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Abstract: Heteroatom-directed C�H borylation of cyclo-
propanes and cyclobutanes was achieved with silica-sup-
ported monophosphane–Ir catalysts. Borylation occurred
at the C�H bonds located g to the directing N or O atoms
with exceptional cis stereoselectivity relative to the direct-
ing groups. This protocol was applied to the borylation of
a tertiary C�H bond of a ring-fused cyclopropane.

Cyclopropanes and cyclobutanes, categorized as small-ring car-
bocycles, are common units in natural products, biologically
active compounds, and synthetic building blocks.[1, 2] Recently,
transition-metal-catalyzed C�H bond activation strategies were
developed as direct methods for functionalizing small-ring
frameworks, such as cyclopropanes and cyclobutanes.[3–6]

Among these reactions, C�H borylation reactions are attractive
because borylated small-ring compounds can act as “handles”
for diverse molecular transformations.[7–11] Recently, Hartwig
and co-workers reported the trans-selective borylation of sub-
stituted cyclopropanes by using Ir–phenanthroline catalyst sys-
tems.[4] However, introduction of a boron atom with cis stereo-
chemistry relative to a substituent existing in small-ring sys-
tems is still difficult. Furthermore, C�H borylation of cyclobu-
tane derivatives has not yet been achieved.

A previous report from our laboratory described the directed
borylation of primary and secondary C(sp3)�H bonds of N-alky-
lated amides, ureas, and aminopyridines[10b] and 2-alkylpyridi-
nes[10c] catalyzed by Ir- or Rh-catalyst systems based on immo-
bilized monophosphane ligands, such as Silica-SMAP[12] and
Silica-TRIP[12] (Figure 1). This strategy allowed the borylation of
a cyclohexane ring substituted with a pyridine directing group
with trans stereoselectivity, but its applicability for small-ring
systems was not demonstrated.

The present report describes the heteroatom-directed C�H
borylation reactions of cyclopropanes and cyclobutanes cata-
lyzed by silica-supported monophosphane–Ir systems. The re-
actions proceeded under mild conditions with exceptional cis
stereochemistry relative to the directing group, and thus com-
plement Hartwig’s trans-selective C�H borylation of cyclopro-

panes.[4, 13] Applicability for borylation of a tertiary C�H bond
and cyclobutane systems and the effectiveness of carbonyl-re-
lated directing groups are new features of this heterogeneous
catalysis.

Initially, Ir and Rh catalyst systems based on various ligands
([M(cod)(OMe)]2, M = Ir or Rh, 2 mol % M; cod = 1,5-cycloocta-
diene) were evaluated for catalytic activity toward the boryla-
tion of 2-cyclopropylpyridine (1 a, 0.4 mmol) with bis(pinacola-
to)diboron (2, 0.2 mmol) in THF.[14] As a result, the Ir complex
coordinated with the commercially available silica-supported
caged trialkylphosphane Silica-SMAP showed the greatest turn-
over efficiency (25 8C, 15 h), giving cyclopropylboronate 3 a
(150 % based on 2 by 1H NMR spectroscopy, Scheme 1) along

with 2,3-bisborylation product 3 a’ (6 %, vide infra for details
on this compound) in total yields of over 100 %, which indicat-
ed that the HBpin formed during catalytic turnover also
worked as a borylating reagent (theoretical maximum yield
based on B atom is 200 %).[15] The C�H borylation occurred
with exclusive regio- and stereoselectivity at the three-mem-
bered ring C�H bond located g to the pyridine N atom in
favor of the cis configuration, which indicates N-to-Ir coordina-
tion leading to a five-membered iridacyclic reaction pathway.
The existence of an intramolecular N�B interaction in the prod-
uct (3 a) was indicated by 11B NMR spectroscopy in CDCl3.[16] Ar-
omatic C�H borylation on the pyridine ring, benzylic C�H bor-
ylation, and ring-opening of the cyclopropane were not ob-
served. No reaction occurred with the corresponding Rh cata-
lyst under identical reaction conditions.

