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para-Quinone methides bearing an electron-withdrawing cyano group at the exocyclic methylene
8-position were identified as valuable 1,6-conjugate addition building blocks for acyclic all-carbon qua-
ternary stereocenter construction. A wide variety of electron-rich arenes as nucleophiles were tolerated,
effectively furnishing diverse unsymmetrical triarylmethanes bearing all-carbon quaternary stereocenters.
The robust transformable abilities of the cyano group provide a platform to access other valuable func-
tional group-containing unsymmetrical tri- and tetraarylmethanes that are otherwise difficult to be pre-
pared. Computational studies supported the hypothesis that the cyano group at the 3-position tunes the
molecular electron-density distribution, and the stability of para-quinone methides is enhanced by lower-
ing their polymerizability.

Introduction

Because of the intrinsic electrophilic property, para-quinone
methides (p-QMs) have emerged as attractive and widely used
building blocks in a variety of valuable organic transform-
ations, particularly 1,6-conjugate addition reactions.'”
However, owing to their general instability towards polymeriz-
ability,* current studies suffered from significant structural
limitations of p-QMs (Fig. 1A).>* First, the existing methods
typically focused on p-QMs bearing a mono-aryl group at the
§-position for tertiary stereocenter formation. Second, two
bulky a-substituents (e.g., ‘Bu) were prerequisite. The state of
the art of structural limitations of p-QMs seriously hampers
the advance of the promising strategy in all-carbon quaternary
stereocenter construction. Accordingly, Sun developed an
elegant protocol to in situ generate d-electron-donating group
(EDG) substituted p-QM intermediates through Brensted acid
catalyzed dehydration of p-hydroxybenzyl alcohols (Fig. 1B).”
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However, p-QMs bearing an electron-withdrawing group (EWG)
at the §-position might not be accessible through such a proto-
col. Our group adopted an oxidative C-H cleavage strategy to
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Fig.1 Overview of the scope of p-QMs in 1,6-conjugate addition
reactions.
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address such a limitation (Fig. 1C).® However, diverse carbon
nucleophiles are not compatible with the strongly oxidative
conditions, thus limiting the scope of nucleophilic com-
ponents. Using pre-prepared, isolable, and storable
§,5-disubstituted p-QMs as substrates can avoid the aforemen-
tioned incompatibility, and the nucleophilic component scope
would be extremely expanded. We envisioned that installing
an electron-withdrawing group at the exocyclic methylene
§-position would tune the molecular electron-density distri-
bution, and the stability of the resulting p-QMs might be
enhanced by lowering their polymerizability.” In light of the
significance in modern pharmacology and robust transform-
able properties, a cyano group was placed at the §-position for
study (Fig. 1D).®

Triarylmethanes are privileged structure motifs in medic-
inal chemistry, materials science, and organic synthesis.’
Construction of unsymmetrical triarylmethanes containing ter-
tiary stereocenters has been extensively studied.'® However,
efficient preparation of unsymmetrical triarylmethanes
bearing all-carbon quaternary stereocenters has remained
underdeveloped.'! Herein, we reported 1,6-conjugate addition
of a variety of electron-rich arenes to pre-synthesized 3-CN-
§-aryl substituted p-QMs for preparation of diverse unsymme-
trical triarylmethanes bearing all-carbon quaternary stereocen-
ters (Fig. 1D). Further manipulation of the nitrile group pro-
vides access to a range of untouched, highly functionalized
molecules of great interest. For example, unsymmetrical tetra-
arylmethanes, which are extraordinarily difficult to synthesize
by the existing methods, can be readily prepared.**”

Results and discussion

Initially, 1,6-conjugate addition of furan 2a to 8-CN-8-aryl di-
substituted p-QM 1a was selected as the model for optimiz-
ation (Table 1). No reaction was observed in the absence of any

Table 1 Reaction condition optimization®

o OH
J \ catalyst
@I * Q CHZClp, 1t
o]
Ph” CN Ph LN )
1a 2a 3a
Entry Catalyst Time (h) Yield” (%)
1 — 24 <5
2 AcOH 24 <5
3 Diphenyl phosphate 24 <5
4 Mg(OTf), 24 <5
5 Cu(OTf), 24 10
6 Sc(OTf); 24 27
7 AgOTf 24 62
8 Bi(OTf), 0.25 93

