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ABSTFtACT 

Cleavage of the isopropylidene group of p-nitropheF-yl 3-O-benzoyl-4,6-O- 

isopropylidene-/I-D-galactopyranoside afforded p-nitrophenyl 3-0-benzoyl-P-D-galac- 
topyranoside (1). Compound 1 was converted into its 4,6-0-benzylidene derivative 
(2) by reaction with the benzaldehyde-zinc chloride complex. Compound 2 was 
also prepared by selective benzoylation of p-nitrophenyl 4,6-O-benzylidene-&D- 
galactopyranoside (3), obtained by benzylidenation of p-nitrophenyl /3-D-galacto- 
pyranoside. The structures of 1, 2, and 3 were established by ‘II- and 13C-n.m.r. 
spectroscopy. Glycosylation of 2 with 2,3,4,6-tetra-0-acetyl-cw-n-galactopyranosyl 
bromide, catalyzed by mercuric cyanide, afforded the protected disaccharide deriva- 

tives 4 and 6, which, on deacetalation followed by deacylation, gave the p- and the 
clc-(l-+2)-linked disaccharides 8 and 10, respectively. The structures of 4, 6, 8, and 10 
were established by n.m.r. spectroscopy. Additionally, the structures of 8 and 10 

were confirmed by permethy!ation, and hydrolysis to 3,4,6-tri-0-methyl-D-galactose. 
Compounds 8 and 10 were also converted into their fully acetylated derivatives_ 
Compounds 4 and 6 were deacylated, to furnish the corresponding benzylidenated 
derivatives 5 and 7. The i3C-n.m.r. spectra of 5 and 7 are discussed, together with 
those of the isomeric a- and /?-(I +3)-linked disaccharides. and also with that of the 
/I-( l-6)-linked isomer. 

INTRODUCTION 

In two previous papers in this series, we described the synthesis ofp-nitrophenyl 
6-O-B-D-galactopyranosyl-@-D-galactopyranosidez and of both the p-nitrophenyl 

3-O+- and -j&D-galactopyranosyl-B-D-galactopyranosides3. These disaccharides, as 
well as various related compounds, were needed in a study of the substrate specificity 
of some endoglycosidases. In furtherance of this work, we now describe the synthesis 
of p-nitrophenyl 2-0-/I-D-galactopyranosyl-/3-D-galactopyranoside and its a-(1 +2)- 

*Synthetic Studies in Carbohydrates, Part XXIV. For Part XXIII, see ref. 1. 
**To whom correspondence should he addressed. 
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linked isomer. A route similar to that already described3 was adopted, and the 

anomeric disaccharides were obtained in a ratio reminiscent of that found for the 
(l-3)-linked isomers3. As some of these disaccharides became available, it was 
considered of interest to record and discuss their respective, 13C-n.m.r_ spectra. 

RESULTS ASD DLSCIJSSIOS 

Deacetalation of p-nitrophenyl 3-O-benzoyl4,6-O-isopropylidene-8_D-galacto- 

pyranoside’, and benzylidenation of the resulting trioi 1 by treatment with the 
benzaldehyde-zinc chloride complexa, afforded p-nitrophenyl 3-O-berzoyl-4,6-O- 

benzylidene-P-D-galactopyranoside (2). Alternatively, p-nitrophenyl B-D-galacto- 

pyranoside was first subjected to the aforementioned benzylidenation procedure, and 
the resulting diol 3 was then selectively benzoylated at HO-3 with benzoyl chloride- 

pyridine, to give 2. The ‘H-n.m.r. spectra of 1,2, and 3 were all in agreement with the 

structures assigned (see Experimental section). 

Ph 

H-0 

t-402 

Ph 

H+. 
I 
CH2 k HO 

“1 oeNo2 

Hb 

3 

In the 13C-n.m.r. spectrum of 1 (see Table I), the signals for C-2 and C-4 were 
shifted upfield by 2.9 and 3 p-p-m_, respectively, whereas that of C-3 was shifted 

downfield by - 3.3 p-p-m., with respect to p-nitrophenyl B-D-galactopyranoside, as a 
result of substituting O-3 with a benzoyl group. A relatively small (0.8 p.p_m.) upfield 

shift was observed for C-l, C-5, and C-6. 

