

Article

Subscriber access provided by UNIV OF SOUTHERN QUEENSLAND

# Elucidating the Copper–Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols

Yongwu Lu, Riguang Zhang, Baobao Cao, Binghui Ge, Franklin (Feng) Tao, Junjun Shan, Luan Nguyen, Zhenghong Bao, Tianpin Wu, Jonathan W. Pote, Baojun Wang, and Fei Yu

> ACS Catal., Just Accepted Manuscript • Publication Date (Web): 21 Jun 2017 Downloaded from http://pubs.acs.org on June 21, 2017

# Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.



ACS Catalysis is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7 8

9 10

11 12

13 14

15

16

17

18

19 20

21

22

23

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

47

48

49

50

51

52

53

54

55

56

57

58

59

60

# **ACS Catalysis**

# Elucidating the Copper–Hägg Iron Carbide Synergistic Interactions for Selective CO Hydrogenation to Higher Alcohols

Yongwu Lu,<sup>†,⊗</sup> Riguang Zhang,<sup>‡,⊗</sup> Baobao Cao,<sup>§</sup> Binghui Ge,∥ Franklin (Feng) Tao,⊥ Junjun Shan,⊥ Luan Nguyen,⊥ Zhenghong Bao,† Tianpin Wu,# Jonathan W. Pote,† Baojun Wang,<sup>‡,\*</sup> and Fei Yu<sup>†,\*</sup>

<sup>†</sup>Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, United States

‡Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P.R. China

<sup>§</sup>School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, P.R. China

<sup>⊥</sup>Department of Chemical and Petroleum Engineering and Department of Chemistry, University of Kansas, Lawrence, KS 66045, United States

<sup>#</sup>X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States

**ABSTRACT:** C0 hydrogenation to higher alcohols ( $C_2$ +OH) provides a promising route to convert coal, natural gas, shale gas, and biomass feedstocks into value-added chemicals and transportation fuels. However, the development of nonprecious metal catalysts with satisfactory activity and well-defined selectivity towards  $C_2$ +OH remains challenging and impedes the commercialization of this process. Here we show that the synergistic geometric and electronic interactions dictate the activity of  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub> binary catalysts for selective C0 hydrogenation to  $C_2$ +OH, outperforming silica-supported precious Rhbased catalysts, by using a combination of experimental evidence from bulk, surface-sensitive, and imaging techniques collected on real and high-performance Cu-Fe binary catalytic systems coupled with density functional theory calculations. The closer the *d*-band center to the Fermi level of  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface than those of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Rh(111) surface, and the electron-rich interface of  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) due to the delocalized electron transfer from Cu<sup>0</sup> atoms, which facilitate CO activation and CO insertion into alkyl species to C<sub>2</sub>-oxygenates at the interface of  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and thus enhance  $C_2H_5OH$  selectivity. Starting from CHCO intermediate, the proposed reaction pathway for CO hydrogenation to  $C_2H_5OH$  on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is CHCO+(H)→CH<sub>2</sub>CO+(H)→CH<sub>3</sub>CO+(H)→CH<sub>3</sub>CHO+(H)→CH<sub>3</sub>CH<sub>2</sub>O+(H)→C<sub>2</sub>H<sub>5</sub>OH. This study may guide the rational design of high-performance binary catalysts made from earth-abundant metals with synergistic interactions for tuning selectivity.

KEYWORDS: CO hydrogenation, higher alcohols, copper, Hägg iron carbide, synergistic effect, reaction mechanism

## INTRODUCTION

Binary metal materials have gained a crucial interest as functional materials for several emerging technologies.<sup>1–</sup> <sup>7</sup> As catalysts, they often exhibit electronic and chemical properties that are distinct from those of their parent metals,<sup>1,2</sup> thereby enabling the development of novel catalysts with enhanced selectivity, activity, and stability through bifunctional,<sup>1</sup> ligand,<sup>2</sup> geometric,<sup>2,3</sup> electronic,<sup>3</sup> or lattice strain<sup>4</sup> effect. The synergistic interaction in binary metal catalyst represents an efficient approach towards desirable properties by either the creation of hybrid sites or the concerted action of concomitant functionalities.<sup>1,5–7</sup> Binary metal catalysts also show promise of replacing precious metal catalysts with equally active and selective catalysts composed of earth-abundant metals.<sup>3,5,6</sup>

To decrease the dependence on crude oil and adhere to strict global environmental stipulations, the selective conversion of syngas (CO + H<sub>2</sub>) into clean fuels and valueadded chemicals is regarded a primary scientific target.8,9 Syngas can be derived from various carbonaceous resources, such as coal, natural gas, shale gas, municipal solid waste, or biomass feedstocks by using gasification or reforming technologies.<sup>8,9</sup> The synthesis of ethanol and higher alcohols (C<sub>2+</sub>OH) from syngas leaps out as a catalytic route of prominent interest, because these compounds can be used as hydrogen carriers, fuels, fuel additives in gasoline, precursors for major platform chemicals such as olefins, and reagents for manufacturing pharmaceuticals, cosmetics, lubricants, plasticizers, and detergents.<sup>5-7,10,11</sup> Additionally, the reaction is a prototypical example that involves the synergistic roles between proximate active

ACS Paragon Plus Environment

sites with diverse functionality,<sup>5–7,10,11</sup> as both CO dissociation (direct or H-assisted dissociation) and CO/CHO insertion into CH<sub>x</sub> (x = 1-3) species are required to occur simultaneously to form CH<sub>x</sub>CO/CH<sub>x</sub>CHO (x = 1-3), thereafter undergoing a stepwise hydrogenation to selectively produce C<sub>2+</sub>OH.<sup>5–7,10,11</sup> In contrast to methanol synthesis based on Cu-based catalyst<sup>9</sup> or Fischer–Tropsch synthesis (FTS) of hydrocarbons by using Fe- or Co-based catalysts,<sup>8,12–14</sup> currently the development of heterogeneous catalysts with high selectivity and space-time yield to achieve commercial-scale C<sub>2+</sub>OH production remains a crucial challenge.<sup>5–</sup> 7,10,11

Rh is the only single metal reported that can selectively produce C2+OH from syngas, however, its prohibitive cost and scarcity make a large-scale heterogeneous process impossible.<sup>11,15-19</sup> This has urged the search of inexpensive binary catalysts containing earth-abundant metals such as Cu-Fe catalyst,<sup>11,20,21</sup> because of its high activity and selectivity that is reported comparable to Rh-based catalysts. However, the origin of the synergistic interaction, the nature of the active sites, and the reaction mechanism for CO hydrogenation to C2+OH over Cu-Fe binary catalysts that play a pivotal role in rational development of robust catalysts for industrial application are not fully understood at the fundamental level. This is partly due to the complexity of the CO hydrogenation reaction on Cu-Fe binary catalyst, whose reactivity is affected by many factors such as geometric, electronic, or bifunctional effect.

Here we show that three-dimensionally ordered macroporous (3DOM) Cu-Fe catalysts exhibit higher performance than that of silica-supported Rh-based catalysts for selective CO hydrogenation to C<sub>2+</sub>OH. Cs-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) elemental mapping is employed to study the Cu-Fe binary active sites. In situ surface chemistry studies are tracked with ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the active sites of Cu-Fe catalyst. In situ X-ray absorption spectroscopy is conducted to reveal the bulk structure of Cu-Fe active sites. Additionally, we perform density functional theory (DFT) calculations to explore the origin of the synergistic interactions, unravel the nature of the active sites, and elucidate the underlying reaction mechanism of Cu-Fe catalyst for selective CO hydrogenation to C<sub>2+</sub>OH at a molecular scale.

#### RESULTS AND DISCUSSION

Synthesis and Characterization. 3DOM Cu-Fe binary catalysts were synthesized by a "glyoxylate route" poly (methyl methacrylate) colloidal crystal template method<sup>21</sup> as described in the section of methods. 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst with hierarchically macroporous structure contains periodic voids with an average diameter of  $(200\pm10)$  nm and a wall thickness of  $(50\pm5)$  nm (Figure S1). X-ray diffraction (XRD) patterns show that fresh catalysts consist of CuO (JCPDS 48-1548) and Fe<sub>3</sub>O<sub>4</sub> (JCPDS 65-3107) (Figure S2). XPS at the Cu 2p and Fe 2p core-levels further confirm the existence of CuO and Fe<sub>3</sub>O<sub>4</sub> (Figure S3). HRTEM image of fresh 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst is shown in Figure S4a. The lattice fringes of 4.87 and 2.32 Å are characteristic interlayer spacing of Fe<sub>3</sub>O<sub>4</sub> (111) and CuO (111) planes, respectively. The indexed selected area electron diffraction pattern (Figure S4b) further manifest the existence of CuO and  $Fe_3O_4$ .

**Catalytic Performance**. 3DOM Cu-Fe catalysts were reduced *in situ* using H<sub>2</sub>/CO = 1 at 300 °C for 48 h. The catalytic tests were performed under a condition of T = 260 , P = 700 psig, H<sub>2</sub>/CO = 1, GHSV = 2000 h<sup>-1</sup>, and time-onstream (TOS) of 120 h after achieving steady state. The selectivity of alcohols, hydrocarbons, and CO<sub>2</sub> is presented in Figure 1a. The representative gas chromatographymass spectrometry (GC–MS) analysis of aqueous and liquid organic products from CO hydrogenation over 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst are shown in Figure S5. The 1-alcohols and hydrocarbons distribution agree with Anderson-Schulz-Flory (ASF)<sup>7,8</sup> distribution (Figure S6), and the calculated ASF chain growth probability ( $\alpha$ ) of 1-alcohols and hydrocarbons are summarized in Tables S1–S2.



**Figure 1.** 3DOM Cu-Fe catalysts (a) The selectivity of alcohols, hydrocarbons, and CO<sub>2</sub>. (b) The formation rate of C<sub>2+</sub>OH (mmol g<sub>cat</sub> h<sup>-1</sup>) (scatter), the selectivity to alcohols and C<sub>2+</sub>OH alcohols (column). (c) Time-on-stream (TOS) evolution of CO conversion. 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst (d) TOS evolution of product selectivity. (Reaction conditions: T = 260 °C, P = 700 psig, H<sub>2</sub>/CO = 1, and GHSV = 2000 h<sup>-1</sup>).

