Date: 25-06-13 17:27:42

Pages: 7

HN

SHORT COMMUNICATION

Asymmetric Organocatalysis

Compounds containing both a pyrazole motif and a masked amino acid structure were obtained through the asymmetric Michael addition/aromatization of azlact-ones to α , β -unsaturated pyrazolones. The

reaction proceeds with C-4 regioselectivity by using an isosteviol-derived thiourea organocatalyst and provides the products in good yields with good diastereoselectivities and good enantioselectivities.

Z.-C. Geng, X. Chen, J.-X. Zhang, N. Li, J. Chen, X.-F. Huang, S.-Y. Zhang, J.-C. Tao,* X.-W. Wang* 1–7

Asymmetric Michael/Aromatization Reaction of Azlactones to α , β -Unsaturated Pyrazolones with C-4 Regioselectivity Catalyzed by an Isosteviol-Derived Thiourea Organocatalyst

Keywords: Organocatalysis / Asymmetric synthesis / Amino acids / Nitrogen heterocycles / Azlactones

SHORT COMMUNICATION

DOI: 10.1002/ejoc.201300524

Asymmetric Michael/Aromatization Reaction of Azlactones to α,β-Unsaturated Pyrazolones with C-4 Regioselectivity Catalyzed by an Isosteviol-Derived Thiourea Organocatalyst

Zhi-Cong Geng,^[a] Xiang Chen,^[a] Jin-Xin Zhang,^[a] Ning Li,^[a] Jian Chen,^[a] Xiao-Fei Huang,^[a] Shao-Yun Zhang,^[a] Jing-Chao Tao,^{*[b]} and Xing-Wang Wang^{*[a]}

Keywords: Organocatalysis / Asymmetric synthesis / Amino acids / Nitrogen heterocycles / Azlactones

Pyrazoles are an important class of molecular structures with significant biological and pharmaceutical activities. Herein, heterocyclic compounds containing both a pyrazole motif and a masked amino acid structure are synthesized through the asymmetric Michael/aromatization of azlactones to α , β -

unsaturated pyrazolones by using isosteviol-derived amine thiourea as the organocatalyst. The products are obtained in good yields (up to 93 %) with good diastereoselectivities and good enantioselectivities (up to >10:1 dr, 97 % ee).

Introduction

Pyrazoles and pyrazolones, which are five-membered heterocyclic compounds containing two adjacent nitrogen atoms, are important motifs found in a number of organic molecules that possess a wide range of agricultural and pharmaceutical activities. Particularly, 3-hydroxypyrazole derivatives, obtained by aromatization of pyrazolones, are extensively studied as potent biological enzyme inhibitors and activators. For example, some aryl-substituted 3-(3-dimethylaminopropyloxy)-1H-pyrazoles demonstrate potent activation of soluble guanylate cyclase and potent inhibition of platelet aggregation. Remogliflozin etabonate plays an important role in renal glucose reabsorption and is a remarkable transporter as a molecular target for the treatment of diabetes (Figure 1).^[1] Therefore, the development of new methods for the efficient synthesis of optically active pyrazoles and pyrazolones is highly desirable. From 2011, Rios, Wang, and our group successively reported organocatalytic cascade reactions to synthesize spiropyrazolones by using α,β -unsaturated pyrazolones or pyrazolones as starting materials.^[2]

The use of azlactones as precursors for the enantioselective synthesis of quaternary α -amino acid derivatives^[3] found in many biologically active compounds was pion-

- [b] Department of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China E-mail: ictao@zzu.edu.cn
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300524.