In the 13C-n.m.r. spectrum of 2 (see Table I), the signals for C-4 and C-6 
exhibited downfield shifts of I.8 and 6.3 p.p.m., respectively, by comparison to those 
observed for 1, as would be expected from substitution at O-4 and O-6. In the 

spectrum of 3, the signals for C-6, C-4, and C-3 were shifted upfield by 0.3, 1.1, and 
2.6 p-p-m., respectively_ 
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TABLE 1 

13C-N._M_R. CHEMICAL SHlFl-S’= FOR SOME D-GALACTOPYRANOSIDE+ 

Compound C-I c-2 C-3 c-4 c-5 C-6 P/z-CH 
or 
OCh-t 

_--__ -~_.--.--~_-__ 

Methyl Ji-D-galactopyranoside 
Methyl a-o-galactopyranoside 
p-Nitrophenyl p-o-galactopyranosideC 
p-Nitrophenyl4,6-O-benzylidene-&o- 

gafactopyranoside (3)~ 
p-Nitrophenyl %O-benzoyl+D- 

galactopyranosidec 
p-Nitrophenyl3-0-benzoyl-j%o- 

galactopyranoside (I)= 
p-Nitrophenyl Z-0-benzoyi-4,6-O- 

benzylidene-p-o-galactopyranosidec 
p-Nitrophenyl3-0-benzoyl-4,6-O- 

benzylidene-p-o-galactopyranoside (2jc 

104.22 70.29 73.17 67.96 74.93 60.28 55.61 
99.80 68.29 69.49 68.70 70.89 60.52 54.27 

loo.73 70.25 73.30 68.20 75.90 60.43 
99.5 1 69.32 71.39 68.09 75.49 66.21 99.85 

97.91 72.33 70.77 68.09 75.95 60.00 

99.95 67.36 76.56 65.18 75.15 59.64 

97.49 71.58 67.96 69.15 75.52 66.62 99.75 

99.26 67.96 73.99 66.98 72.99 65.91 99.35 

aIn Me&O-& with IMerSi as the internal standard. *The values for p-nitrophenyl 2-0-ben~Oy1-j%D- 
galactopyranoside and its 4,6-0-benzylidene derivative are recorded for comparison. The values for 
methyl Q- and fl-n-galactopyranoside were used for assignments of the disaccharides in Table II. 
CCarbonyI and/or aromatic carbon resonances are not shown. 

On gIycosylation of compound 2 with 2,3,4,6-tetra-U-acetyl-~-D-galacto- 
pyranosyl bromide for 8 h at room temperature, in acetonitrile and in the presence 
of mercuric cyanide, examination (after the customary processing3) of the crude 

mixture by thin-layer chromatography (t-1-c.) revealed the presence of a major 
product, sIower-migrating than 2, and a small proportion of a marginally slower- 
migrating compound; a trace of 2 was also present_ Chromatographic separation on 

silica gel afforded the /3- and the a-(l-2)-linked disaccharides (4 and 6, see later) 
in the ratio of 9 : 2. We had previously observed a similar ratio for the anomeric 

disaccharides on glycosylating the isomeric p-nitrophenyl 2-U-benzoyl4,6-O- 

benzylidene-@-D-galactopyranoside with 2,3,4,6-tetra-0-acety!-rx-D-galactopyranosyl 

bromide under similar reaction-conditions3. 
The lower specific rotation (+1_8”) of 4 compared to that (-l-91.4”) of 5 

suggested that 4 and 6 were the /I and the a anomer, respectively, and the ‘H-n.m.r. 

spectra of the two compounds were in accord with this supposition. Thus, in the 
‘I-I-n.m.r. spectrum of 4, both H-l and H-l’ resonated as doublets, with spacings of 