3DOM Cu catalyst shows poor activity (Figure 1b). 3DOM Fe catalyst displays a total alcohol selectivity of 4.3%, a C<sub>2+</sub>OH selectivity of 1.3%, and a C<sub>2+</sub>OH formation rate of 0.11 mmol  $g_{cat}^{-1}h^{-1}$  (Figure 1b). Importantly, 3DOM Cu-Fe catalysts exhibit a higher activity and selectivity towards C<sub>2+</sub>OH (Figure 1b). At a Cu/(Cu+Fe) atomic ratio of 0.67 (3DOM Cu<sub>2</sub>Fe<sub>1</sub>), the selectivity to alcohols (31.3%) and C<sub>2+</sub>OH (26.1%) is maximum; meanwhile the formation rate of C<sub>2+</sub>OH reaches 5.65 mmol  $g_{cat}^{-1}h^{-1}$ , ca. one order of magnitude higher than that of 3DOM Fe catalyst (Figure 1a). The CO conversion is 58.4% for 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst without deactivation during TOS of 120 h (Figure 1c). The carbon selectivity to CO<sub>2</sub> (11.5%), hydrocarbons (57.2%), alcohols (31.3%), and C<sub>2+</sub>OH (26.1%) for 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst for TOS of 120 h is presented in Figure 1d.

In comparison, we prepared a  $(5wt.\%)Rh/SiO_2$  catalyst and tested it in the same reaction condition with that of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst. The XRD patterns of the fresh and reduced  $(5wt.\%)Rh/SiO_2$  are shown in Figure S7, where Rh species is identified as RhO<sub>2</sub> (JCPDS 21-1315) and Rh (JCPDS 05-0685), respectively. The catalytic performance

60

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21 22 23

24 25

26

27

28

29

30

31

32

33

34 35

36

37

38 39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

of  $(5wt.%)Rh/SiO_2$  catalyst shows a CO conversion of 6.3%, C<sub>2+</sub>OH selectivity of 11.2 %, and C<sub>2+</sub>OH formation rate of 0.63 mmol g<sub>cat<sup>-1</sup></sub>h<sup>-1</sup> (Table S3). Thus, the catalytic performance of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> shows a CO conversion of 58.4%, C<sub>2+</sub>OH selectivity of 26.1%, and C<sub>2+</sub>OH formation rate of 5.65 mmol g<sub>cat<sup>-1</sup></sub>h<sup>-1</sup>, which is much higher than that of  $(5wt.%)Rh/SiO_2$ , and a select of other silica-supported Rhbased catalysts (Table S3) reported in the literatures.<sup>15-18</sup>

The catalytic performances of 3DOM Cu-Fe catalysts indicate that the activity and selectivity may attribute to the synergistic interfacial interactions of Cu-Fe binary active sites. To further validate the hypothesis of the synergistic interfacial interactions, we prepared a physical mixture (PM) of 3DOM Fe and 3DOM Cu catalyst, denoted as 3DOM PM-Cu<sub>2</sub>Fe<sub>1</sub>, and tested it in the same reaction condition with those of 3DOM Cu-Fe catalysts. 3DOM PM-Cu<sub>2</sub>Fe<sub>1</sub> catalyst shows a CO conversion of 24.5% (Figure 1c),  $C_{2+}$ OH selectivity of 1.1%, and  $C_{2+}$ OH formation rate of 0.11 mmol  $g_{cat}^{-1}h^{-1}$  (Figure 1b), which is much less active and selective for  $C_{2+}$ OH production than that of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst. Furthermore, the calculated intrinsic activity of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst is  $6.6 \times 10^{-2}$  mmol m<sup>-2</sup> h<sup>-1</sup> (Table S4), which is one order of magnitude higher than that of 3DOM PM-Cu<sub>2</sub>Fe<sub>1</sub> catalyst ( $2.0 \times 10^{-3}$  mmol m<sup>-2</sup> h<sup>-1</sup>).



**Figure 2.** 3DOM Cu-Fe catalysts after reduction (a) XRD pattern and (b) Mössbauer spectra. 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst after reduction (c) HAADF-STEM image and (d–g) EELS mapping of the selected region (green box) showing elemental distribution of C (d), Fe (e), Cu (f), and their overlap (g). Cs-corrected HAADF-STEM images (h)  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) that involves Cu step and twin boundary, inset the fast Fourier transform of the selected region (red dashed box) showing Cu<sup>0</sup> is aligned along the [110] zone axis. (i) The magnification of white dashed box in (h).

**Structural Characterization of the Catalytic Active Sites.** XRD and Mössbauer spectroscopy were used to identify the active sites of 3DOM Cu-Fe catalysts after reduction at  $300^{\circ}$ C using H<sub>2</sub>/CO = 1 for 48 h. The long reduction time of 48 h was applied to ensure the complete reduction and carburization of iron oxide in the 3DOM catalysts into iron carbide. XRD pattern of the reduced catalysts (Figure 2a) indicate that CuO is reduced to Cu<sup>0</sup> (JCPDS 004-0836), and Fe<sub>3</sub>O<sub>4</sub> is reduced and carburized into Hägg carbide ( $\chi$ -Fe<sub>5</sub>C<sub>2</sub>) (JCPDS 051-0997). Figure 2b shows Mössbauer spectra of reduced catalysts that can be fitted with three sextets and one doublet, representing  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> with different hyperfine parameters.<sup>8,22</sup> The fitting Mössbauer parameters are summarized in Table S5. Figure 2c shows HAADF-STEM image of reduced 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst, and the green box indicates the selected region for EELS elemental mapping. As shown in EELS elemental maps (Figure 2d–g), the catalyst reduction treatment ended finally with Cu species intimate contact with iron carbide species. Cs-corrected HAADF-STEM image (Figure 2h) displays the lattice fringe of 2.05 Å from  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) (JCPDS 051-0997) is closely adjacent to Cu<sup>0</sup> to generate intimate and extensive interface. The inset in Figure 2h is the fast Fourier transform of the selected region (red dashed box), indicating that Cu<sup>0</sup> is aligned along the [110] zone axis. Cu<sup>0</sup> involves typical Cu step and twin boundary (Figure 2h). Figure 2i is the magnification of the selected region (white dashed box) in Figure 2h. Because neither Cu nor  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> alone could achieve the high selectivity of C<sub>2+</sub>OH in 3DOM Cu-Fe catalysts (Figure 1), we advocate the formation of the Cu<sup>0</sup>- $\chi$ -

Fe<sub>5</sub>C<sub>2</sub> binary active sites (Figure 2i) and their synergistic interactions that result in the observed catalytic performance.

In situ Studies of Surface Chemistry Using AP-XPS. To achieve a deep insight into the Cu-Fe binary active sites for CO hydrogenation, we performed *in situ* AP-XPS. During the data acquisition of *in situ* studies, the gaseous reactants remained around catalyst at a certain temperature. The fresh 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst was pretreated *in situ* with 1.0 mbar O<sub>2</sub> at 300°C for 3 h to remove any residual carbonaceous surface species (Figure 3). The Cu  $2p_{3/2}$  and Cu  $2p_{1/2}$ peaks are accompanied with distinct shakeup satellites at binding energies of 942 and 962 eV after O<sub>2</sub> pretreatment (Figure 3a). These characteristic satellites stem from charge transfer between the transition metal 3d and surrounding ligand oxygen 2p orbitals, and they do not present in Cu<sub>2</sub>O and Cu<sup>0</sup> because of their fully filled 3d orbitals.<sup>23</sup> The Cu 2p<sub>3/2</sub> peak at binding energy of 933.6 eV (Figure 3a) is thus indicative of CuO.<sup>24</sup> The broadening of main Cu LMM peak at 918.0 eV to lower kinetic energies was found during *in situ* reduction up to 100°C (Figure 3b). The drop of shakeup satellite intensity and the shift of Cu 2p<sub>3/2</sub> peak to lower binding energy indicate the formation of monovalent copper (Cu<sup>+</sup>).<sup>24</sup> Upon heating to 150°C, the appearance of Cu LMM peaks at 918.6 and 921.3 eV can be attributed to metallic copper; meanwhile, no shakeup satellite of Cu<sup>2+</sup> species was detected in Cu 2p spectra.<sup>24–26</sup>



**Figure 3.** *In situ* AP-XPS studies of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst surface with O<sub>2</sub> pretreatment at different temperatures in H<sub>2</sub> and CO (H<sub>2</sub>/CO=1) at mbar pressure range. (a) Cu 2p, (b) Cu LMM, (c) Fe 2p and (d) C 1s.

After in situ reduction with  $H_2/CO = 1$  at 100 and 150°C, there are no measurable carbon species presented on the catalyst surface (Figure 3d). Upon heating to 200°C, the iron oxide after O<sub>2</sub> pretreatment was partially carburized into iron carbide, as indicated by the appearance of a peak at 283.5 eV in C 1s spectra.<sup>27</sup> The shift of the binding energy of Fe 2p<sub>3/2</sub> peak from 710.7 to 707.3 eV (Figure 3c) further corroborates that the formed iron carbide is x-Fe<sub>5</sub>C<sub>2</sub>,<sup>14,28</sup> which is consitent with Mössbauer spectra analysis (Figure 2b). Upon heating to 250°C, the carbide peak is associated with a shoulder at 284.6 eV (Figure 3d), which is assigned to the occurrence of generic non-oxygenated surface carbon species (C<sub>surf</sub>).<sup>27</sup> The evolution of Cu/(Cu+Fe) atomic ratio under various reaction conditions (Figure 3) is close to nominal composition of 0.67 (Figure S8), indicating no preferential surface enrichment of Cu or Fe species upon in situ reduction. We also performed in situ AP-XPS studies for 3DOM Cu2Fe1 catalyst without O2 pretreatment (Figure S9): (I) in UHV, (II) in  $H_2/CO = 1$  at RT, (III) in  $H_2/CO = 1$  at 100–500°C, and (IV) cooling to 280, 260, and 220°C in  $H_2/CO = 1$ . The copper phase remains metallic state (Figure S9a-b) during catalysis at 280, 260, and 220°C. The iron phase keeps x-Fe<sub>5</sub>C<sub>2</sub> state (Figure S9c), albeit the existence of residual carbonaceous surface species (at 284.5 eV) before catalysis renders the iron carbide peak at 283.5 eV of C 1s spectra (Figure S9d) indiscernible.  $Cu^0$  and  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> are thus elucidated as the binary active sites for CO hydrogenation. In situ X-ray Absorption Spectroscopy Studies. The revealing of Cu<sup>0</sup> and  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> binary active sites from *in situ* AP-XPS are corroborated by in situ X-ray Absorption Near

Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) studies for 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst at Cu and Fe K-edge with H<sub>2</sub>/CO = 1 (Figure 4). The fitted  $k^{3}\chi(k)$  (k-space plot), Fourier transforms of  $[k^{3}\chi(k)]$  (Rspace plot), and Re[ $\chi(q)$ ] (Å<sup>-3</sup>) (q-space plot) spectra for the Cu K-edge and Fe K-edge signals of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst at RT and 300°C are illustrated in Figures S10–S11, respectively, and the fitted parameters are summarized in Table S6.