Figure 1. Silica-supported monophosphanes.

Scheme 1. Silica-SMAP–Ir-catalyzed borylation of 1 a.
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When the Silica-SMAP-Ir-catalyzed reaction of 1 a was con-
ducted with 2.5 equivalents of 2, a novel 1,2,3-trisubstituted
cyclopropane derivative (3 a’) with all-cis configuration was ob-
tained selectively (Scheme 2).[17] Single-crystal X-ray diffraction
confirmed the stereochemistry and intramolecular N�B coordi-
nation.[18]

Homogeneous Ir catalyst systems with Ph-SMAP,[19] PPh3,
PMe3, PCy3, or PtBu3 as well as [Ir(cod)(OMe)]2 without exoge-
nous ligands induced much lower borylation activity (0–54 %
yields of 3 a, 2 mol % of Ir at 25 or 50 8C for 15 h),[14] which indi-
cated the importance of immobilization. The phenanthroline-
based ligand (2,9-Me2phen), which was the optimal ligand in
the Hartwig’s study for the trans-selective cyclopropane boryla-
tion,[4] caused borylation of the pyridine ring (C4- and C5-posi-
tions, 78 and 59 %, respectively, at 50 8C),[14] but not at the cy-
clopropane ring.

Various heteroarenes functioned as a directing group
(Table 1, entries 1–7). Electron-donating (1 b,c) or -withdrawing
(1 d) substituents at the 5-position of 2-cyclopropylpyridine
had little effect on the effectiveness of the cyclopropane C�H
borylation (entries 1–3).

Benzoannulated N-heteroaryls, such as benzoimidazole, ben-
zooxazole, and benzothiazole, were suitable directing groups,
showing exclusive diastereoselectivity (Table 1, entries 4–7). For
instance, reaction of 2-cyclopropyl-N-methylbenzoimidazole
(1 e) proceeded smoothly at 25 8C to afford borylation product
3 e in 133 % isolated yield based on 2 (entry 4).[20] Gram-scale
borylation of 1 e was possible by decreasing catalyst loading
to 0.1 mol % Ir at 80 8C (entry 5). Benzooxazole (in 1 f) also
functioned as a directing group, but C(sp2)�H borylations were
minor reaction paths (entry 6). 2-Cyclopropylbenzothiazole
(1 g) reacted cleanly at 70 8C to provide cyclopropylboronate
3 g as a sole product (entry 7). The 11B NMR spectra of 3 e–g in-
dicated that their azole groups were not coordinated to the
boron atom.[16]

Effects of alkyl substituents on the cyclopropane ring are
shown in Table 1 (entries 8–10). Methyl-group substitution with
trans geometry in 1 h and geminal dimethyl substitution in 1 i
had little effect on either reaction effectiveness or diastereose-
lectivity. Interestingly, a tertiary C�H bond on the cyclopropane
ring of 2-(7-bicyclo[4.1.0]heptyl)-1-methyl-1H-benzoimidazole
(1 j) successfully participated in borylation under mild condi-
tions (50 8C, entry 10). The structure of 3 j was confirmed by
single-crystal X-ray diffraction analysis (Figure 2).[18] This is the
first catalytic borylation of a tertiary C�H bond. These experi-
mental results demonstrating good tolerance toward substitut-
ed cyclopropanes likely reflect the increased acidity of the
small-ring C�H bonds with relatively high s-character, and are

consistent with the report of Hartwig’s group describing suc-
cessful nondirected cyclopropane borylation.[4]

Carbonyl-related functional groups also acted as directing
groups for cyclopropane C�H borylation as shown in Table 2.
N-Methoxyimine derived from dicyclopropyl ketone (1 k) react-
ed at 25 8C to give monoborylation product 3 k selectively
(Table 2, entries 1 and 2). For N-methoxyimine (1 l) derived
from an unsymmetrical ketone, only the E isomer was convert-
ed to the corresponding cyclopropylboronate (3 l) while the Z
isomers remained intact (entries 3 and 4, respectively). N-Mesi-
tylimine 1 m was more efficiently borylated by using Silica-TRIP
than using Silica-SMAP (entries 5 and 6, respectively). Again,
only the E isomers participated in the transformation. N,N-Dii-
sopropylamide 1 n reacted at 80 8C using Silica-SMAP with ex-

Scheme 2. Silica-SMAP–Ir-catalyzed bisborylation of 1 a.