8 Hz, at S 5.32 and 4.75, respectively, in support of the j3 conSguratioa at both 
giycosidic linkages. In the spectrum of 6, however, H-l was observed as a doublet 
at S 5.34 (J 8 Hz), whereas H-l ’ resonated as a doublet, with spacings of -2 Hz, at 
6 5.64, indicating a /I linkage for the p-nitropheayl aglycon and an cc linkage for the 
glycosyl moiety. 
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Ph Ph 

0 

.N02 

4R=Ac,R’=Br 6R=Ac,R’= BZ 

5R= R’=H 7R= R’=H 

Deacetalation of either 4 or 6, in hot, 40 7; aqueous acetic acid, was, apparently, 
accompanied by some acyl-group migration, or deacylation; a slower-migrating 
(t.1.c.) contaminant was observed in both cases. However, this problem was irrelevant 
to the operation that followed, as this consisted of complete deacylation of 4 and 6 
to afford the crystalline T- and /?-linked disaccharides (8 and 10, respectively). The 
anomeric configurations of both 8 and 10 could be inferred from their respective 
specific rotations, which had the same trends as those observed for 4 and 6. Support 
for these assigments was avai!abIe from ‘3C-n.m.r. spectroscopy_ Thus, in the 13C- 
n.m_r. spectrum of 8, the C-l’ signal was observed at 105.61 p-p-m., and that of 
C-l at 98.90 p.p.m_, in support of a p configuration at both anomeric centers_ In 
the r3C-n.m_r. spectrum of 10, however, C-l’ and C-l occurred at 100.03 and 98.21 
p-p-m., respectively, indicatin, 0 an a and a /3 configuration at the anomeric centers. 

Permethylation, according to Kuhn et al.‘, of an Q? mixture of the (l-+2)- 
linked disaccharides, followed by acid hydrolysis, gave 3,4,6-tri-0-methyi-D-gaIactose6, 
which was clearly distinguishable (t.1.c.) from both 2,4,6-tri-O-methyl-D-galactose’ 

and 2,3,4-tri-0-methyl-D-galactose 7 in three solvent systems previously utilized for 

this purpose3*‘. 
AcetyIation of disaccharide 8 with an excess of acetic anhydride in pyridine 

afforded an analytically pure, amorphous heptaacetate (9), the ‘H-mm-r. spectrum 
of which was in agreement with the structure assigned (see Experimental section). 

RO 

ER = H 10R = H 

9R=Ac 11 R = AC 
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SimiIar acetylation of 10 furnished the heptaacetaie 11, whose lH-n.m.r. spectrum 

was, also, in accord with the structure assigned. Interestingly, one of the acetyl groups 

was observed at a noticeabIy higher field (S 1.46) than that of the other (S I .96-2.18) 

resonances_ 
In order to compare the benzylidenated, (I +2)-linked disaccharides with their 

(1+3)-linked counterparts3, compounds 4 and 6 were subjected to ZemplCn deacyla- 

tion, to afford 5 and 7, respectively. As evidenced by their 13C-n.m.r. spectra (see 
Tabie II), 5 was the p-, whereas 7 was the Y-, (! -+2)-linked disaccharide_ 

Conmrefrts 011 rile 1 3 C-n.nz.r. assignments. - In order to attain a reasonable 
degree of uniformity in assigning the ‘3C-n.m.r. resonances of the compounds 
described herein and elsewhere’*3, it was necessary to record the spectra under 
similar conditions. Therefore, a11 of the spectra were recorded for samples in Me,SO-& 

with Me,Si as the internal standard, and the spectra of methyl r- and p-D-galacto- 

pyranoside uere recorded under the same conditions. The assignments for the carbon 
atoms of methyl r-D-galactopyranoside follow the same pattern as those reported by 
Got-in and Mazurek%*. 