The XANES spectra of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst (CO+H<sub>2</sub>@RT) at Cu K-edge (8979 eV) (Figure 4a) illustrate that there are two characteristic peaks for CuO. The first one at 8978 eV originated from the weak quadrupoleallowed Cu 1s-to-3d transition.<sup>29-31</sup> The second one, a shoulder peak at 8986 eV, could be ascribed from the dipole-allowed 1s-to-4p "shakedown" transition because of the interaction between the metal and ligand.<sup>29,31</sup> The fitting FT[ $k^3\chi(k)$ ] of Cu K-edge EXAFS (CO+H<sub>2</sub>@RT) is presented in Figure S10c. The peak at 1.94 Å for CuO is assigned to the first Cu-O coordination shell. Two peaks determined at 2.90 Å and 3.45 Å are associated with the Cu-Cu coordination shells.<sup>32,33</sup> Apart from these peaks, a broad peak observed at 5.74 Å is attributed to the third Cu-Cu coordination shell. The fitted scattering paths at 1.942 Å (Cu-O bond) and 2.849 Å (Cu<sup>2+</sup>-Cu<sup>2+</sup> bond) (CO+H<sub>2</sub>@RT) are characteristic of CuO (Table S6).32,33 After in situ reduction ( $\geq$ 250°C), the XANES spectra are similar with Cu foil spectrum (Figure 4a). The EXAFS spectra (CO+H<sub>2</sub>≥250°C) were fitted with theoretical model of Cu.34,35 The fitting  $FT[k^3\chi(k)]$  of Cu K-edge EXAFS spectra (CO+H<sub>2</sub>@300°C) is presented in Figure S10d. The fitted scattering path at

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 2.543 Å (Table S6) can be assigned to the Cu–Cu bond of metallic copper.<sup>34,35</sup>

The XANES spectrum (CO+H<sub>2</sub>@RT) at Fe K-edge (7112 eV) are within the range expected for Fe<sub>3</sub>O<sub>4</sub> (Figure 4c). Fe<sub>3</sub>O<sub>4</sub> has the cubic inverse spinel structure with Fe<sup>2+</sup> cations in octahedral sites and Fe<sup>3+</sup> cations in both octahedral and tetrahedral sites, surrounded by oxygen ions.<sup>36</sup> Both octahedral and tetrahedral iron atoms contribute to R-space plot. A theoretical model of Fe<sub>3</sub>O<sub>4</sub> with five scattering paths was used to fit the EXAFS spectra (CO+H<sub>2</sub>  $\leq$  250°C). There are two main features for Fe<sub>3</sub>O<sub>4</sub> in R-space plot (Figure 4d), a peak centered at 1.5 Å consisting of nearest-neighbor oxygen coordination shell contributions (Fe<sub>tet</sub>–O and Fe<sub>oct</sub>–O), and a second peak with maximum intensity at

2.6 Å and a broad shoulder at 3.1 Å.<sup>36,37</sup> The second peak consists of several Fe–Fe (Fe<sub>tet</sub>–Fe<sub>tet</sub>, Fe<sub>tet</sub>–Fe<sub>oct</sub>, and Fe<sub>oct</sub>–Fe<sub>oct</sub>) and Fe–O (Fe<sub>tet</sub>–O and Fe<sub>oct</sub>–O) scattering contributions.<sup>36,37</sup> The fitted scattering path at 1.932 Å (Fe<sub>oct</sub>–O bond) and 3.319 Å (Fe<sub>tet</sub>–Fe<sub>tet</sub> bond) (Figure S11c, Table S6) are characteristic of Fe<sub>3</sub>O<sub>4</sub> for 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst (CO+H<sub>2</sub>@RT).<sup>36,37</sup> After *in situ* reduction ( $\geq$ 300°C), the XANES spectra are similar with  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> spectrum (Figure 4c). The EXAFS spectra (CO+H<sub>2</sub> $\geq$ 300°C) were fitted with theoretical model of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>.<sup>38</sup> Taking 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst (CO+H<sub>2</sub>@300°C) as an example (Figure S11d), the fitted scattering paths at 1.645 Å (Fe–C bond) and 2.578 Å (Fe–Fe bond) (Table S6) attribute to  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>.<sup>38–40</sup>



**Figure 4.** In situ X-ray absorption spectroscopy studies for 3DOM  $Cu_2Fe_1$  catalyst at different temperatures with  $H_2/CO = 1$ . (a) Cu K-edge XANES, (b) Fourier transform magnitude of  $k^3$ -weighted of Cu K-edge EXAFS spectra, (c) Fe K-edge XANES, (d) Fourier transform magnitude of  $k^3$ -weighted of Fe K-edge EXAFS spectra.

The Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub> Synergistic Interactions. Linear 1alcohols were mainly produced on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub> binary catalysts based on the GC-MS results (Figure S5). We envisioned the formation of higher alcohols via the hydroformylation<sup>6,7</sup> of the olefin intermediates from FTS reaction, because otherwise, it would produce branch-alcohols. Additionally, the alcohol and hydrocarbon distributions on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub> catalysts (Figure S6) are found similar and follow ASF distributions.<sup>7,8</sup> The FTS reaction on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> catalysts follow ASF distribution as well (Figure S6). The similar ASF distribution of 1-alcohols and hydrocarbons found on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub> binary catalysts implies that the chain propagation may occur primarily on x-Fe<sub>5</sub>C<sub>2</sub>, providing the active site for which CO dissociates and hydrogenates to alkyl species, thereby initiating the chain growth through  $CH_x + CH_x$  (x = 1–3) coupling.<sup>11</sup> The  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> catalyst was well reported for its selective synthesis of linear hydrocarbons in FTS reaction,<sup>8,12,14,22</sup> which corroborates the present finding of linear 1-alcohols formed on Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub> catalysts. Thus, the essence of Cu<sup>0</sup> in Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub> catalysts could be rationalized by providing the active sites for CO associative adsorption, in combination with the linear hydrocarbon intermediates formed on the  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> part at the interface of  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub> to generate linear oxygenates, which are hydrogenated to selectively produce linear 1-alcohols.<sup>11</sup> To shed further light on the Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub> synergistic interactions for selective CO hydrogenation to higher alcohols, we resorted to density functional theory (DFT) calculation on  $Cu^0 - \chi - Fe_5C_2(510)$  surface model (Fig-

ure 5) based on the HAADF-STEM result (Figure 2i) in comparison to  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface model (Figure S12). Reaction Pathway on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510). The  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface morphology and its adsorption sites is illustrated in Figure S12. The most stable adsorption configuration of reactants, products, and possible intermediates involved in CO hydrogenation to C<sub>2</sub>-hydrocarbon and C<sub>2</sub>-oxygenates on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) are shown in Figure S13, and the corresponding adsorption energy and key geometrical parameters are listed in Table S7. The routes of CO activation, and the formation of  $CH_x$  (x = 1–3),  $CH_3OH$ ,  $C_2$ -hydrocarbons, and  $C_2$ oxygenates on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) are presented in Figures S14– S21. All possible elementary reactions involved in CO hydrogenation to C<sub>2</sub>-hydrocarbons and C<sub>2</sub>-oxygenates together with activation barriers and reaction energies on  $\chi$ - $Fe_5C_2(510)$  are listed in Table S8. The reaction pathway for CO hydrogenation on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is shown in Figure S22.

On  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), CO direct dissociation and CO hydrogenation to CHO are more favorable than CO hydrogenation to COH (Figure S14). Meanwhile, CO direct dissociation and CO hydrogenation to CHO are kinetically competitive due to their close activation barriers. C and CHO are thus the major intermediates of CO activation. Starting from the initiate states of C+H, CHO, and CHO+H, C hydrogenation to CH is more favorable than the other pathways (Figure S15). This suggests that C hydrogenation mainly contributes to CH formation, which is kinetically competitive with CH<sub>2</sub>O formation. Starting from the initiate states of CH+H, CHO+H, and CH<sub>2</sub>O, both CH hydrogenation and CH<sub>2</sub>O dissociation with H-assisted significantly contribute to CH<sub>2</sub> formation (Figure S16). Furthermore, CH<sub>2</sub> formation is more favorable than CH<sub>3</sub>O or CH<sub>2</sub>OH (Figure S16). Starting from the initial states of CH<sub>2</sub>+H, CH<sub>2</sub>O+H, and CH<sub>3</sub>O, CH<sub>2</sub> hydrogenation mainly results in CH<sub>3</sub> formation, which is more favorable than CH<sub>3</sub>OH formation (Figure S17). CH is thus the most favorable CH<sub>x</sub> (x = 1-3) species on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) (Figure S18). Additionally, CH formation is more favorable than CH<sub>3</sub>OH formation, suggesting that  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) exhibits higher selectivity to CH species instead of CH<sub>3</sub>OH (Figure S18 and Figure S22).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

On x-Fe<sub>5</sub>C<sub>2</sub>(510), CH prefers coupling to C<sub>2</sub>H<sub>2</sub> rather than dissociation to C, hydrogenation to CH<sub>2</sub>, or being inserted by CO/CHO to C2-oxygenates (Figure S19). CH2 prefers dissociation to CH rather than hydrogenation to CH<sub>3</sub>, coupling to C<sub>2</sub>H<sub>4</sub>, or being inserted by CO/CHO to C<sub>2</sub>oxygenates (Figure S20). CH3 prefers dissociation to CH2 instead of hydrogenation to CH<sub>4</sub>, coupling to C<sub>2</sub>H<sub>6</sub>, or being inserted by CO/CHO to C<sub>2</sub>-oxygenates (Figure S21). Once CH<sub>2</sub> and CH<sub>3</sub> are formed on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), both would dissociate to CH, further confirming that CH is the most favorable  $CH_x$  (x = 1-3) species. Our calculation results are in excellent agreement with the experimental results14,22 and DFT calculations<sup>41-43</sup> that  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> exhibits good catalytic performance for CO dissociation<sup>12</sup> and carbon-chain propagation for Fe-based FTS catalysts. Thus, CH is the most favorable species on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), and  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) mainly contributes to the formation of C<sub>2</sub>H<sub>2</sub> via CH coupling (Figure S22, Supplementary Movie 1).

**The Cu<sup>0</sup>–\chi-Fe<sub>5</sub>C<sub>2</sub>(<b>510**) **Surface Model**. To further elucidate the synergistic interactions of Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub> binary catalyst for selective CO hydrogenation to higher alcohols, we resorted to DFT calculation on a Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface model (Figure 5) based on HAADF-STEM result (Figure 2i). We construct a Cu strip adsorbed on a  $p(2 \times 1) \chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface to optimize and represent Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub> binary catalyst. The Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface morphology and its adsorption sites are also shown in Figure 5.