“Reaction conditions: a mixture of 1a (0.1 mmol), 2a (0.12 mmol), and
catalyst (10 mol%) in CH,Cl, (2 mL) at rt. ”Yield of the isolated
product. Tf = trifluoromethanesulfonyl.
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catalyst (entry 1, Table 1). Brensted acid additives such as
AcOH and diphenyl phosphate proved to be futile (entries 2
and 3, Table 1). An extensive investigation of Lewis acid addi-
tives revealed that when 10 mol% of Bi(OTf); was used, the
arylation of 1a proceeded efficiently at rt in 0.25 h, providing
the expected unsymmetrical triarylmethane 3a in 93% yield
(entries 4-8, Table 1).

With the optimized conditions in hand, the scope of the
quinone part of p-QMs was investigated (Scheme 1). p-QMs
bearing two small substituents at the a-positions were well tol-
erated, as demonstrated by the formation of triarylmethane 3b
in 90% yield. a-Mono-substituted p-QMs 1c-1e bearing diverse
electron-donating and electron-withdrawing moieties were also
suitable substrates, and the respective products 3c-3e were iso-
lated in 88%-92% yields.

The scope of &-aryl substituents was next explored
(Scheme 2). In general, p-QMs 4a-4k bearing a wide range of
electronically varied aryl moieties with different substitution
patterns at the d-position were well compatible with the mild
conditions, furnishing the respective triarylmethanes 5a-5k in
86-94% yields. Polyarene naphthalene substituted 41 and 4m
also proved to be suitable coupling partners.

The scope of nucleophilic arene components was then eval-
uated (Scheme 3). A broad range of electron-rich heteroarenes
proved to be well compatible with the mild conditions
(Scheme 3A). Substituted furans were suitable coupling part-
ners, as demonstrated by the generation of unsymmetrical tri-
arylmethanes 7a and 7b with high efficiency. Thiophenes (6¢
and 6d) together with pyrroles (7e and 7f) and indole 7g were
also competent nucleophiles for the process. Phenols and ani-
lines participated in the 1,6-conjugate addition reactions
smoothly, affording the corresponding products 7h-7m in
85-95% yields (Scheme 3B). Anisole derivatives (6n and 60)
were also found to be well tolerated, though a slightly higher
temperature was required (Scheme 3C). Electron-deficient
arenes proved to be futile nucleophilic components for the
method. While the scope of carbon nucleophiles was not

o
| R , (Y __BiOTs _
| o CH,Clp, 20 min, rt
Ph” CN
1 2a
OH OH OH
Me Me Me
0 (o] o]
Ph Ph
CN{ CN{| / LN /)
3a 93% 3b 90% 3¢ 92%
OH OH
Br cl
o] o]
Ph7ENT] p Ph7ENT p
3d 91% 3e 88%

Scheme 1 Scope of substituent patterns on the quinone moiety.
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OH OH OH
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OH OH OH
(o] Me o] R 0
FsC
59 89% Me 5h 94% R =Cl, 5i, 92%
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5k 91% 51 86% 5m 89%

Scheme 2 Scope of §-aryl moieties.

thoroughly examined, these results provide a proof-of-concept
for the generality and modularity of §-CN-6-aryl disubstituted
p-QMs as valuable 1,6-conjugate addition building blocks for
constructing unsymmetric triarylmethanes containing all-
carbon quaternary stereocenters.

The synthetic utilities of the method were next studied
(Scheme 4). The phenolic hydroxyl group in 5g was removed
through triflation followed by Pd-catalyzed hydrogenation,
affording 8 in 87% yield over two steps (Scheme 4A). The
nitrile moiety can be converted into a range of valuable func-
tional groups. For examples, 3a underwent basic hydrolysis,
giving triarylacetamide 9 in 92% yield (Scheme 4B). Moreover,
the nitrile moiety in 3a was reduced by DIBAI-H providing
triarylated acetaldehyde 10 in 83% yield (Scheme 4C). Finally,
the cyano group can be transformed into heteroaromatics,
leading to tetraarylmethanes 11 and 12 that are otherwise
difficult to be prepared (Schemes 4D and E).