In the 13C-n.m.r. spectrum of p-nitrophenyl P-D-gaIactopyranoside, the C-I 

signal was observed at 100.73 p-p-m_; this value is appreciably lower than that observed 

for the corresponding methy P-glycoside (see TabIe Ii), indicating the effect of the 
aglycon on the signal of the anomeric carbon atom. A similar trend was observed for 
the disaccharide derivatives (see Table II), which, with the exception of the p-( I +6)- 
linked disaccharide, had values for C-l of less than 100 p_p.m_ 

Examination of Table II reveals how the availability of the isomeric glycosides 
greatiy facilitates correlation of the ‘3C-chemicai shift of various carbon atoms and, 
hence, the identification of the sites of glycosylation. Thus, in the “C-n.m_r. spectrum 
of the /I-( l-6)-linked disaccharide, the appreciable downfield shift (-9-6 p-p-m_) 
of the resonance for C-6, compared to that of the parent p-nitrophenyl /3-D-galacto- 
pyranoside, clearly indicates that C-6 is substituted. An upfield shift of - 1.6 p-p-m_ 

for C-5, and the fact that the resonances of the remaining carbon atoms are virtually 

unaffected, are also in conformity with this contention. 
On comparing the spectra of the isomeric /?-(I -2) and fl-( i -3) dis_:charides, 

the sites of substitution are readily identified by the occurrence of - IO.7- and -9.3- 
p-p-m_ downfield shifts for C-2 and C-3, respectively, in comparison to p-nitrophenyl 
B-D-galactopyranoside. These sites of substitution are further distinguished on 
examination of the spectra of the benzylidenated disaccharides. Thus, whereas the 
downfield shift for C-2 (10 p-p-m_, compared to p-nitrophenyl B-D-galactopyranoside) 
in the (I-+2)-Iinked disaccharide remains close to that of the unsubstituted di- 

saccharide glycoside, that for C-3 (7.1 p_p.m.) in the (i +3)-Iinked disaccharide is 

shifted upfie!d by -2-2 p-p-m_, because of the presence of a substituent on the /?- 
carbon atom (Le., C-4). 

In the ‘3C-n.m.r. spectra of the cr-(1+2)- and a-( l-3)-linked disaccharides, 

*Perlin et aLg reversed the values for C-2 and 0%. 
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downfield shifts of smaller magnitude for C-2 (2.09 p.p_m_) and C-3 (3.21 p.p.m.) are 
observed, in contrast to those for the P-linked counterparts, by comparison with the 

parent p-nitrophenyl glycoside. 
In the ‘3C-n.m.r. spectra of the benzylidenated disaccharides, the z-(1-+3)- 

linked isomer showed a somewhat larger upfield shift (1.39 p-p-m.) for C-3, whereas, 
for the rw-(l-2)-linked compound, the chemical shift value for C-2 (75.55 p.p_m.) 

remained close to that (75.39) of the unsubstituted disaccharide_ 
it is also noteworrhy that C-5 in the benzylidenated, a-(l-+3)-linked di- 

saccharide resonated at an appreciably higher field (70.96 p.p.m_), in comparison 
to that (75.49 p-p-m_) for C-5 ofp-nitrophenyl4,6-O-benzylidene-~-D-,oalactopyrano- 
side and of the unbenzylidenated disaccharide; this may be due to orientational 
changes at the glycosidic linkage. 

MPERIMENTAL 

General methods. - Melting points were determined with a Fisher-Johns 
apparatus and are uncorrected_ Optical rotations were measured at room temperature 