Table 1. Silica-SMAP–Ir-catalyzed C�H borylation of cyclopropane deriva-
tives (1) with diboron (2).[a]

Entry Substrate 1 Product 3 T [8C] Yield[b] [%]

1[c] 25 168[d] (150)

2[c] 25 108[e,f] (82)

3[c] 25 164[d] (158)

4 1 e (X = NMe) 3 e (X = NMe) 25 148[g] (133)
5[h] 1 e (X = NMe) 3 e (X = NMe) 80 82[g] (78)
6 1 f (X = O) 3 f (X = O) 40 98 (87)[i]

7 1 g (X = S) 3 g (X = S) 70 156 (130)

8 30 137[g] (123)[j]

9 40 86[g] (61)

10 50 91[g] (80)

[a] Conditions: 1 (0.4 mmol), 2 (0.2 mmol), [Ir(cod)(OMe)]2 (0.004 mmol Ir),
Silica-SMAP (0.004 mmol P), THF (2 mL), 15 h. [b] Yields based on 2 were
determined by 1H NMR spectroscopy. Isolated yields are in parentheses.
Yield in excess of 100 % indicates that HBpin formed during catalytic turn-
over also worked as a borylating reagent (theoretical maximum yield is
200 %). [c] THF (1 mL). [d] Bisborylation products 3’ were observed in the
crude mixture (entry 1, 6 %; entry 3, 11 %). [e] Diboron 2 remained in the
crude mixture. [f] A partial N–B interaction was indicated by 11B NMR
spectroscopy. [g] The C=N reduction product of 1 was observed in the
crude mixture (entry 4, 39 %; entry 5, 68 %; entry 8, 48 %; entry 9, 17 %;
entry 10, 26 %). [h] 1 e (10 mmol), 2 (5 mmol), [Ir(cod)(OMe)]2 (0.005 mmol
Ir), Silica-SMAP (0.005 mmol P), THF (5 mL), 80 8C, 15 h. [i] Isolated product
was contaminated with arylboronates (10 %). [j] Isolated product was con-
taminated with regioisomers (8 %).
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ceptional cis selectivity to afford cyclopropylboronate 3 n (en-
tries 7 and 8). Coordination of the carbonyl oxygen atom to
the Ir atom is thought to be responsible for the regio- and ste-
reoselectivities.

Next, the Silica-SMAP–Ir system was applied to the C�H bor-
ylation of cyclobutanes, which had not been reported previ-
ously. Results are summarized in Table 3. Reaction of 2-cyclobu-
tylpyridine (4 a) occurred at 25 8C to give cyclobutylboronate
5 a as the sole product (Table 3, entry 1). The borylation
showed exceptional cis selectivity, and no ring opening was
detected. N-Methylbenzoimidazole and benzooxazole were
also suitable directing groups (entries 2–4).[18] Gram-scale bory-
lation of 4 b with a reduced catalyst loading (0.1 mol % Ir, at
80 8C) proceeded efficiently to give 5 b in 94 % isolated yield
(entry 3).

The cyclopropyl and cyclobutyl boronates (3 e and 5 b, re-
spectively) obtained through C�H borylation were used for
transformations as shown in Scheme 3. Cyclopropylboronate
3 e underwent transformation to a trifluoroborate salt,[11a] one-
carbon-homologation/oxidation sequence,[21] and Pd-catalyzed
Suzuki–Miyaura coupling with aryl or alkenyl bromides.[11a, 22]

The alkenylated cyclopropane 8 d is structurally related to
chrysanthemic acid derivatives, which is a class of pyrethroids
insecticides.[23] Cyclobutylboronate 5 b was converted to pri-

Figure 2. Molecular structure of the tertiary alkylboronate 3 j.