The Geometric Effect of Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub>(510). The geometric effect plays a crucial role in catalytic performance, as it associates with the atomic arrangement at the active site.<sup>2,3,44</sup> The way the active site is configured can exert a significant effect on the binding strength of adsorbates.<sup>3,44</sup> The calculated geometric results show that only CO prefers adsorption at the interface of  $Cu^0 - \chi - Fe_5C_2(510)$ , while  $CH_x$ (x = 1-3) and H species prefer adsorption at the top Fe sites on Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub>(510) surface (Figure S23). Moreover, as shown in Table S9, the calculated adsorption energies of  $CH_x$  (x = 1-3) and H species decrease and the calculated CO adsorption energy increases on Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub>(510) in comparison to those on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510). Additionally, among all reactions related to  $CH_x(x = 1-3)$  (Figures S24–S26), the reactions of their dissociation, hydrogenation, and coupling to C<sub>2</sub>-hydrocarbons prefer occurring at the Fe sites on  $Cu^0 - \chi$ -Fe<sub>5</sub>C<sub>2</sub>(510). However, only CO insertion into CH<sub>x</sub> (x = 1-3) to C<sub>2</sub>-oxygenates occur at the interface of Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) (Figures S24–S26). Thus,  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) alone mainly contributes to C<sub>2</sub>-hydrocarbons formation, and the geometric effect at the interface of  $Cu^0 - \chi - Fe_5C_2(510)$  plays an important role in C<sub>2</sub>-oxygenates formation.

On  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), it is noteworthy that CHO insertion into CH<sub>x</sub> (x = 1-3) to CH<sub>x</sub>CHO (x = 1-3) are all more kinet-

ically difficult owing to their higher activation barriers than CO insertion into  $CH_x$  (x = 1-3) to  $CH_xCO$  (x = 1-3) (Figures S19–S21). Therefore, on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), we will only consider CO insertion into  $CH_x$  (x = 1-3) species to C<sub>2</sub>-oxygenates. On Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface, CH<sub>3</sub> prefers dissociation to CH<sub>2</sub> (Figure S26). Thus, CH and CH<sub>2</sub> are found to be the most favorable  $CH_x$  species on  $Cu^0-\gamma$ -Fe<sub>5</sub>C<sub>2</sub>(510). The adsorbed CO at the interface of Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) inserts into CH<sub>x</sub> (x = 1, 2) that adsorbed at the Fe sites of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface to C<sub>2</sub>-oxygenates (CHCO/CH<sub>2</sub>CO) with the activation barriers of 64.8 and 32.5 kJ·mol<sup>-1</sup>, respectively (Figure 6a). Whereas on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), the activation barriers are 144.5 and 113.3 kJ·mol<sup>-1</sup>, respectively, which are much higher by 79.7 and 80.8 kJ·mol<sup>-1</sup> than those on  $Cu^0 - \chi - Fe_5C_2(510)$  (Figure 6a). Additionally, the previous DFT calculation reported by Zhao et al.45 on Rh(111) for CO hydrogenation to C2oxygenates indicated that CO insertion into  $CH_x(x = 1, 2)$ had activation barriers of 129.3 and 120.6 kJ·mol<sup>-1</sup> (Table S9), respectively, which are much higher by 64.5 and 88.1 kJ·mol<sup>-1</sup> than those on Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510). Thus, the smaller activation barriers required for CO insertion into  $CH_x(x =$ 1, 2) to C<sub>2</sub>-oxygenates (CHCO/CH<sub>2</sub>CO) suggest that Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is indeed favorable for higher alcohols formation compared with  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Rh(111).



**Figure 5.** The Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface model. A Cu strip adsorbed on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface and its adsorption sites with top and side view. T1–T4 denote the top Fe site of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface, and T<sub>1</sub>5–T<sub>1</sub>10 denote the top Fe or Cu sites of Fe–Cu interface; B1–B6 and B7–B12 denote the Fe–Fe bridge and Cu–Cu bridge sites, respectively; B<sub>1</sub>1–B<sub>1</sub>3 denote the Fe–Cu bridge sites of Fe–Cu interface; F1–F4 denote the 3fold Fe sites of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface, F5 and F6, F7 denote the 4-fold and 3-fold Cu sites over Cu strip, respectively; F<sub>1</sub>1 and F<sub>1</sub>2 denote the 3-fold sites of Fe–Cu interface. The interface between Cu<sup>0</sup> and  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is circled by the red dotted lines. Purple, gray and orange balls denote Fe, C, and Cu atoms, respectively.

The potential energy profile of  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x$  (x = 1, 2) reactions on

**ACS Catalysis** 

Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) in comparison to  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is presented in Figure 6a. The activation barriers for C<sub>2</sub>-hydrocarbons (C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub>) and C<sub>2</sub>-oxygenates (CHCO/CH<sub>2</sub>CO) formation over Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) are remarkably lower than those on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), especially for CHCO/CH<sub>2</sub>CO formation, suggesting that Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) exhibits a higher catalytic activity towards the formation of

C<sub>2</sub>-hydrocarbons and C<sub>2</sub>-oxygenates in comparison to  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510). The activation barrier difference between C<sub>2</sub>H<sub>2</sub>(C<sub>2</sub>H<sub>4</sub>) and CHCO(CH<sub>2</sub>CO) formation decreases to 44.7(18.5) kJ·mol<sup>-1</sup> on Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) from 108.6(65.1) kJ·mol<sup>-1</sup> on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), indicating that the selectivity of C<sub>2</sub>-oxygenates on Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) are higher than that on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), especially for CH<sub>2</sub>CO formation.



**Figure 6.** (a) The potential energy profiles of  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x$  (x = 1, 2) on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), respectively. (b) Projected densities of states for the surface *d*-orbital center of Cu-Fe, Fe, and Rh over Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510),  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), and Rh(111), respectively, where the vertical black dashed lines denote the *d*-band center and the vertical blue dashed line is the Fermi level. It is noted that for calculating the *d*-band center, surface Fe and Cu atoms are selected over Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), surface Fe atoms and Rh atoms are selected over  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Rh(111) surface, respectively. (c) Top view and (d) side view of the charge density difference of Cu<sup>0</sup> atoms for Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface. The blue and yellow shaded regions denote electronic charge depletion and charge accumulation, respectively. Purple, gray, and orange balls denote Fe, C, and Cu atoms, respectively.

The Electronic Effect of Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub>(510). The geometric structure of the catalytic active site is intrinsically linked to its electronic structure.<sup>3</sup> To gain a deep insight into the electronic effect of  $Cu^0 - \chi - Fe_5C_2(510)$ , we conducted the calculation of projected densities of states (PDOS), *d*-band center ( $\varepsilon_d$ : the average energy of the *d*-band), charge density difference, and Bader charge. The  $\varepsilon_d$  characterizes the ability to eject an electron to the adsorbate from the *d*-band of the metal.<sup>46</sup> The electronic effect on the binding strength of adsorbate attributes to the change in the electronic structure of a catalyst. For transition metals, the way their *d*-band interacts with the adsorbate determines the binding strength.<sup>3,44</sup> The trend is that the more low-lying (relative to the Fermi level) the d-band, the weaker the binding owing to the occupancy of antibonding states.<sup>3,44</sup>

The PDOS for the  $\varepsilon_d$  of metallic Cu-Fe, Fe, and Rh on Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510),  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), and Rh(111) surfaces are shown in Figure 6b. The  $\varepsilon_d$  of Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface is 0.09 eV closer to the Fermi level than that of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510)

surface (Figure 6b). For CO insertion into  $CH_x$  to  $C_2$ oxygenates, a C–C bond is formed when the  $CH_x$  species migrate to CO, the doubly occupied  $5\sigma$  CO orbital interacts with the doubly occupied  $\sigma$ -CH<sub>x</sub> orbitals to generate doubly occupied bonding and anti-bonding orbitals, thereby giving the repulsion.<sup>47</sup> The upward shift of  $\varepsilon_d$  on Cu<sup>0</sup>- $\chi$ - $Fe_5C_2(510)$  surface (Figure 6b) empties more anti-bonding states, which could accept more electrons from CO and CH<sub>x</sub> fragments orbitals than that on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface, thereby reducing the repulsion and facilitating CO insertion into CH<sub>x</sub>.<sup>3,47</sup> In addition, the downward shift of  $\varepsilon_d$  (0.38 eV) on Rh(111) surface (Figure 6b) can accept less electrons from CO and CH<sub>x</sub> fragments orbitals than that on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface, thereby increasing the repulsion and retarding CO insertion into CH<sub>x</sub>,<sup>3,47</sup> in line with that CO insertion into  $CH_x(x = 1, 2)$  to C<sub>2</sub>-oxygenates on Rh(111) surface<sup>45</sup> has higher activation barriers (Table S9) than those on  $Cu^0 - \chi - Fe_5C_2(510)$  surface.

The calculated density of states shows that  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> is metallic in nature (Figure S27), where Fe is a cation with a

Bader charge of 0.40 *e*, and C is anion with Bader charge of  $-0.99 \ e$ . The plotted charge density difference of Cu<sup>0</sup> atoms for Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface with top view and side view in Figure 6c–d indicates that the electron-rich interface of Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is due to the delocalized electron transfer from Cu<sup>0</sup> atoms, which facilitates CO activation and CO insertion into CH<sub>x</sub> (x = 1-3) to C<sub>2</sub>-oxygenates at the interface of Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510).<sup>48,49</sup> Indeed, the delocalized electron transfer from Cu<sup>0</sup> atoms for Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is also confirmed by calculating Bader charge analysis of Cu<sup>0</sup> atoms for Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) with a positive charge of 0.08 *e*.<sup>49</sup> Therefore, the synergistic geometric and electronic effects of Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub> binary catalyst account for the increased activity and selectivity towards C<sub>2</sub>-oxygenates in comparison to  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> and Rh catalyst.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 The Quantitative Energy Descriptor for Catalytic Activity and Selectivity. To quantify the activity and selectivity for CO hydrogenation to C<sub>2</sub>-hydrocarbons and C<sub>2</sub>oxygenates, we calculated the effective barriers  $(E_{\text{eff,CH}_x+CH_x} \text{ and } E_{\text{eff,CH}_x+CO})$  to evaluate the reaction rate  $(r_{\text{CH}_x+CH_x} \text{ and } r_{\text{CH}_x+CO})$  of CH<sub>x</sub> + CH<sub>x</sub> (x = 1, 2) coupling and CO insertion into CH<sub>x</sub> (x = 1, 2). Additionally, we calculated the effective barrier difference ( $\Delta E_{\text{eff}} = E_{\text{eff,CH}_x+CH_x} - E_{\text{eff,CH}_x+CO}$ ) between CH<sub>x</sub> + CH<sub>x</sub> (x = 1, 2) coupling and CO insertion into CH<sub>x</sub> (x = 1, 2) to describe the selectivity between C<sub>2</sub>-hydrocarbons and C<sub>2</sub>-oxygenates. In principle, the higher  $\Delta E_{\text{eff}}$  represents the higher selectivity of C<sub>2</sub>oxygenates and the lower selectivity of C<sub>2</sub>-hydrocarbons. Furthermore, the coverage of C<sub>1</sub> species CH<sub>x</sub> (x = 1, 2)  $(\theta_{\text{CH}_x})$  and CO ( $\theta_{\text{CO}}$ ) is considered.