Figure 1. Some biologically active pyrazole, pyrazolone, and α -amino acid derivatives.

eered by the groups of Fu and Trost (Figure 1).^[4–6] Ten years later, Jørgensen and co-workers first reported the organocatalytic enantioselective Michael addition of 4-substituted azlactones to α , β -unsaturated aldehydes with complete C-4 regioselectivity.^[7] Shortly thereafter, Hayashi and co-workers also reported a similar enantioselective transformation.^[8] Subsequently, Jørgensen, Rios and Ooi individually reported the organocatalyzed Michael additions of 4substituted azlactones to nitrostyrenes,^[9] unsaturated acyl phosphonates,^[10] phenylsulfonyl-substituted ethylenes,^[11] maleimides,^[12] unsaturated amides,^[13] electron-deficient triple bonds,^[14] and di- and trienyl *N*-acylpyrroles^[15] to provide either masked quaternary α -amino acid derivatives (C-4 regioselectivity) or chiral oxyaminals (C-2 regioselectivity).

2

 [[]a] Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China E-mail: wangxw@suda.edu.cn

Asymmetric Michael/Aromatization Reaction of Azlactones

Generally, the relative nucleophilicities of 2,4-disubstituted azlactones were greatly affected by several factors, including substituents on the azlactones, electrophiles, catalysts, and reaction conditions. In the reported literature, many reactions showing C-4 regioselectivity were performed with the use of azlactones derived from phenylglycines as the donors of the Michael addition reactions. Given that azlactones and pyrazolones are highly practical synthetic blocks, herein we report the organocatalytic enantioselective Michael addition/aromatization reactions between alkyl-substituted azlactones and α , β -unsaturated pyrazolones to provide enantiomerically enriched heterocyclic products containing both a 3-hydroxypyrazole motif and a masked amino acid structure. These reactions are efficiently catalyzed by an isosteviol-derived bifunctional

Scheme 1. The Michael/aromatization reaction of azlactones 2 to α , β -unsaturated pyrazolones 3. Path a: C-4 regioselectivity and Path b: C-2 regioselectivity; Bn = benzyl.

thiourea organocatalyst, originally devised by the Tao group for enantioselective catalysis,^[16] in excellent yields with good to excellent enantioselectivities (Scheme 1).

Results and Discussion

Pages: 7

Initially, the reaction between 4-benzyl-2-phenyl-2-oxazoline-5-one (2a) and α , β -unsaturated pyrazolone 3a was selected as the model reaction to examine a series of bifunctional organic catalysts 1a-l (Figure 2) in dichloromethane at room temperature (Table 1, entries 1-12). Quinine and its derivatives **1a-d** were firstly tested (Table 1, entries 1-4). When quinine-derived tertiary amino-thiourea organocatalyst 1d (10 mol-%) was employed,^[17] the Michael addition of 2a with 3a provided desired product 4a in 70% yield with 43% ee (Table 1, entry 4). Encouraged by these promising results, (1R,2R)-cyclohexane-1,2-diamine (DACH) and (1R,2R)-1,2-diphenylethane-1,2-diamine (DPEN) derived bifunctional thiourea tertiary amine catalysts 1e-i were investigated for this transformation (Table 1, entries 5–9). We found that organocatalysts **1h** and **li** with (R)- and (S)- α phenylethylamine motifs increased the enantioselectivity of product 4a to 71 and 72% ee, respectively, with over 10:1 dr (Table 1, entries 8 and 9). Furthermore, several chiral isosteviol-derived bifunctional thiourea organocatalysts 1j-l were synthesized and examined in this reaction (Table 1, entries 10-12). To our delight, if 1j (10 mol-%) was used in this transformation, product 4a was obtained in 92% yield with >10:1 dr and 81% ee (Table 1, entry 10). Notably, a trace amount up to 9% yield of 6a was detected in all of the above tentative reactions, which might be produced by Michael/ring opening or a concerted Diels-Alder process,

Figure 2. Structures of bifunctional organocatalysts 1a-l.

SHORT COMMUNICATION

and **5a** resulting from C-2 regioselectivity was not detected. With **1j** as the organocatalyst, less than 5% yield of **6a** was obtained (Table 1, entry 10). So, **1j** turned out to be the optimal organocatalyst in terms of both enantioselectivity and reactivity.