with a Perkin-Elmer 241 polarimeter. T.1.c. was conducted on plates coated with 
0.25-mm, and p.1.c. on plates coated with 0.7%mm, layers of silica gel 60 PF-254 
(E. Merck, Darmstadt, Germany); the components were located either by exposure 
to u-v_ light, or by spraying the plates with 5% sulfuric acid in ethanol and heating. 
The following solvent systems (v/v) were used for chromatography: A, 2 : 1 benzene- 
ethyl acetate; B, 4: 1 benzene-ether; and C, 1 : 1 benzene-ethyl acetate. Organic 
solutions were generally dried with anhydrous magnesium sulfate_ Elemental analyses 
were performed by Robertson Laboratory, Florham Park, New Jersey, U.S.A. 
N.m.r. spectra were recorded with a Varian XL-100 instrument, ‘H-n.m.r. spectra 
at 100 MHz, and ‘3C-n.m.r. spectra at 25.2 MHz in the Fourier-transform (F.-t_) 
mode; the positions of the peaks are expressed in p.p.m. from the Me& signal. 

p-Nitrophenyl 3-0-betrzoyi-#I-D-galacropy-anoside (1). - p-Nitrophenyl 3-0- 

benzoyl-4,6-O-isopropylidene-~-D-galactopyranoside~ (3 g) in 60 % aqueous acetic 
acid (60 mL) was stirred for 2 h at SO”. T.1.c. (solvent A) then revealed the presence 
of a slower-migrating product. The acetic acid was evaporated under diminished 
pressure, the last traces being removed by co-evaporation with several portions of 
toluene. The solid residue was recrystallized from alcohol, and then from acetone- 
hexane, to afford compound 1 (2.3 g, 84%), m-p. l68-171”, [=]u +46_2O (c 0.78, 
acetone); n.m.r. data (lMe,SO-de): 6 8.40-7.20 (2 d, J 10 Hz, and m, 9 H, aromatic), 
5.72 (d, 1 H, J 6 Hz, exchangeable by D,O, OH), 5.34 (d, 1 H, J 8 Hz, H-l), 5.18 

(d, 1 H, J 6 Hz, exchangeable by D20, OH), 5.02 (dd, 1 H, J 3 and 10 Hz, H-3), 
4.78 (t, 1 H, J6 Hz, exchangeable by DzO, OH), and 4.25-3.40 (m, 5 H, H-2,4,5,6,6’); 
for ‘3C-n.m.r. data, see Table I. 

Anal. Calc. for CigHrs,NO,: C, 56.29; H, 4.73; N, 3.45. Found: C, 56.00, 
H, 4.46; N, 3.45 

p-NitrophenyZ4,6-ben~~lidene-~-D-gaZac~o~~rartoside (3). - Zinc chloride (3 g) 
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was quickly added, with stirrin g, to benzaidehyde (10.5 mL). Stirring was continued 
for 0.5 h, and then p-nitrophenyi fi-D-galactopyranoside (3 g) was added. The mixture 
was stirred for 4 h at room temperature, poured into stirred, ice-water-hexane 
mixture (1: I v/v, 150 mL), and the precipitate filtered off, thoroughly washed with 
cold water and hexane, dried in the air, and recrystallized from acetone-hexane, to 
afford compound 3 (3.2 g, 82”/;). m-p. 236-238”, [x],, - 129.5” (c 0.38, acetone); 
n-m-r_ data (MelSO-&): 5 8.30-720 (2 d, J IO Hz, and m, 9 H, aromatic), 5-61 (s, 
1 H. PhCH), 5.42 (d, 1 H, J 4 Hz, exchangeable by D20, OH), 5.21 (d, 1 H, J - 7.5 
Hz, H-l), 5.13 (d, 1 H, J 5 Hz, exchangeable by DzO, OH), and 4.30-3.40 (m, 6 H, 

H-2, 3,4:5,6,6’); for ‘3C-n.m.r. data, see Table I, 

Anal. Caic. for C19H,,NOs: C. 58.60; H, 4.93; N. 3.60. Found: C, 58.35: 
H, 5.09; N, 3_45_ 

p-hWroplten~1 3-O-ben=o~I-4,6-O-be~z~~lidene-8_D-gaiactopyranoside (2). - 

Method (a)_ Compound I (2 g) was benzyiidenated as described for preparation of 3. 
to afford, after recrystallization from acetone-hexane, compound 2 (1.8 g, 74%). 
m.p. 258-260’, [z]~ f 12.8” (c 0.72, acetone); n.m.r. data (Me?SO-d,): 6 8.40-7.20 