**Table 1.** The effective barrier ( $E_{eff}$ ) of CH<sub>x</sub> + CH<sub>x</sub> (x = 1, 2) coupling and CO insertion into CH<sub>x</sub> (x = 1, 2), and the effective barrier difference ( $\Delta E_{eff}$ ) between CH<sub>x</sub> + CH<sub>x</sub> coupling and CO insertion into CH<sub>x</sub> (x = 1, 2) on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), respectively. (Unit: kJ·mol<sup>-1</sup>)

|                         | CH species                             |                                                         | CH <sub>2</sub> species                |                                                         |
|-------------------------|----------------------------------------|---------------------------------------------------------|----------------------------------------|---------------------------------------------------------|
|                         | χ-Fe <sub>5</sub> C <sub>2</sub> (510) | Cu <sup>0</sup> -x-Fe <sub>5</sub> C <sub>2</sub> (510) | χ-Fe <sub>5</sub> C <sub>2</sub> (510) | Cu <sup>0</sup> -x-Fe <sub>5</sub> C <sub>2</sub> (510) |
| $E_{\rm eff,CH_x+CH_x}$ | 48.9                                   | 41.2                                                    | 241.3                                  | 227.9                                                   |
| $E_{\rm eff,CH_x+CO}$   | 151.0                                  | 75.3                                                    | 209.8                                  | 139.4                                                   |
| $\Delta E_{\rm eff}$    | -102.1                                 | -34.1                                                   | 31.5                                   | 88.5                                                    |

The effective barriers ( $E_{eff}$ ) of CH coupling to C<sub>2</sub>H<sub>2</sub> and  $CH_2$  coupling to  $C_2H_4$  are 48.9 and 241.3  $kJ{\cdot}mol^{-1}$  on  $\chi{\cdot}$  $Fe_5C_2(510)$  (Table 1), which decrease to 41.2 and 227.9 kJ·mol<sup>-1</sup> on Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), respectively. This indicates that the formation rate of  $(C_2H_2/C_2H_4)$  is slightly improved on Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub>(510) compared with x-Fe<sub>5</sub>C<sub>2</sub>(510). Interestingly, the effective barriers of CO insertion into  $CH_x(x =$ 1, 2) remarkably decrease to 75.3 and 139.4 kJ·mol<sup>-1</sup> on Cu<sup>0</sup>-x-Fe<sub>5</sub>C<sub>2</sub>(510) from 151.0 and 209.8 kJ·mol<sup>-1</sup> on x-Fe<sub>5</sub>C<sub>2</sub>(510) (Table 1), respectively. This suggests that the formation rate of  $CH_xCO$  (x = 1, 2) can be significantly enhanced on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) compared with  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510). More importantly, the effective barrier differences ( $\Delta E_{eff}$ ) between  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x$  (x = 1, 2) on  $Cu^0 - \chi - Fe_5C_2(510)$  are much higher by 68.0 and 57.0 kJ·mol<sup>-1</sup> than those on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) (Table 1), respectively, confirming that  $Cu^0 - \chi - Fe_5C_2(510)$  significantly improves the C<sub>2</sub>-oxygenates selectivity.

**Reaction Pathway on Cu<sup>0</sup>–\chi-Fe<sub>5</sub>C<sub>2</sub>(<b>510**). The formation of C<sub>2</sub>-oxygenates is preferred by CO insertion into CH<sub>x</sub>(x =1, 2) on Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) (Figures S24–S26), subsequently, C<sub>2</sub>-oxygenates undergo a stepwise hydrogenation to C<sub>2</sub>H<sub>5</sub>OH (Figure 7a). The proposed reaction pathway for CO hydrogenation to C<sub>2</sub>H<sub>5</sub>OH over Cu<sup>0</sup>– $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is shown in Figure 7a and Supplementary Movie 2. The potential energy profile with calculated structural parameters of initial states (ISs) and final states (FSs), and transition states (TSs) in the reaction pathway are displayed in Figure 7a–b. The catalytic elementary steps, activation barriers and reaction energies are listed in Table S10.

Starting from CHCO intermediate (Figure 7a), one reaction pathway is CHCO hydrogenation [CHCO+H(1)] to CH<sub>2</sub>CO via **TS1** with an activation barrier and reaction energy of 37.5 and 24.1 kJ·mol<sup>-1</sup>, respectively; in **TS1**, CHCO is adsorbed at the 3-fold F<sub>1</sub>2 site of Fe–Cu interface, and H atom is adsorbed at the top T3 Fe site with the C–H distance of 1.693 Å. The other is CHCO hydrogenation [CHCO+H(2)] to CHCHO via **TS2** with an activation barrier and reaction energy of 74.6 and 5.9 kJ·mol<sup>-1</sup>, respectively. Thus, CHCO prefers hydrogenation to CH<sub>2</sub>CO.

Starting from CH<sub>2</sub>CO, one reaction pathway is CH<sub>2</sub>CO hydrogenation [CH<sub>2</sub>CO+H(1)] to CH<sub>3</sub>CO via **TS3** with an activation barrier and reaction energy of 34.5 and -3.1 kJ·mol<sup>-1</sup>, respectively; in **TS3**, CH<sub>2</sub>CO is adsorbed at the 3-fold F<sub>1</sub>1 site of Fe–Cu interface, H atom is adsorbed at the top T4 Fe site, and the C–H distance decreases to 1.476 Å from 2.585 Å in CH<sub>2</sub>CO+H(1). The second one is CH<sub>2</sub>CO hydrogenation [CH<sub>2</sub>CO+H(2)] to CH<sub>2</sub>CHO via **TS4** with an activation barrier and reaction energy of 92.9 and -66.1 kJ·mol<sup>-1</sup>, respectively. The third one is CH<sub>2</sub>CO hydrogenation CH<sub>2</sub>CO+H(3) to CH<sub>2</sub>COH via **TS5** with an activation barrier and reaction energy of 128.1 and 76.1 kJ·mol<sup>-1</sup>, respectively. Thus, CH<sub>2</sub>CO prefers hydrogenation to CH<sub>3</sub>CO.

Starting from CH<sub>3</sub>CO, one reaction pathway is CH<sub>3</sub>CO hydrogenation [CH<sub>3</sub>CO+H(1)] to CH<sub>3</sub>CHO via **TS6** with an activation barrier and reaction energy of 47.1 and-14.5 kJ·mol<sup>-1</sup>, respectively; in **TS6**, CH<sub>3</sub>CO is adsorbed at the 3-fold F<sub>1</sub>1 site of Fe–Cu interface, H atom is adsorbed at the Fe–Fe bridge site, and the C–H distance decreases to 1.528 Å from 2.188 Å in CH<sub>3</sub>CO+H(1). The other reaction pathway is CH<sub>3</sub>CO hydrogenation [CH<sub>3</sub>CO+H(2)] to CH<sub>3</sub>COH via **TS7** with an activation barrier and reaction energy of 140.7 and 87.8 kJ·mol<sup>-1</sup>, respectively.

As CH<sub>3</sub>CO prefers hydrogenation to CH<sub>3</sub>CHO via TS6, subsequently, CH<sub>3</sub>CHO hydrogenation [CH<sub>3</sub>CHO+H(1)] to CH<sub>3</sub>CH<sub>2</sub>O via TS8 has an activation barrier of 40.8 kJ·mol<sup>-1</sup> and a reaction energy of -28.4 kJ·mol<sup>-1</sup>, which is more favorable than CH<sub>3</sub>CHO hydrogenation [CH<sub>3</sub>CHO+H(2)] to CH<sub>3</sub>CHOH via **TS9** with an activation barrier and reaction energy of 155.8 and 36.2 kJ·mol<sup>-1</sup>, respectively; in TS8, CH<sub>3</sub>CHO is adsorbed at the B9 Cu-Cu bridge site of Fe-Cu interface, H atom is adsorbed at the top T<sub>1</sub>5 site of Fe-Cu interface, and the C-H distance reduces to 1.631 Å from 2.859 Å in CH<sub>3</sub>CHO+H(1). Eventually, CH<sub>3</sub>CH<sub>2</sub>O hydrogenation to C<sub>2</sub>H<sub>5</sub>OH via **TS10** is exothermic by 11.1 kJ·mol<sup>-1</sup> with an activation barrier of 114.2 kJ·mol<sup>-1</sup>; in TS10, CH<sub>3</sub>CH<sub>2</sub>O is adsorbed at the top T<sub>1</sub>7 Cu site of Fe-Cu interface, H atom is adsorbed at the B12 Cu-Cu bridge site of Fe-Cu interface, and the O-H distance decreases to 1.680 Å from 3.531 Å in CH<sub>3</sub>CH<sub>2</sub>O+H.

5 6 7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60



**Figure 7.** The reaction pathway for CO hydrogenation to  $C_2H_5OH$  on  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface proposed from DFT calculation. (a) The reaction pathway and potential energy profile with calculated structural parameters of initial states and final states. (b) Transition states in the reaction pathway. Bond lengths are in Å. Orange ball denotes Cu atom; Purple and gray balls denote Fe and C atoms of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510), respectively; Dark green, red, and white balls denote C, O, and H atoms of adsorbates, respectively.

## CONCLUSION

In summary, we advocate that the synergistic geometric and electronic interactions determine the activity of  $Cu^0 - \chi - Fe_5C_2$  for selective CO hydrogenation to higher alcohols, outperforming than silica-supported precious Rhbased catalysts, by using a combination of experimental evidence from bulk, surface-sensitive, and imaging techniques collected on real and high-performance Cu-Fe binary catalytic systems coupled with DFT calculations. The closer the *d*-band center of  $Cu^0 - \chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface to the Fermi level than those of  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Rh(111) surface (0.09 and 0.38 eV, respectively), and the elecronrich interface of  $Cu^0 - \chi - Fe_5C_2(510)$  owing to the delocalized electron transfer from Cu<sup>0</sup> atoms, which thereby promote CO activation and CO insertion into alkyl species to C2oxygenates at the interface of  $Cu^0-\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and thus improve C<sub>2</sub>H<sub>5</sub>OH selectivity. Starting from CHCO intermediate, the proposed reaction pathway for CO hydrogenation to  $C_2H_5OH$ on  $Cu^0 - \chi - Fe_5C_2(510)$ is  $CHCO+(H)\rightarrow CH_2CO+(H)\rightarrow CH_3CO+(H)\rightarrow CH_3CHO+(H)\rightarrow CH_3C$  $H_2O+(H) \rightarrow C_2H_5OH$ . This study may pave a way for the rational design of high-performance binary catalysts made from earth-abundant metals with synergistic interaction for tuning selectivity.