Table 1. Optimization of the catalysts.^[a]

[a] Unless noted, reactions were carried out with **2a** (0.13 mmol), **3a** (0.1 mmol), and **1** (10 mol-%) in CH₂Cl₂ (1.0 mL) at r.t.; Bz = benzoyl. [b] Isolated yield of **4a**; isomers **4a** and **6a** could be easily separated. [c] Determined by ¹H NMR spectroscopy. [d] Determined by chiral HPLC analysis.

Having identified 1j as a potent catalyst for this transformation, the reaction conditions were further optimized by examination of the effects of solvent, temperature, additive, substrate concentration, as well as the catalyst loading, and the results are shown in Table 2. The effect of solvent was first examined in the presence of 1j (10 mol-%), and several common solvents, such as CH2Cl2, Et2O, toluene, and PhCl, all exhibited similar reactivity, enantioselectivity, and diastereoselectivity at the same substrate concentration at room temperature (Table 2, entries 1-4). If the reaction was carried out at -40 °C in CH₂Cl₂, 91 % enantioselectivity was obtained (Table 2, entry 7). To our delight, the enantioselectivity could be further improved to 95% by adding activated 4 Å molecular sieves (MS) at -40 °C in toluene (Table 2, entry 9). If the temperature was increased to -20 °C, the enantioselectivity decreased slightly (Table 2, entry 12 vs. 9). Thus, -40 °C was selected as the optimal reaction temperature. Afterwards, the effects of substrate concentration and catalyst loading for this reaction were investigated (Table 2, entries 15-20). The highest enantioselectivity was obtained if the substrate concentration was 0.025 M (Table 2, entry 17). The enantioselectivity slightly dropped by increasing or decreasing the catalyst loading (Table 2, entry 17 vs. entries 18–20).

Table 2. Optimization of the reaction conditions.^[a]

Ph		\backslash			0 -	
	· Pn ⁺ /=		cat. 1j (10 n	nol-%)	o √ Ph	ОН /
) O	DII Ph) O	solven temperat	it Ph ure	N ^F "Bn	NPh
2a		3a			4a	
Entry	Solvent	T	Conc.	t	Yield ^[b]	$ee^{[c]}$
		[°C]	[M]	[h]	[%]	[%]
1	CH_2Cl_2	r.t.	0.1	0.5	92	81
2	Et_2O	r.t.	0.1	5 ^[d]	90	80
3	PhMe	r.t.	0.1	5 ^[d]	91	80
4	PhCl	r.t.	0.1	0.25	94	78
5	PhMe	-40	0.1	8	91	86
6	PhCl	-40	0.1	8	94	88
7	CH_2Cl_2	-40	0.1	8	97	91
8	Et_2O	-40	0.1	8	87	82
9 ^[e]	PhMe	-40	0.1	8	94	95
10 ^[e]	PhCl	-40	0.1	8	94	92
11 ^[e]	CH_2Cl_2	-40	0.1	8	95	93
12 ^[e]	PhMe	-20	0.1	1	93	93
13 ^[e]	PhCl	-20	0.1	1	93	90
14 ^[e]	CH_2Cl_2	-20	0.1	1	88	92
15 ^[f]	PhMe	-40	0.20	8	88	91
16 ^[g]	PhMe	-40	0.05	8	92	96
17 ^[h]	PhMe	-40	0.025	8	93	97
18 ^[i]	PhMe	-40	0.025	8	95	96
19 ^[j]	PhMe	-40	0.025	8	91	96
20 ^[k]	PhMe	-40	0.025	8	87	96

[a] Unless noted, reactions were carried out with **2a** (0.13 mmol), **3a** (0.1 mmol), and **1j** (10 mol-%) in solvent (1.0 mL) at r.t. In all cases, the products were obtained with >10:1 *dr*, as determined by ¹H NMR spectroscopy. [b] Isolated yield of **4a**; isomers **4a** and **6a** could be easily separated. [c] Determined by chiral HPLC analysis. [d] Time is given in minutes. [e] With the addition of 4 Å MS (100 mg). [f] With toluene (0.5 mL), 4 Å MS (50 mg). [g] With toluene (2.0 mL), 4 Å MS (200 mg). [h] With toluene (4.0 mL), 4 Å MS (400 mg). [i] 20 mol-% of the catalyst was used. [j] 5 mol-% of the catalyst was used. [k] 2.5 mol-% of the catalyst was used.