(3 d. J 10 Hz, and complex m, 14 H, aromatic), 5.92 (d, I H, J 4 Hz, exchangeable by 

l&O. OH), 5.66 (s, 1 H. PhCH), 5.53 (d, 1 H, J S Hz, H-i), 5.29 (dd, 1 H, J 4 and 
IO Hz, H-3), 4.59 (d, I H, J 3 Hz, H-4)_ and 4.30-3.80 (m. 4 H, H-2,5,6.6’); for 13C- 
n.m,r. data, see Table I. 

.+~a/_ Calc. for G6HZ3N0,: C, 63.28; H, 4.71; N, 2.81. Found: C, 63.05; 
H. 4.76; N, 2.73. 

Metlzod (b)_ To a cold (- IO”), stirred solution of compound 3 (1 g) in pyridine 
(15 ml_) was added, dropwise, a solution of benzoyl chloride (0.43 g) in pyridine 
(5 mL)_ The mixture was stirred for 1 h at - lo”, and then for 3 h at room tempera- 

ture_ The pyridine was evaporated under diminished pressure, and traces were removed 

by co-evaporation with several portions of toluene. T.1.c. (solvent A) of the crude 
product showed the presence of 2 as the major component. A trace of a faster- 
migrriting compound (presumably, the 2,3-diester) and a negligible proportion of 
the slower-migrating, 2-0-benzoyi derivative3 were also revealed by t.1.c. Recrystaiiiza- 
tion from acetone-hexane afforded pure 2 (0.58 g, 69.3 y/i), m-p. 25%260°, undepressed 
by admixture with a sample from (a). 

p-h?trophenyl 3-0-ben~o~l-4,6-O-be~~~ylider~e-2-0-(2,3,4,6-tetra-O-acety1-~-D- 

galactopyranosyl)-/3-D-galctopyranoside (4) and p-Gtropltenyl 3-0-bemo_yZ-4,6-0- 
ben~yiidene-2-0-(2,3,4,6-terra-0-acetj 

(5). - To a solution of the 3-benzoate 2 (1.5 g) in acetonitriie (80 mL) were added 
mercuric cyanide (1.5 g) and 2,3,4,6-tetra-O-acetyl-z-D-galactopyranosyi bromide 
(2.4 g), and the mixture was stirred for 8 h at room temperature_ After processing 

in the usual way2m3, t.1.c. (solvent B, two irrigations) revealed the presence of a major 
product, slower-migrating than 2, and a small proportion of a marginally siower- 
migrating compound; a trace of 2 was also present. The residue was taken up in 

benzene (-40 mL), and the suspension filtered to remove unchanged 2 (0.1 g), 
which crystallized. The filtrate was applied to a column of silica gel, and eiuted with 
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Anal. Calc. for C18H2SN013 - 0.5 H,O: C, 45.76; H, 5.56; N, 2.96. Found: 
C, 45.48; H, 5.65; N, 2.79. 

p-Aiitrophenyl 4,6-O-ben~y~idene-2-O_8-D-ga~actop_~ranos~~f-~-D-ga~actop~rano- 

side (5). - Compound 4 (0.1 g) was taken up in methanol (5 mL) containing a 
catalytic amount of sodium methoxide in methanol; the suspended 4 rapidly dissolved 
and, in a few minutes, crystallization ensued. After being kept for 2 h at room 
temperature, the mixture was cooled, and the crystals were collected by filtration, 
and thoroughly washed with cold methanol- Recrystallization from methanol afforded 
5 (0.05 g? 75 y/i). m-p. 280-282° (dec.), [cc]n -884-S” (~0-33, A’,N-dimethylformamide); 
for ‘3C-n.m.r. data, see Table II. 