#### EXPERIMENTAL PROCEDURES

Catalyst Synthesis. 3DOM Cu-Fe catalysts were prepared by poly(methyl methacrylate) (PMMA) colloidal crystal template (CCT) method,<sup>21</sup> using ethylene glycol (EG)-methanol solution of metal nitrates Cu(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O as precursors. Mono-disperse PMMA microspheres were synthesized using an emulsion technique. The PMMA was centrifuged to form CCT. The stoichiometric amounts of mixed metal nitrates were dissolved with 15 mL of EG by stirring in a beaker (100 mL) at RT for 2 h, and the mixed solution was poured into a volumetric flask (50 mL). Methanol (6 mL) and EG were added to achieve the solution with 12 vol.% of methanol. The mixed Cu-Fe precursor was added to CCT, permeated the voids between the close-packed spheres, and condensed into a hard and inorganic framework upon frying. Excessive liquid was removed from the impregnated CCT via a Buchner funnel connected to vacuum. The infiltered template was dried in a desiccator at RT overnight. Finally, the dried sample was mixed with  $\gamma$ -alumina sphere (0.125 inch) and heated in a quartz tube at 1 °C min<sup>-1</sup> from RT to 450 °C in air flow for 5 h. The y-alumina sphere helped the removal of heat produced by oxidative decomposition of PMMA during the calcination, and it was separated from the catalyst after calcination and discarded.

**Measurements of Catalytic Performance**. The catalytic tests were carried out in a half-inch fixed-bed reactor. 1 g catalyst diluted with quartz sand was loaded in the catalyst bed. First, the catalysts were *in situ* reduced at atmospheric pressure by passing with  $H_2/CO = 1.0$ . During *in situ* reduction process, the temperature was increased to 300 °C and maintained for 48 h. Second, the temperature was lowered to 25 °C with syngas ( $H_2/CO = 1, 6\% N_2$  as internal standard) and the reactor pressure was slowly in-

creased to 700 psig. Then, the temperature in the catalyst bed was increased from 25 °C to the target temperature (e.g. 260 °C). Once the target temperature was achieved, the reaction was proceeded for a period of 10–15 h to ensure steady state of the catalyst activity. The time-on-stream after achieving steady state is 120 h.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

The outlet gaseous products were analyzed on-line using Agilent 7890 gas chromatograph (GC) provided with two thermal conductivity detectors (TCD) and a flame ionization detector (FID). C1-C4 ranged alkanes and alkenes were analyzed using a HP Plot capillary column (50 m  $\times$  530  $\mu$ m ID) with a FID and N<sub>2</sub> carrier. CO, CO<sub>2</sub>, and N<sub>2</sub> were analyzed using molecular sieve-packed columns with TCD and He carrier. H<sub>2</sub> was analyzed using molecular sieve-packed columns with TCD and N2 carrier. Liquid products were collected using a cold trap kept at -5 °C. Alcohols and hydrocarbons were analyzed off-line using a GC coupled to a mass spectrometer (GC-MS) equipped with an Agilent 6890 Series gas chromatograph system, an Agilent 7683B Series Injector, a 5973 Mass Selective Detector, and a FID detector. An Agilent DB-WAXetr (50 m×0.32 mm I.D., 1.0µm) capillary column was used for analyzing aqueous product that included oxygenated compounds and water, and water was quantified using an external standard method. An Agilent HP-5 capillary column was used for analyzing hydrocarbons.

C0 conversion (%) was defined as: C0 conversion (%) =  $\frac{F_{in}X_{CO,in} - F_{out}X_{CO,out}}{F_{in}X_{CO,in}} \times 100$ , where  $F_{in}$  and  $F_{out}$  (mol h<sup>-1</sup>) were the total molar flow rates of the reactor inlet syngas and outlet gas, respectively,  $X_{(i),in}$  and  $X_{(i),out}$  are the molar fraction of component *i* in the reactor inlet syngas and outlet gas, respectively. Product selectivity was defined as: Selectivity (mol%) =  $\frac{n_j F_{out} X_j}{F_{in} X_{CO,in} - F_{out} X_{CO,out}} \times 100$ , where  $n_j$  represents the number of carbon atoms contained in product *j*, and  $X_j$  represents the molar fraction of product *j*. The formation rate of C<sub>2+</sub>OH was defined as:  $r_{C_{2+}OH}(mmol g^{-1}_{cat}, h^{-1}) = \frac{C_{2+}OH(mmol)}{Weight of Catalyst (g) \times Time (h)}$ .

**Mössbauer Spectroscopy**. Mössbauer experiments were conducted using a <sup>57</sup>Co/Rh source in a constant acceleration transmission spectrometer. The spectra were recorded at 27 °C. The spectrometer was calibrated using a standard  $\alpha$ -Fe foil and the reported isomer shifts were relative to the center of the  $\alpha$ -Fe spectrum. The WinNormos-for-Igor 3.0 program was used to determine Mössbauer parameters. A nonlinear least-squares fitting procedure with a set of independent Lorentzian lines that models the spectra as a combination of singlets, quadruple doublets and/or magnetic sextets was used for data analysis. The spectra components were identified based on their isomer shift, quadruple splitting, and magnetic hyperfine field. Magnetic hyperfine fields were calibrated with 330 kOe field of  $\alpha$ -Fe at 27 °C.

**Cs-corrected HAADF-STEM Imaging and EELS Elemental Mapping.** HAADF-STEM images were taken by a JEOL ARM 200 equipped with a probe corrector and a cold field emission gun operated at 200 eV with a spatial resolution of 0.08 nm, and EELS elemental maps were taken by using Gatan Quantum 965 with an energy resolution of 0.6 eV without a monochromator.

*In situ* Ambient Pressure X-ray Photoelectron Spectroscopy. Gas flowed through the reactor and exited through the exit port and an aperture that interfaces the gaseous environment of the pre-lens. Flow rate in the reactor was measured using a mass flow meter installed between each gas source and the entrance of the flow reaction cell. The flow rate of pure gas was in the range of 3– 5 mL pure gas per minute. The total pressure of the mixture gas of reactor was measured using a capacitance gauge installed at the entrance. The pressure at the exit was measured using another capacitance gauge. An average of the pressures at entrance and exit was defined as the pressure above the catalyst in the catalytic reactor that was integrated with a monochromatic Al K $\alpha$  (hu = 1486.7 eV) X-ray source and a different pumping stage.

The catalyst was heated by heating the vacuum side of a sample stage using e-beaming heater installed in the vacuum section between the external wall of the catalytic reactor and the internal wall of the UHV chamber. The gaseous side was the internal wall of the reactor. Au thin film (0.4 mm thick, 99.99%, VWR) was used as a substrate to load a catalyst. Au foil was deliberately roughened using a SiC knife to increase adhesion. A certain amount of 3DOM Cu<sub>2</sub>Fe<sub>1</sub> catalyst was suspended in 100% ethanol and deposited on pre-cleaned Au foil. Ethanol left in the sample on the Au foil was vaporized by placing Au foil in a vacuum oven at 60°C. The *in situ* reaction medium was syngas (H<sub>2</sub>/CO = 1). The reaction pressure was 1 mbar. The temperature varied from RT to 500°C, and each target temperature was held for 1 h before spectrum collection. High resolution spectra of Cu 2p, Cu (LMM), Fe 2p, and C 1s were gathered using an average of 5–35 scans with a pass energy of 23.5 eV and a step size of 0.05 eV. All spectra were calibrated to Au 4f<sub>7/2</sub> binding energy (84.0 eV).

In situ X-ray Absorption Spectroscopy. In situ XAS measurements were performed at beamline 9-BM-C of the Advanced Photon Sources at Argonne National Laboratory. All Cu K-edge and Fe K-edge measurements were carried out in transmission mode. A copper or iron foil spectrum was acquired through a third ion chamber simultaneously with each measurement for energy calibration. Harmonic rejection was accomplished using a Rhodiumcoated harmonic rejection mirror. The CuO, Cu<sub>2</sub>O, Fe<sub>3</sub>O<sub>4</sub>, and  $\gamma$ -Fe<sub>5</sub>C<sub>2</sub> standards, and catalyst samples were diluted with boron nitride (BN) then pressed into a pellet, which could simultaneously hold six samples. The sample thickness was chosen to give a total absorbance (µx) at Cu K-edge or Fe K-edge between 1 and 2 absorption lengths, and edge steps ( $\Delta \mu x$ ) around 0.3–0.5. For *in* situ measurements, the sample holder was placed into a controlled atmosphere quartz tube, equipped with thermocouple to monitor the temperature of samples, Swagelok Ultra-Torr fitting and Kapton windows for sealing, and shut-off valves for gas treatments and isolation of the samples after in situ treatment. The quartz tube was placed within a tube furnace controlled by a programmable temperature controller. The sample was heated from RT to 400 °C at a rate of 3°C min-1 under a 10 mL min-1 flow of  $3\%H_2/3\%CO$  balanced with helium, and held at each desired temperature for 1 h except 300°C for 24 h. Data were acquired at RT in helium flow. Trace oxidants in helium were removed by passing through a Matheson PURO Gas Triple Purifier Cartridge. The IFEFFIT package was used for data normalization and processing.50,51 The normalized, energy-calibrated XANES spectra were obtained by standard methods. Standard procedures based on IFEFFIT were used to process the EXAFS data.

#### COMPUTATIONAL METHODOLOGY

All calculations were performed by using the Vienna Ab Initio Simulation Package (VASP),52,53 in which the electron-ion interactions were expressed by projector-augmented wave (PAW) method.54,55 The generalized gradient approximation (GGA) proposed by Perdew-Burke-Ernzerhof (PBE)56,57 was used to describe the exchange-correlation energies and potential. Owing to the magnetic properties of Fe, all calculations were spin-polarized<sup>58</sup> with a plane wave cutoff energy of 400 eV. The Brillouin zone was sampled by a 2×2×2 k-points grid generated via the Monkhorst-Pack procedure.<sup>59,60</sup> The geometry optimization was converged when the energy differences between two electronic optimization steps were smaller than 10<sup>-5</sup> eV, and the forces for ions were less than 0.03 eV/Å. To study the minimum energy reaction pathways, the Climbing-Image Nudged Elastic Band method (CI-NEB)61,62 was employed to find saddle points between the known reactants and products, and the transition states were optimized using the dimer method.<sup>63,64</sup> Bader charge analysis<sup>65</sup> and charge density difference analysis<sup>66</sup> was conducted for discussing charge transfer. The optimized transition state structures were converged when the forces for all atoms were less than 0.05 eV/Å. In all calculated energy data, the zero-point energy (ZPE) has been considered.