Having established the optimized reaction conditions, the scope and limitations of the substrate were then explored with isosteviol-derived thiourea 1j (10 mol-%) as the catalyst in toluene at -40 °C with 4 Å molecular sieves as an additive, and the results are summarized in Table 3. With the use of **2a** as the nucleophilic reagent, α , β -unsaturated pyrazolones 3 were investigated to study the effects of the electronic properties and the steric hindrance of the R^3 group on enantioselectivity, diastereoselectivity, and reactivity (Table 3, entries 1–9). For anyl-substituted α , β -unsaturated pyrazolones 3 bearing electron-donating groups (4-Me, 4-MeO, 4-SMe) or electron-withdrawing groups (4-F, 4-Cl, 4-Br) on the phenyl ring, all the reactions proceeded smoothly to provide the desired products in 81-91% yield with 91-97% ee (Table 3, entries 2-7). 2-Naphthyl-substituted α,β -unsaturated pyrazolone **3h** showed quite good performance and desired product 4h in 92% yield with 94% ee, although a prolonged reaction time was required (Table 3, entry 8). A lower enantioselectivity (66%) was observed for 2,4-dichloro-substituted α , β -unsaturated pyrazolone 3i probably as a result of steric hindrance (Table 3, entry 9). The Michael addition reactions of α , β -unsaturated

Pages: 7

Asymmetric Michael/Aromatization Reaction of Azlactones

Table 3. Substrate scope.^[a]

Entry	R^1, R^2	$\frac{1}{R^3}$	Product, vield [%] ^[b]	<i>ee</i> [%] ^[c]
1	$\mathbf{Bn} \left(\mathbf{C} \mathbf{H}_{\mathbf{a}} \left(2 \mathbf{a} \right) \right)$	$C H_{2}$ (3a)	19.93	07
2	Bn, $C_{6}H_{5}(2a)$ Bn, $C_{1}H_{2}(2a)$	$4 - MeC \cdot H_{-}(3b)$		97
2	Bn, $C_{6}H_{5}(2a)$ Bn, $C_{7}H_{7}(2a)$	$4 - MeOC_{6}H_{4}(3b)$	4c, 90	96
4	Bn. $C_6H_5(2a)$	$4-MeSC_{4}H_{4}$ (3d)	4d , 91	91
5	Bn. C_6H_5 (2a)	$4 - FC_6H_4$ (3e)	4e . 86	94
6	Bn. C_6H_5 (2a)	$4-\text{ClC}_6\text{H}_4$ (3f)	4f. 81	93
7	Bn. C_6H_5 (2a)	$4-BrC_6H_4$ (3g)	4g . 83	91
8	Bn, C_6H_5 (2a)	2-naphthyl (3h)	4h , 92	94
9	Bn, C_6H_5 (2a)	$2.4-Cl_2C_6H_3$ (3i)	4i , 87	66
10	Bn, $4 - FC_6H_4$ (2b)	C_6H_5 (3a)	4j , 89	84
11	Bn, 4-ClC ₆ H ₄ (2c)	C_6H_5 (3a)	4k , 88	94
12	Bn, 4-ClC ₆ H ₄ (2c)	$4 - FC_6H_4$ (3e)	41, 93	84
13	Bn, 4-Me C_6H_4 (2d)	$C_6H_5(3a)$	4m , 92	95
14	Bn, 4-MeC ₆ H ₄ (2d)	$4 - FC_6H_4$ (3e)	4n , 90	94
15	iBu, 4-MeC ₆ H ₄ (2e)	C_6H_5 (3a)	40 , 90	80
16	$i \Pr$, C ₆ H ₅ (2f)	C_6H_5 (3a)	4p , 76	84
17	2-(methylthio)ethyl, C_6H_5 (2g)	C_6H_5 (3a)	4q , 80	94
18	i Pr, t Bu (2h)	C_6H_5 (3a)	4r, <5	_
19 ^[d]	i Pr, t Bu (2h)	C_6H_5 (3a)	4r , <5	_