8-Aryl mono-substituted p-QM 1f without any substituent
on the quinone moiety is an unstable species and cannot be
isolated (Fig. 2A). Instead, installing a cyano group into the
§-position of 1f provides disubstituted p-QM 1a, which has
proved to be a stable, isolable, and storable species. To
examine the electronic structures and their effects on the stabi-
lity of the respective p-QMs 1f and 1a, we performed electro-
static potential analyses (Fig. 2B) using the Multiwfn program
and natural bond orbital (NBO) analyses (Fig. 2C) using the
NBO 3.1 version of Gaussian 09 at the B3LYP/6-311+g** level.
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Scheme 3 Scope of nucleophilic arene components. ? Reaction for 2 h.
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The obtained molecular electrostatic potential diagrams
suggested obvious differences in the electron densities around
the p-QM substructures of 1f and 1a (Fig. 2B). The NBO ana-
lyses further certify the variance of atomic charges on p-QM
motifs (Fig. 2C). Given that the instability of 1f mainly origi-
nated from self-polymerization, several variances of partial
atomic charges in 1a by introducing an electron-withdrawing
cyano group into the 8-position of 1f merit further comment.
First, the anionic property of the nucleophilic carbonyl oxygen
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Scheme 4 Synthetic utilities.
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Fig. 2 (A) Two representative p-QMs for comparison. (B) Molecular

electrostatic potential diagrams of p-QMs 1f and 1a. (C) Calculated NBO
charges (in e) for p-QMs 1f and 1a.

in 1a significantly diminished. Second, the cationic properties
of two electrophilic p-carbons in 1a also diminished, though
no change was observed on the carbonyl carbon. Third, while
the cationic property of the electrophilic §-carbon in 1a was
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somewhat enhanced, the increased steric hindrance at the
8-position might counteract the influence on electrophilicity.
The calculated data support our initial hypothesis that instal-
ling an electron-withdrawing cyano group at the exocyclic
methylene &-position would tune the molecular electron-
density distribution, and the thermal stability of the resulting
p-QMs would be enhanced by lowering their polymerizability.

Conclusions

In summary, placing an electron-withdrawing cyano group into
the exocyclic methylene 8-position of p-QMs proved to be ben-
eficial for enhancing their stability, and thus the scope of
these valuable building blocks for 1,6-conjugate addition reac-
tions was significantly expanded. By employing pre-syn-
thesized 8-CN-8-aryl substituted p-QMs as substrates, a broad
range of electron-rich arenes participated in the arylation
process, providing a wide array of unsymmetrical triarylmeth-
anes bearing all-carbon quaternary stereocenters with high
efficiency. The robust transformable properties of the nitrile
moiety enable facile access to other valuable functional group-
containing unsymmetrical tri- and tetraarylmethanes that are
otherwise difficult to be prepared. Computational studies sup-
ported the hypothesis that installing an electron-withdrawing
cyano group at the exocyclic methylene §-position would tune
the molecular electron-density distribution, and the thermal
stability of the resulting p-QMs would be enhanced by lowering
their polymerizability. Ongoing studies focus on exploring the
reactivities of pre-synthesized p-QMs bearing other valuable
EWGs at the &-position and the corresponding asymmetric
variants.

Experimental

General procedure for 1,6-conjugate arylation of
pre-synthesized §-CN-8-aryl substituted p-QMs with
electron-rich arenes (Schemes 1-3)

To a solution of 1 or 4 (0.1 mmol, 1.0 equiv.) in CH,Cl,
(3.0 mL) were successively added Bi(OTf); (0.01 mmol, 0.1
equiv.) and arene 2 or 6 (0.12 mmol, 1.2 equiv.) at rt. The
mixture was stirred at the same temperature for 20 min. Then
the mixture was concentrated and purified by flash column
chromatography (petroleum ether/ethyl acetate) to give the
desired triarylmethane 3, 5, or 7 in good yields.
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