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Abstract

The assembly of Ni(II) ions with linear spacers trans,trans-muconic acid (H2L) and 4,4 0-bipyridine (4,4 0-bpy) has afforded a com-
pound, [Ni(L)(4,4 0-bpy)(H2O)2]n (1). Single crystal X-ray diffraction analysis reveals that both 4,4 0-bpy and deprotonated H2L act as
linear bridges to bind square-planar Ni(II) nodes. Achiral ligands 4,4 0-bpy induced in a chiral configuration link metal nodes into chiral
chains, which are further bound into homochiral sheets by rigid L. Finally, a novel 3D chiral framework forms through three-fold slant-
wise interpenetration of those chiral (4,4) nets. The magnetic studies in the range 2–300 K show that magnetic behavior of 1 possesses a
large zero-field splitting of Ni(II) ions and an anti-ferromagnetic interaction between metal centers.
� 2006 Published by Elsevier B.V.
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Synthesis of chiral interpenetrating or porous structures
through spontaneous resolution upon crystallization with-
out any chiral auxiliary is a challenge and more meaningful
for polyfunctional materials [1–4]. Although full under-
standing of the spontaneous resolution is not yet complete,
two factors would be crucial: chiral units and homochiral
interactions between them [5]. Ligands of C2h-symmetry
[6–10] are potential sources of chiral units for spontaneous
resolution on condition that they are induced into a chiral
configuration by coordination bonds or hydrogen bonds
[11–13]. Recently, long rigid multifunctional ligands are
widely used to construct interpenetrating or porous
metal-organic frameworks with aesthetic topology struc-
tures [14,15]. Therefore, the long rigid ligands with C2h-
symmetry, such as trans,trans-muconic acid (H2L) [16–19]
(Scheme 1) and 4,4 0-bipyridine (4,4 0-bpy), are especially
1387-7003/$ - see front matter � 2006 Published by Elsevier B.V.

doi:10.1016/j.inoche.2006.01.002

* Corresponding author. Tel.: +86 591 83792460; fax: +86 591
83714946.

E-mail address: hmc@ms.fjirsm.ac.cn (M. Hong).
attractive in the construction of chiral supramolecular spe-
cies of interpenetrated architectures. Herein, we report the
self-assembly of trans,trans-muconic acid, 4,4 0-bpy, and
nickel(II) ions under hydrothermal conditions. The resul-
tant assembly of formula [Ni(L)(4,4 0-bpy)(H2O)2]n (1) is a
novel three mutually slantwise interpenetrated (4,4) nets
with chirality. Meanwhile, we also report the results of
thermo-stability and the magnetism studies.

The hydrothermal treatment of a mixture of Ni(CH3

COO)2 Æ 4H2O, H2L, and 4,4 0-bpy at a mole ratio of 2:1:1
at 170 �C gave rise to green crystals [Ni(L)(4,4 0-bpy)
(H2O)2]n (1), which was determined by IR, elemental anal-
ysis, and single crystal X-ray diffraction analysis [20,21].

Compound 1 crystallizes in a trigonal space group
P3121. The Ni(II) center in 1 has a distorted octahedral
coordination environment (shown in Fig. 1), ligated by
two O atoms from two deprotonated H2L and two N
atoms from two 4,4 0-bpy in the equatorial plan (Ni–O,
2.039 Å; Ni–N, 2.067 and 2.094 Å), and by two oxygen
atoms from water molecules at the axial sites (Ni–O,
2.110 Å).
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Fig. 2. A representation of the modes of inclined interpenetration by
complementary (4,4) networks for 1.

Fig. 1. Coordination environment of Ni(II) ion in compound 1.

Scheme 1.
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Notably, the foundational structural moieties in com-
pound 1 are the square meshes with the metal centers act-
ing as four-connecting nodes and both of L and 4,4 0-bpy
ligands acting as linear bridges between the metal atoms.
The square meshes with each theoretic dimensions of
11.220 · 12.254 Å then extend into two-dimensional coor-
dination sheets suitable for interpenetration. Due to the
large cavity, each square mesh of a sheet is interlocked with
two adjacent square meshes of the other two sheets in a
slantwise manner as illustrated in Scheme 2. As a result,
a beautiful three-dimensional framework forms through
the three-fold interpenetration of those identical but inde-
pendent two-dimensional (4,4) topology structures (shown
in Fig. 2). In addition, the interpenetration mode is stabi-
Scheme 2.
lized through hydrogen bonding between the coordinated
water molecules of a sheet and the uncoordinated O atoms
of L from the adjacent interlocking sheets with the O� � �O
distance being about 2.838 Å.