[a] Unless noted, reactions were carried out with 2 (0.13 mmol), 3 (0.1 mmol), 1j (10 mol-%), and 4 Å MS (400 mg) in toluene (4.0 mL) at -40 °C for 8–12 h. In all cases, the products were obtained with >10:1 dr, as determined by ¹H NMR spectroscopy. [b] Isolated yield of 4. [c] Determined by chiral HPLC analysis. [d] The reaction was carried out with 2h (1.0 mmol), 3 (0.1 mmol), 1j (30 mol-%), and 4 Å MS (100 mg) in toluene (1.0 mL) at r.t. for 36 h.

pyrazolones **3a** and **3e** with azlactones **2b–h** were also examined under otherwise identical conditions. It was observed that varying the R^2 substituent on the benzene ring also led to some changes in the enantioselectivities (Table 3,

Figure 3. X-ray crystal structure of chiral compound 4d.

entries 10–14). Substrates with bulkier R¹ groups provided decreased enantioselectivities (Table 3, entry 15 vs. 13, entry 16 vs. 1). A good result was obtained with a methylthioethyl group at the R¹ position (Table 3, entry 17). Azlactone **2h** with alkyl groups at the R¹ and R² positions failed to give the product even at room temperature with 30 mol-% catalyst loading (Table 3, entries 18 and 19). In all of the above cases, good yields (76–93%) and diastereoselectivities (>10:1 *dr*) were obtained. Fortunately, a single crystal of **4d** was obtained by recrystallization from petroleum ether/*n*-hexane/CH₂Cl₂, and the configuration of the two contiguous stereocenters was unambiguously determined by X-ray analysis (Figure 3).^[18]

Figure 4. Proposed transition state and mechanism.

Pages: 7

SHORT COMMUNICATION

On the basis of the X-ray analysis of compound 4d, a possible transition state and mechanism are proposed and shown in Figure 4. The tertiary amine of the catalyst deprotonates the azlactone, and the thiourea moiety activates the α , β -unsaturated pyrazolone through hydrogen bonding, which provides the intermediate. Subsequently, aromatization of the intermediate gives the desired chiral product with a (1*R*,2*S*) configuration.

Conclusions

In summary, we have developed the asymmetric Michael/ aromatization reactions of azlactones to α,β -unsaturated pyrazolones with complete C-4 regioselectivity by using isosteviol-derived amine thiourea as a catalyst. A series of heterocyclic compounds containing both a 3-hydroxypyrazole motif and a masked amino acid structure were synthesized in good yields with moderate to excellent enantioselectivities.^[19] The development of new chiral organocatalysts to obtain cyclic compound **6** as the major product is now in progress in our laboratory.

Experimental Section

General Procedure for the Asymmetric Michael Addition/Aromatization Reaction of Azlactones to α , β -Unsaturated Pyrazolones: In an ordinary tube equipped with a magnetic stirring bar, a solution of azlactone 2 (0.13 mmol), 4 Å MS (400 mg), and catalyst 1j (10 mol-%) in toluene (4.0 mL) was stirred at -40 °C for 30 min, and then α , β -unsaturated pyrazolone 3 (0.10 mmol) was added. The reaction mixture was stirred for 8–12 h at -40 °C. The reaction mixture was directly loaded onto silica gel and purified by flash chromatography (petroleum ether/dichloromethane = 1:1–1:2) to give desired products 4a–q.