 $\chi$ -Fe<sub>5</sub>C<sub>2</sub> has a monoclinic structure with C2/c crystallographic symmetry,<sup>67</sup> including 20 Fe and 8 C atoms per unit cell. The cal-

culated lattice parameters (a = 11.588 Å, b = 4.579 Å, c = 5.059 Å, and  $\beta$  =97.7°) and magnetic moment (1.73 µB) agree well with the previous experimental data.<sup>68,69</sup> The  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) is modeled using a  $p(2\times1)$  supercell slab with three-layered iron and sixlayered carbon. For  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface models, the bottom one-layered iron and two-layered carbon are fixed in their bulk position during all the calculations, whereas the top two-layered iron, four-layered carbon, and adsorbates are relaxed. The vacuum spacing between slabs is 10 Å to ensure no significant interaction between the slabs.

The *d*-band center ( $\varepsilon_d$ ) is calculated via Eq. (1),<sup>46</sup> where  $\rho_d$  represents the density of states projected onto the metal atom's *d*-band and  $E_f$  is the Fermi energy.

$$\varepsilon_d = \frac{\int_{-\infty}^{E_f} E_{P_d}(E) dE}{\int_{-\infty}^{E_f} P_d(E) dE}$$
(1)

Based on the DFT calculation results, adsorption energies, reaction energies, and activation barriers are used to describe the thermodynamic and kinetic properties of the reaction. The adsorption energy is defined as Eq. (2), where  $E_{(adsorbates/slab)}$  is the total energy of the slab with adsorbates,  $E_{(slab)}$  is the total energy of the slab, and  $E_{(adsorbates)}$  is the total energy of free adsorbates. Therefore, the more negative the  $E_{ads}$ , the stronger the adsorption. The reaction energy ( $\Delta H$ ) and activation barrier ( $E_a$ ) are calculated by Eqs. (3) and (4), respectively, where E(IS), E(FS), and E(TS)are the energies of the corresponding initial state (IS), final state (FS), and transition state (TS), respectively.

$$E_{ads} = E_{(adsorbates/slab)} - [E_{(slab)} + E_{(adsorbates)}]$$
(2)  

$$\Delta H = E(FS) - E(IS)$$
(3)  

$$E_a = E(TS) - E(IS)$$
(4)

The coverage of C<sub>1</sub> species CH<sub>x</sub> (*i* =1, 2) ( $\theta_{CH_x}$ ) can be expressed with respect to the C coverage<sup>70</sup> ( $\theta_{\rm C}$ ) by Eq. (5), where  $E_x$ is the relative stability of CH<sub>x</sub> with respect to C on surfaces, which is the energy difference between adsorbed  $CH_x$  and C + xH; t is  $\theta_{\rm H}/\theta_*, \theta_{\rm H}$  and  $\theta_*$  are the coverage of H and free surface site, respectively. Based on the previous DFT calculation studies,71-75 the reaction rate of  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x$  (x = 1, 2) can be derived and expressed as Eqs. (6) and (7), respectively, where  $E_{\text{eff,CH}_x+\text{CH}_x} = E_a^{\text{CH}_x+\text{CH}_x} + 2E_x$ , and  $E_{\text{eff,CH}_x+\text{CO}} = E_a^{\text{CH}_x+\text{CO}} + E_x$  are the effective barriers of  $\text{CH}_x + \text{CH}_x$ (x = 1, 2) coupling and CO insertion into CH<sub>x</sub> (x = 1, 2) reactions, respectively.  $E_a^{CH_x+CH_x}$  and  $E_a^{CH_x+CO}$  are the activation barriers of  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x$  (x = 1, 2) reactions, respectively. Combining Eqs. (6) and (7), the ratio of reaction rate for the  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x(x = 1, 2)$  reactions can be expressed as Eq. (8), where  $\Delta E_{\text{eff}} = E_{\text{eff,CH}_x + \text{CH}_x} - E_{\text{eff,CH}_x + \text{CO}}$  is the effective barrier difference between  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x$  (x = 1, 2) reactions. It is noteworthy that both t and  $\frac{\theta_c}{\theta_{co}}$  have little effect on the selectivity<sup>74,75</sup> in comparison to  $\Delta E_{eff}$  with exponential impact. Thus,  $\Delta E_{\rm eff}$  can be used as a quantitative energy descriptor to evaluate the FTS selectivity between  $CH_x + CH_x$  (x = 1, 2) coupling and CO insertion into  $CH_x$  (x = 1, 2) reactions. In principle, the higher  $\Delta E_{eff}$  represents the higher selectivity of C<sub>2</sub>oxygenates and the lower selectivity of C2-hydrocarbons.

$$\theta_{\mathrm{CH}_{x}} = e^{\left(-\frac{E_{x}}{RT}\right)}\theta_{\mathrm{C}}(\theta_{\mathrm{H}}/\theta_{*})^{x} = e^{\left(-\frac{E_{x}}{RT}\right)}\theta_{\mathrm{C}}t^{x}$$
(5)  
$$r = -A_{\mathrm{C}}\left(-\frac{E_{a}^{\mathrm{CH}_{x}+\mathrm{CH}_{x}}}{RT}\right)a^{2} = -A_{\mathrm{C}}\left(-\frac{E_{a}^{\mathrm{CH}_{x}+\mathrm{CH}_{x}}+2E_{x}}{RT}\right)a^{2} + 2x$$

$$= Ae^{\left(-\frac{E_{eff,CH_x+CH_x}}{RT}\right)}\theta_C^2 t^{2x}$$
(6)

$$r_{\rm CH_x+CO} = Ae^{\left(-\frac{E_a^{\rm CH_x+CO}}{RT}\right)} \theta_{\rm CH_x} \theta_{\rm CO} = Ae^{\left(-\frac{E_a^{\rm CH_x+CO}+E_x}{RT}\right)} \theta_{\rm C} \theta_{\rm CO} t^x$$

$$= Ae^{\left(\frac{RT}{RT}\right)}\theta_{C}\theta_{CO}t^{\chi}$$
(7)  
$$\frac{r_{CH_{\chi}+CH_{\chi}}}{r_{CH_{\chi}+CO}} = t^{\chi}\frac{\theta_{C}}{\theta_{CO}}e^{\left(-\frac{\Delta E_{eff}}{RT}\right)}$$
(8)

#### Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI:.

Catalyst characterizations, catalytic performance data, DFT calculation results, additional experimental methods, including SI Figures S1–S27 and Tables S1–S10 (PDF)

Supplementary Movies, showing the optimum reaction pathway from proposed DFT for CO hydrogenation on  $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) and Cu<sup>0</sup>- $\chi$ -Fe<sub>5</sub>C<sub>2</sub>(510) surface (AVI)

#### AUTHOR INFORMATION

Corresponding Author

\* wangbaojun@tyut.edu.cn

\* fyu@abe.msstate.edu

#### ORCID

#### Yongwu Lu: 0000-0003-0858-8315 Franklin (Tao) Feng: 0000-0002-4916-6509 Fei Yu: 0000-0001-5595-6147

Author Contributions

⊗Y. L. and R. Z. contributed equally to this work.

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

The experimental work was supported by US Department of Agriculture under the Award Number of 2012-10008-20302. The theoretical work was supported by the National Natural Science Foundation of China (Nos. 21476155, 21276003), the Natural Science Foundation of Shanxi Province (No. 2014011012-2), the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, and the Top Young Innovative Talents of Shanxi. Work performed at Argonne National Laboratory and use of the Advanced Photon Source were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, through contract No. DE-AC02-06CH11357.

#### REFERENCES

(1) Shi, J. Chem. Rev., 2013, 113, 2139-2181.

(2) Yu, W.; Porosoff, M. D.; Chen, J. G. *Chem. Rev.*, **2012**, *112*, 5780–5781.

(3) Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. *Nat. Chem.*, **2009**, *1*, 37–46.

(4) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nilsson, A. *Nat. Chem.*, **2010**, *2*, 454–460.

(5) Prieto, G.; Beijer, S.; Smith, M. L.; He, M.; Au, Y.; Wang, Z.; Bruce, D. A.; de Jong, K. P.; Spivey, J. J.; de Jongh, P. E. *Angew. Chem. Int. Ed.*, **2014**, *53*, 6397–6401.

(6) Pei, Y. -P.; Liu, J. -X.; Zhao, Y. -H.; Ding, Y. -J.; Liu, T.; Dong, W. -D.; Zhu, H. -J.; Su, H. -Y.; Yan, L.; Li, J. -L.; Li, W. -X. *ACS Catal.*, **2015**, *5*, 3620–3624.

(7) Xiang, Y.; Kruse, N. Nat. Commun., 2016, 7, 13058.

(8) Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Iulian Dugulan, A.; de Jong, K. P. *Science* **2012**, *335*, 835–838.

(9) Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. -L.; Tovar, M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R. *Science* **2012**, *336*, 893–897.

(10) Xiang, Y.; Chitry, V.; Liddicoat, P.; Felfer, P.; Cainey, J.; Ringer, S.; Kruse, N. *J. Am. Chem. Soc.*, **2013**, *135*, 7114–7117.

- (11) Luk, H. T.; Mondelli, C.; Ferré, D. C.; Stewart, J. A.; Pérez-Ramírez, J. *Chem. Soc. Rev.*, **2017**, *46*, 1358–1426.
- (12) Wang, D.; Chen, B.; Duan, X.; Chen, D.; Zhou, X. *J. Energy Chem.*, **2016**, *25*, 911–916.

2

3

4

5

6

7

8

9

13

28

32

33

34

- (13) Zhong, L.; Yu, F.; An, Y.; Zhao, Y.; Sun, Y.; Li, Z.; Lin, T.; Lin, Y.; Qi, X.; Dai, Y.; Gu, L.; Hu, J.; Jin, S.; Shen, Q.; Wang, H. *Nature* **2016**, *538*, 84–87.
- (14) Yang, C.; Zhao, H.; Hou, Y.; Ma, D. *J. Am. Chem. Soc.*, **2012**, *134*, 15814–15821.
- (15) Mao, W.; Su, J.; Zhang, Z.; Xu, X. -C.; Dai, W.; Fu, D.; Xu, J.; Zhou, X.; Han, Y. -F. *Chem. Eng. Sci.* **2015**, *135*, 312–322.
- (16) Mei, D.; Rousseau, R.; Kathmann, S. M.; Glezakou, V. -A.;
  Engelhard, M. H.; Jiang, W.; Wang, C.; Gerber, M. A.; White, J. F.;
  Storage D. I. J. Catal. 2010, 271, 225, 242
- II
   Stevens, D. J. J. Catal., 2010, 271, 325–342.