Another stimulating result is the introduction of chiral-
ity into compound 1 by spontaneous resolution upon
crystallization. In compound 1, the two pyridine rings of
4,4 0-bpy are out of planar with the dihedral angle of
29.6�. The twisted configuration, perhaps, is induced and
stabilized by weak C–H� � �p interactions (The ortho hydro-
gen of 4,4 0-bpy in a sheet directs to the pyridine plane of
neighboring sheet with the distance of C� � �aromatic cen-
troid 3.459 Å and the angle of C–H� � �aromatic centroid
132.27�). Thus, the originally introduced achiral 4,4 0-bpy
ligands are in a chiral configuration in 1, which lead to
the formation of chiral Ni(II)-4,4 0-bpy chains. With the
further bonding of rigid ligands L with metal nodes, the
chirality in chain units is extended into 2D homochiral
sheets, and then the three-dimensional chiral framework
in a space group P3121 is generated through three-fold
slantwise interpenetration of the chiral (4,4) nets.

Thermogravimetric analysis (TGA) of the polycrystal-
line sample of 1 under a nitrogen atmosphere reveals two
steps of weight losses. The first weight loss of 10.03%
occurs in the temperature range from 98 to 160 �C, which
may be attributed to the loss of all the coordinate water
molecules (9.2%). The dehydrated framework is still stable
up to 340 �C. The second weight loss of 66.3% occurs
above 340 �C, in agreement with the decomposition of
ligands L and 4,4 0-bpy (cal. 67.6%). The relic being
18.5% may be attributed to NiO (cal. 19.1%).

The temperature (T) dependence of the magnetic suscep-
tibility (vM) of title compound was measured in the range
2–300 K under fixed field of 10 kG. Fig. 3 shows the corre-
sponding vM vs. T and leff vs. T plot. For compound 1, leff

decreases very slowly from 3.16 lB at 300 K to 2.90 lB at
10 K and then decreases rapidly to 1.96 lB at 2 K. The leff

of 3.16 lB per NiII at room temperature is larger than that
of calculated for the spin only case (2.83 lB), revealing a
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Fig. 3. vM (h) and leff (s) vs. T with the theoretical fit (–) for 1.
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significant orbital contribution, which always causes zero-
field splitting. The magnetic behavior of title compound
can be explained by large zero-field splitting as well as an
anti-ferromagnetic interaction under the molecular field
approximation. The best fit of Eq. (1) to the data is
achieved with g = 2.21, D/k = 4.99, h = �1.57 and R =
7.50 · 10�7 [R ¼

P
ðvobsd � vcacldÞ

2
=
P

v2
obsd].

vM¼
2Ng2b2

3kðT �hÞ
2kT =D�2kT expð�D=kT Þ=Dþexpð�D=kT Þ

1þ2expð�D=kT Þ

� �

ð1Þ

The result indicates that the bridge conjugated ligands L

and 4,4 0-bpy are unfavorable for the electronic interactions
needed for efficient superexchange between paramagnetic
metal centers.
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Appendix A. Supplementary data

Crystallographic data for the structure reported in this
article have been deposited with the Cambridge Crystallo-
graphic Data Centre, CCDC No. 292009. Copies of this
information may be obtained free of charge from the
Director, CCDC, 12 Union Road, Cambridge, CB21EZ,
UK (fax: +44 1223 336 033; e-mail: deposit@ccdc.cam.
ac.uk or http://www.ccdc.cam.ac.uk) or also available
from the author Maochun Hong on request. Supplemen-
tary data associated with this article can be found, in the
online version, at doi:10.1016/j.inoche.2006.01.002.
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1 suitable for X-ray analysis were obtained, yield 72%. Elemental
analysis results of the crystals are consistent with the stoichiometry of
title compound. Calc. for C16H16N2NiO6 (%): C, 49.23; H, 4.13; O,
24.61; N, 7.18; Found: C, 49.26; H, 4.11; O, 24.56; N, 7.14. FT/IR
data (cm�1): 3329s, 3082m, 1613s, 1538s, 1491w, 1417m, 1372s,
1285m, 1218vs, 1189m, 1069vs, 1008vs, 874vs, 817vs, 763w, 724s,
671m, 638s, 571w, 503s.

[21] Crystal data for compound 1: C8H8NNi0.50O3: Mr = 195.51, trigonal,
space group P3121, a = b = 11.2198(5) Å, c = 12.2544(10) Å, V =
1335.96(14) Å3, Z = 6, l = 1.122 mm�1, qc = 0.458 g/cm3, F000= 606.
Data were collected over the 2h range 3.36–27.46� at 173(2) K on a
Siemens SMART-CCD Diffractometer equipped with a graphite
monochromator with Mo Ka radiation (k = 0.71073 Å). A total of
6750 reflections were obtained and 2039 unique reflections
(Rint = 0.0243) were collected in by x-2h scan mode of which 1931
reflections with I > 2r(I) were used in the succeeding refinement. The
final R = 0.0250, wR = 0.0621, (Dq)max = 0.354 e/Å3, (D/r)max =
0.001 and S = 1.074.
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