Supporting Information (see footnote on the first page of this article): Experimental details and spectroscopic data.

Acknowledgments

The authors are grateful for financial support by the National Natural Science Foundation of China (NSFC) (grant numbers 21072145, 21272166), the Program for New Century Excellent Talents in University (NCET-12-0743), and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China ([2010]1174). This project was also funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) wood, D. G. Brummell, B. Budworth, G. E. Burtin, R. O. Campbell, S. S. Chana, I. G. Charles, P. A. Fernandez, R. C. Glen, M. C. Goggin, A. J. Hobbs, M. R. Kling, Q. Liu, D. J. Madge, S. Meillerais, K. L. Powell, K. Reynolds, G. D. Spacey, J. N. Stables, M. A. Tatlock, K. A. Wheeler, G. Wishart, C. K. Woo, *J. Med. Chem.* **2001**, *44*, 78–93.

- [2] a) A. Zea, A. N. P. Alba, A. Mazzanti, A. Moyano, R. Rios, Org. Biomol. Chem. 2011, 9, 6519–6523; b) J. Y. Liang, Q. Chen, L. P. Liu, X. X. Jiang, R. Wang, Org. Biomol. Chem. 2013, 11, 1441–1445; c) L. P. Liu, Y. Zhong, P. P. Zhang, X. X. Jiang, R. Wang, J. Org. Chem. 2012, 77, 10228–10234; d) Q. Chen, J. Y. Liang, S. L. Wang, R. Wang, Chem. Commun. 2013, 49, 1657–1659.
- [3] M. Kawasaki, T. Shinada, M. Hamada, Y. Ohfune, Org. Lett. 2005, 7, 4165–4167.
- [4] J. Liang, J. C. Ruble, G. C. Fu, J. Org. Chem. 1998, 63, 3154– 3155.
- [5] B. M. Trost, X. Ariza, J. Am. Chem. Soc. 1999, 121, 10727– 10737.
- [6] For selected reviews, see: a) A. N. R. Alba, R. Rios, Chem. Asian J. 2011, 6, 720–734; b) J. S. Fisk, R. A. Mosey, J. J. Tepe, Chem. Soc. Rev. 2007, 36, 1432–1440; for selected examples, see: c) D. Uraguchi, Y. Ueki, T. Ooi, J. Am. Chem. Soc. 2008, 130, 14088–14089; d) X. D. Liu, L. J. Deng, X. X. Jiang, W. J. Yan, C. L. Liu, R. Wang, Org. Lett. 2010, 12, 876–879; e) S. X. Dong, X. H. Liu, X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin, X. M. Feng, J. Am. Chem. Soc. 2010, 132, 10650– 10651; f) M. Terada, H. Nii, Chem. Eur. J. 2011, 17, 1760– 1763; g) Z. F. Zhang, F. Xie, J. Jia, W. B. Zhang, J. Am. Chem. Soc. 2010, 132, 15939–15941; h) W. Q. Zhang, L. F. Cheng, J. Yu, L. Z. Gong, Angew. Chem. 2012, 124, 4161–4164; Angew. Chem. Int. Ed. 2012, 51, 4085–4088.
- [7] S. Cabrera, E. Reyes, J. Alemán, A. Milelli, S. Kobbelgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2008, 130, 12031–12037.
- [8] Y. Hayashi, K. Obi, Y. Ohta, D. Okamura, H. Ishikawa, *Chem. Asian J.* 2009, *4*, 246–249.
- [9] a) J. Alemán, A. Milelli, S. Cabrera, E. Reyes, K. A. Jørgensen, *Chem. Eur. J.* 2008, *14*, 10958–10966; b) A. N. Balaguer, X. Companyó, T. Calvet, M. F. Bardía, A. Moyano, R. Rios, *Eur. J. Org. Chem.* 2009, 199–203.