   12
   (17) Liu, J.; Tao, R.; Guo, Z.; Regalbuto, J. R.; Marshall, C. L.; Klie, R.
  - F.; Miller, J. T.; Meyer, R. J. ChemCatChem **2013**, 5, 3665–3672.
- 14
   (18) Yu, J.; Mao, D.; Han, L.; Guo, Q.; Lu, G. Catal. Commun. 2012,

   15
   27, 1–4.
- 15 27, 1-4.
  (19) Yang, N.; Medford, A. J.; Liu, X.; Studt, F.; Bligaard, T.; Bent, S. F.; Nørskov, J. K. J. Am. Chem. Soc., 2016, 138, 3705–3714.
- (20) Lu, Y.; Yu, F.; Hu, J.; Liu, J. Appl. Catal. A 2012, 429–430, 48–58.
  (21) Lu, Y.; Cao, B.; Yu, F.; Liu, J.; Bao, Z.; Gao, J. ChemCatChem
  2014, 6, 473–478.
- (22) Herranz, T.; Rojas, S.; Pérez-Alonso, F. J.; Ojeda, M.; Terreros,
  P.; Fierro, J. L. G. *J. Catal.*, 2006, 243, 199–211.
  - (23) Kim, K. S. J. Electron. Spectrosc., **1974**, 3, 217–226.
- 22 (24) Svintsitskiy, D. A.; Kardash, T. Y.; Stonkus, O. A.; Slavinskaya,
- 23 E. M.; Stadnichenko, A. I.; Koscheev, S. V.; Chupakhin, A. P.; Boronin, A. I. J. Phys. Chem. C 2013, 117, 14588–14599.
- (25) Natesakhawat, S.; Lekse, J. W.; Baltrus, J. P.; Ohodnicki, Jr., P.
  R.; Howard, B. H.; Deng, X.; Matranga, C. *ACS Catal.*, **2012**, *2*, 1667–1676.
  - (26) Ye, Y.; Wang, L.; Zhang, S.; Zhu, Y.; Shan, J.; Tao, F. *Chem. Commun.*, **2013**, *49*, 4385–4387.
- (27) de Smit, E.; van Schooneveld, M. M.; Cinquini, F.; Bluhm, H.;
  Sautet, P.; de Groot, F. M. F.; Weckhuysen, B. M. *Angew. Chem. Int. Ed.*, 2011, *50*, 1584–1588.
  - (28) Kuivila, C. A.; Butt, J. B.; Stair, P. C. *Appl. Surf. Sci.*, **1988**, *32*, 99–121.
  - (29) Tranquada, J. M.; Heald, S. M.; Moodenbaugh, A. R. *Phys. Rev.* B **1987**, *36*, 5263–5274.
- 35 (30) Kau, L. S.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc.,
  36 1989, 111, 7103-7109.
- 37 (31) Su, J.; Zhang, Z.; Fu, D.; Liu, D.; Xu, X. -C.; Shi, B.; Wang, X.; Si,
  38 R.; Jiang, Z.; Xu, J.; Han, Y. -F. *J. Catal.*, *2016*, *336*, 94–106.
- (32) Martens, G.; Rabe, P.; Schwentner, N.; Werner, A. *Phys. Rev. B* **1978**, *17*, 1481–1488.
- 40 (33) Sankar, G.; Vasudevan, S.; Rao, C. N. R. *J. Chem. Phys.*, **1986**, 41 85, 2291–2299.
- 42 (34) Wang, X.; Hanson, J. C.; Frenkel, A. I.; Kim, J. Y.; Rodriguez, J. A.
  43 *J. Phys. Chem. B* 2004, *108*, 13667–13673.
- (35) Frenkel, A. I.; Wang, Q.; Marinkovic, N.; Chen, J. G.; Barrio, L.;
  Si, R.; López Cámara, A.; Estrella, A. M.; Rodriguez, J. A.; Hanson, J. C. J. Phys. Chem. C 2011, 115, 17884–17890.
- 46 (36) Bock, D. C.; Pelliccione, C. J.; Zhang, W.; Wang, J.; Knehr, K. W.;
  47 Wang, J.; Wang, F.; West, A. C.; Marschilok, A. C.; Takeuchi, K. J.;
  48 Takeuchi, E. S. ACS Appl. Mater. Interfaces 2016, 8, 11418–11430.
- 49 (37) Thüne, P.; Moodley, P.; Scheijen, F.; Fredriksson, H.; Lancee,
  50 R.; Kropf, J.; Miller, J.; Niemantsverdriet, J. W. H. *J. Phys. Chem. C*,
  2012, *116*, 7367–7373.
- 51 2012, 110, 7307-7373.
  52 (38) Ribeiro, M. C.; Jacobs, G.; Pendyala, R.; Davis, B. H.; Cronauer,
  53 D. C.; Kropf, A. J.; Marshall, C. L. J. Phys. Chem. C, 2011, 115, 478353 4792.
- 54 (39) Park, J. C.; Yeo, S. C.; Chun, D. H.; Lim, J. T.; Yang, J. -I.; Lee, H. 55 T.; Hong, S.; Lee, H. M.; Kim, C. S.; Jung, H. *J. Mater. Chem. A* 2014, 2, 14371–14379.

- (40) Zhai, P.; Xu, C.; Gao, R.; Liu, X.; Li, M.; Li, W.; Fu, X.; Jia, C.; Xie, J.; Zhao, M.; Wang, X.; Li, Y. -W.; Zhang, Q.; Wen, X. -D.; Ma, D. *An-*
- *gew. Chem. Int. Ed.*, **2016**, *55*, 9902–9907. (41) Zhao, S.; Liu, X. -W.; Huo, C. -F.; Li, Y. -W.; Wang, J.; Jiao, H. J. Catal., **2012**, *294*, 47–53.
- (42) Pham, T. H.; Duan, X.; Qian, G.; Zhou, X.; Chen, D. *J. Phys. Chem. C* **2014**, *118*, 10170–10176.
- (43) Olus Ozbek, M.; Niemantsverdriet, J. W. J. Catal., 2014, 317, 158–166.
- (44) Kim, D.; Resasco, J.; Asiri, A. M.; Yang, P. *Nat. Commun.*, **2014**, *5*, 4948.
- (45) Zhao, Y. -H.; Sun, K.; Ma, X.; Liu, J.; Sun, D.; Su, H. -Y.; Li, W. -X. Angew. Chem. Int. Ed., **2011**, *50*, 5335–5338.
- (46) Li, J.; Croiset, E.; Ricardez-Sandoval, L. J. Mol. Catal. A Chem., **2012**, 365, 103–114.
- (47) Choi, Y. M.; Liu, P. J. Am. Chem. Soc., **2009**, 131, 13054–13061.
- (48) van Steen, E.; Claeys, M. *Catal. Struct. React.*, **2015**, *1*, 11–18.
- (49) Tian, X.; Wang, T.; Yang, Y.; Li, Y. -W.; Wang, J.; Jiao, H. *J. Phys. Chem. C* **2015**, *119*, 7371–7385.
- (50) Newville, M. J. Synchrotron. Radiat., **2001**, *8*, 322–324.
- (51) Ravel, B.; Newville, M. J. Synchrotron. Radiat., 2005, 12, 537–541.
- (52) Kresse, G.; Furthmüller, J. Phys. Rev. B **1996**, 54, 11169–11186.
- (53) Kresse, G.; Furthmüller, J. *Comput. Mater. Sci.*, **1996**, *6*, 15–50.
- (54) Blöchl, P. E. Phys. Rev. B **1994**, *50*, 17953–17979.
- (55) Kresse, G.; Joubert, D. *Phys. Rev. B* 1999, *59*, 1758–1775.
  (56) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.*, 1996, *177*, 2005, 2006.
- 77, 3865–3868. (57) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Rev. Lett.*, **1997**, 78, 1396.
- (58) Louie, S. G.; Froyen, S.; Cohen, M. L. Phys. Rev. B **1982**, 26, 1738-1742.
- (59) Ge, Q.; Neurock, M.; Wright, H. A.; Srinivasan, N. J. Phys. Chem. B **2002**, *106*, 2826–2829.
- (60) Joos, L.; Filot, I. A. W.; Cottenier, S.; Hensen, E. J. M.; Waroquier, M.; Speybroeck, V. V.; van Santen, R. A. *J. Phys. Chem. C* **2014**, *118*, 5317–5327.
- (61) Sheppard, D.; Xiao, P.; Chemelewski, W.; Johnson, D. D.; Henkelman, G. *J. Chem. Phys.*, **2012**, *136*, 074103.
- (62) Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys., **2008**, 128, 134106.
- (63) Henkelman, G.; Jónsson, H. J. Chem. Phys., **1999**, 111, 7010–7022.
- (64) Olsen, R. A.; Kroes, G. J.; Henkelman, G.; Arnaldsson, A.; Jónsson, H. J. Chem. Phys., **2004**, *121*, 9776–9792.
- (65) Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comput. Mater. Sci., **2006**, *36*, 354–360.
- (66) Teng, B. -T.; Zhao, Y.; Wu, F. -M.; Wen, X. -D.; Chen, Q. -P.; Huang, W. -X. *Surf. Sci.*, **2012**, *606*, 1227–1232.
- (67) Storsæter, S.; Chen, D.; Holmen, A. Surf. Sci., 2006, 600, 2051–2063.
- (68) Steynberg, P. J.; van de Berg, J. A.; Janse van Rensburg, W. J. Phys.: Condens. Matter **2008**, 20, 064238.
- (69) Retief, J. J. Powder Diffr. **1999**, 14, 130–132.
- (70) Hofer, L. J. E. Cohn, E. M. J. Am. Chem. Soc. **1959**, 81, 1576–1582.
- (71) Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. *J. Phys. Chem. C* **2009**, *113*, 8858–8863.
- (72) Cheng, J.; Gong, X. -Q.; Hu, P.; Lok, C. M.; Ellis, P.; French, S. *J. Catal.*, **2008**, *254*, 285–295.
- (73) Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. *J. Phys. Chem. C* **2010**, *114*, 1085–1093.
- (74) Pham, T. H.; Qi, Y.; Yang, J.; Duan, X.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. *ACS Catal.*, **2015**, *5*, 2203–2208.
- (75) Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. *J. Phys. Chem. C*, **2008**, *112*, 9464–9473.

#### **ACS Catalysis**



ACS Paragon Plus Environment