Anal. Calc. for G5HZ9NO13 - H,O: C, 52.71; H, S-50; N, 2.46. Found: C, 
52.74: H, 5.39; N, 2.24_ 

p-Nitrophen~l 4,6-O-benzJ-lidene-2-O-rw-D-gaIactopyranosyl_B-D-galactopyra~to- 
side (7) - Deacylation of compound 6 (0.07 g) as described for 4, and recrystalliza- 
tion of the product from methanol, afforded disaccharide 7 (0.03 g, 63.8x), m-p. 
259-262” (dec), [~]n - 15.8’ (c 0.2, N,N-dimethylformamide); for ‘3C-n.m.r. data, 
see Table II. 

AnaL Calc. for G5H1aN0,s - HzO: C, 52.71; H, 5.50; N, 2.46. Found: C. 
52.48; H, 5.46; N, 2-27. 

p-1Vitrophenyl 3,4,6-tri-O-acety~-2-0-(2,3,4,6-tetra-O-acet~~-~-D-galactopyrano- 

syl)-j?-D-galactopyranoside (9). - The disaccharide 8 (0.03 g) was acetylated over- 
night in I :2 acetic anhydride-pyridine, to afford, after the usual processing3, 
amorphous heptaacetate 9 (0.04 g, 81.6%), [=]n -27.5O (c 0.6, chloroform): ‘H- 
n.m.r. data (CDCI,): 6 8.4-7-C (2 d, 4 H, .J 10 Hz, aromatic), 5.22 (d, 1 H, J 8 Hz, 
H-i), 4.74 (d, I H, JS Hz, H-l’), 2.20, 2.12, 2.10, 2-08, 2.04, 2.02, and I.98 (s, 21 H, 
7 OAc), and 5.6-3.9 (unresolved signals, 12 H). 

AnaL Calc. for &H,,NO,,: C, 50.72; H, 5.20; N, 1.85. Found: C, 50.45: 
H, 5.19; N, 1.59. 

p-NitrophenyZ 3,4,6-tri-O-acetyl-2-0-(2,3,4,6-tetra-O-acetyi-n-D-ga~acto~yrano- 
syi)-B-D-gahxtopyranoside (11). - Acetylation of 10 (0.025 ,g) as described for 8 
furnishedamorphous heptaacetate ll(O.03 g, 73.2x), [a],, + 38.2” (~0.6, chloroform); 
n.m_r_ data (CDCl,): 8 M-7.0 (2 d, 4 H, J 10 Hz, aromatic), 5.45 (ill-resolved d, 
1 H, J m-2 Hz, H-l’), 5.22 (d, 1 H, JS Hz, H-I), 2.18,2.15,2.08,2.06,2.04, 1.96, and 
1.46 (s, 21 H, 7 OAc), and 5.7-4.0 (unresolved signals, 12 H). 

Anal- Calc. for C32H3,NOz0: C, 50.72; H, 5.20; N, 1.85. Found: C, 50.56; 
H, 5.43; N, 1.56_ 

Permethylation of a mixrnre of 8 and 10, and hydrolysis. - A sample (0.1 g; 
obtained by deacetalation, followed by deacylation, of a mixed fraction of 4 and 6 
from a column; see earlier) containing almost equal proportions of 8 and 10 was 
permethylated’, and the product was hydrolyzed as previously described3. Examina- 
tion of the hydrolyzate by t.1.c. (15: 1 chloroform-methanol) showed two spots, 
attributable to 2,3,4,6-tetra-U-methyl-D-galactose (fast) and a tri-0-methylgalactose. 
The latter compound moved in the same solvent system, as well as in 1: 1 benzene- 
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acetone, and in 83 : 17 isopropyl ether-methanol, at a rate the same as that of authentic 
3,4,6-tri-0-methyl-D-galactose6, and cIearly different from those of the faster-moving 
and the slower-moving 2,4,6-tri-O-methyl-D-gaiactose’ and 2,3,4-t&U-methyl-D- 
gaIactose’, respectively. 
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