- [10] H. Jiang, M. W. Paixäo, D. Monge, K. A. Jørgensen, J. Am. Chem. Soc. 2010, 132, 2775–2783.
- [11] a) A. N. R. Alba, X. Companyó, G. Valero, A. Moyano, R. Rios, *Chem. Eur. J.* 2010, *16*, 5354–5361; b) N. Bravo, A. N. R. Alba, G. Valero, X. Companyó, A. Moyano, R. Rios, *New J. Chem.* 2010, *34*, 1816–1820.
- [12] a) A. N. R. Alba, G. Valero, T. Calbet, M. F. Bardía, A. Moyano, R. Rios, *Chem. Eur. J.* **2010**, *16*, 9884–9889; b) A. N. R. Alba, G. Valero, T. Calbet, M. F. Bardía, A. Moyano, R. Rios, *New J. Chem.* **2012**, *36*, 613–618.
- [13] D. Uraguchi, T. Ooi, Science 2009, 326, 120–123.
- [14] D. Uraguchi, Y. Ueki, A. Sugiyama, T. Ooi, *Chem. Sci.* 2013, 4, 1308–1311.
- [15] D. Uraguchi, K. Yoshioka, Y. Ueki, T. Ooi, J. Am. Chem. Soc. 2012, 134, 19370–19373.
- [16] a) Z. W. Ma, Y. X. Liu, L. J. Huo, X. Gao, J. C. Tao, *Tetrahedron: Asymmetry* **2012**, *23*, 443–448; b) Z. W. Ma, Y. Wu, B. Sun, H. L. Du, W. M. Shi, J. C. Tao, *Tetrahedron: Asymmetry* **2013**, *24*, 7–13.
- [17] For selected reviews on bifunctional amine-thiourea catalysts, see: a) M. S. Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118, 1550–1573; Angew. Chem. Int. Ed. 2006, 45, 1520–1543; b) S. J. Connon, Chem. Eur. J. 2006, 12, 5418–5427; c) Y. Zhang, W. Wang, Catal. Sci. Technol. 2012, 2, 42–53; for selected recent examples, see: d) X. L. Zhu, W. J. He, L. L. Yu, C. W. Cai, Z. L. Zuo, D. B. Qin, Q. Z. Liu, L. H. Jing, Adv. Synth. Catal. 2012, 354, 2965–2970; e) G. W. Kang, Q. Wu, M. C. Liu, Q. F. Xu, Z. Y. Chen, W. L. Chen, Y. Q. Luo, W. Ye, J. Jiang, H. Y. Wu, Adv. Synth. Catal. 2013, 355, 315–320.

For a selected review on the synthesis of tetrasubstituted pyrazolyl heterocycles, see: a) S. Dadiboyena, A. Nefzi, *Eur. J. Med. Chem.* 2011, 46, 5258–5275; for selected important examples, see: b) S. Bondock, R. Rabie, H. A. Etman, A. A. Fadda, *Eur. J. Med. Chem.* 2008, 43, 2122–2129; c) H. Shiohara, H. Fujikura, N. Fushimi, F. Ito, M. Isaji, PCT Int. Appl. WO 2002098893, 2002 [*Chem. Abstr.* 2003, 138, 24917]; d) D. L. Sel-

Asymmetric Michael/Aromatization Reaction of Azlactones

- [18] CCDC-887621 (for **4d**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [19] For limited examples on the synthesis of 3-hydroxypyrazoles through organocatalysis, see: a) D. Enders, A. Grossmann, B.

Gieraths, M. Düzdemir, C. Merkens, *Org. Lett.* **2012**, *14*, 4254–4257; b) F. Li, L. Sun, Y. O. Teng, P. Yu, C. G. Zhao, J. A. Ma, *Chem. Eur. J.* **2012**, *18*, 14255–14260.

Received: April 11, 2013 Published Online: