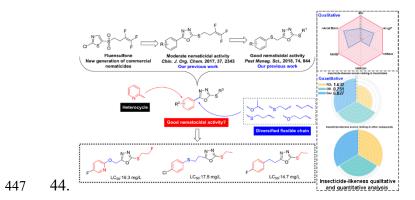
- 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
- 391

392 **Table 3.** The nematicidal activities of the compounds **52–66** against citrus nematodes.

				mortality/%	
Compound	R ³	X	n	100 mg/L	50 mg/L
52	CH ₃	S	2	82.6±5.1	67.6±3.5
53	CH ₂ CH ₃	S	2	91.3±1.7	71.1±2.1
54	(CH ₂) ₂ CH ₃	S	2	84.1±3.3	65.2±5.8
55	CH(CH ₃) ₂	S	2	80.5±3.3	36.1±2.9
56	CH ₂ CH(CH ₃) ₂	S	2	73.7±3.6	31.6±5.0
57	CH ₃	S	3	77.4±4.3	57.1±6.5
58	CH ₂ CH ₃	S	3	83.9±3.3	64.9±7.0
59	CH ₂ CH ₃ F	S	3	86.5±4.2	61.3±3.8
60	CH ₂ CH ₃ Cl	S	3	85.1±3.8	64.1±3.7
61	CH ₂ CH ₃ Br	S	3	82.3±4.3	62.7±2.2
62	$(CH_2)_2CH_3$	S	3	78.1±3.2	35.7±2.8
63	CH(CH ₃)COCH ₃	S	3	63.1±2.7	43.4±3.8
64	CH ₃	0	3	79.4±4.8	63.9±3.2
65	CH ₂ CH ₃	0	3	89.6±4.1	68.7±5.8

66	$(CH_2)_2CH_3$	O 3	82.6±5.1	67.6±3.5
Avermectin ^b	-		85.9±2.5	65.1±1.6
The average of t	three tests.			
The commercial	l nematicide avermec	tin was used a	s a positive control.	
Table 4. The nem	naticidal activities of	the compound	s 67–72 against citr	us nematodes.
Compound	R ³ –	100 /	mortality/% ^a	/T
(7	CH ₃	100 mg/L		
67		78.0±4.4	57.3±	
68	CH ₂ CH ₂ F	89.4±2.1	50.7±	6.8
69	CH ₂ CH ₂ Cl	81.3±4.9	48.2±	1.4
70	CH ₃	85.0±3.4	68.1±	7.1
71	CH ₂ CH ₃	91.0±2.7	73.9±	4.7
72	(CH ₂) ₂ CH ₃	86.4±4.7	$68.0\pm$	2.6
Avermectin ^b	-	85.9±2.5	65.1±	1.6
^a The average of t	three tests.			
		tin was used a	s a positive control.	
			-	
			•	
			-	

		Journal Pre-p	proofs	
422				
423				
424				
425				
426 427				
427				
429				
430				
431				
432				
433				
434 435				
436				
437				
438				
439				
440				
441				
442	Table 5. The LC_{50} of some	e compounds against citrus	nematodes.	
	Compound	I C _{ro} /mg/I ^a	Compound	I C co/mg/I a


Compound	LC ₅₀ /mg/L ^a	Compound	LC ₅₀ /mg/L ^a
15	23.9±3.9	44	20.8±7.4
16	16.3±1.3	53	17.5±5.2
42	18.8±3.1	71	14.7±2.2
Avermectin ^b	24.8±5.7	-	-

443 ^a The average of three tests.

444 ^b The commercial nematicide avermectin was used as a positive control.

445

446 43.