Table 2. Ir-catalyzed C�H borylation of cyclopropanes (1) with carbonyl-
related functional groups.[a]

Entry Substrate 1 Product 3 Ligand T [8C] Yield[b] [%]

1 Silica-SMAP 25 107 (66)
2 Silica-TRIP 25 88

3 Silica-SMAP 25 115[c] (64)
4 Silica-TRIP 25 104[c]

5[d] Silica-SMAP 100 85[c,e]

6[d] Silica-TRIP 100 113[c,e] (98)

7[f] Silica-SMAP 80 77 (75)
8[f] Silica-TRIP 80 0

[a] Conditions: 1 (0.4 mmol), 2 (0.2 mmol), [Ir(cod)(OMe)]2 (0.004 mmol Ir),
ligand (0.004 mmol P), THF (1 mL), 24 h. [b] Yields based on 2 were deter-
mined by 1H NMR spectroscopy. Isolated yield is in parentheses. Yields in
excess of 100 % indicate that HBpin also worked as a borylating reagent
(theoretical maximum yield is 200 %). [c] The Z isomers of substrates re-
mained intact in the crude mixture. [d] In THF (2 mL), for 15 h. [e] The C=

N reduction product of 3 was observed in the crude mixture (entry 5,
9 %; entry 6, 4 %). [f] In hexane (1 mL).

Table 3. Silica-SMAP–Ir-catalyzed C�H borylation of cyclobutane deriva-
tives (4) with diboron (2).[a]

Entry Substrate 4 Product 5 T. [8C] Yield[b] [%]

1[c] 25 105 (85)[d]

2 40 109[e] (99)[f]

3[g] 80 96[e] (94)[f]

4 50 99 (94)[f]

[a] Conditions: 4 (0.4 mmol), 2 (0.2 mmol), [Ir(cod)(OMe)]2 (0.004 mmol Ir),
ligand (0.004 mmol P), THF (2 mL), 15 h. [b] Yields based on 2 were deter-
mined by 1H NMR spectroscopy. Isolated yield is in parentheses. Yield in
excess of 100 % indicates that HBpin also worked as a borylating reagent
(theoretical maximum yield is 200 %). [c] In THF (1 mL). [d] Isolated 5 a
was contaminated with traces of impurities. [e] The C=N reduction prod-
ucts of 4 were observed in the crude mixture (entry 2, 39 %; entry 3,
21 %). [f] Isolated products were contaminated with arylboronates
(entry 2, 6 %; entry 3, 6 %; entry 4, 20 %). [g] 4 b (10 mmol), 2 (5 mmol), [Ir-
(OMe)(cod)]2 (0.005 mmol Ir), Silica-SMAP (0.005 mmol P), THF (5 mL),
80 8C, 15 h.

Scheme 3. Transformations of borylation products.
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mary alcohol 9 through the one-carbon-homologation/oxida-
tion sequence. These transformations occurred with retention
of configuration to give the corresponding 1,2-cis-disubstituted
small-ring compounds.[18]

In summary, silica-supported monophosphane–Ir catalyst
systems enabled N- or O-atom-directed C�H borylation of cy-
clopropanes and cyclobutanes. Borylation occurred with excep-
tional regio- and stereoselectivities with the assistance of vari-
ous directing groups, including N-heteroarenes, an oxime,
imine, and amide, resulting in formation of cis-substituted cy-
clopropyl- and cyclobutylboronates. The successful borylation
of sterically congested C�H bonds of substituted cyclopro-
panes, including a tertiary C�H bond, demonstrates the poten-
tial of this heterogeneous borylation strategy toward function-
alization of small-ring systems.

Experimental Section

Procedure for the borylation of 2-cyclopropylpyridine (1 a)
with Silica-SMAP–Ir catalyst (Scheme 1)

In a nitrogen-filled glove box, Silica-SMAP (0.07 mmol g�1, 57.1 mg,
0.004 mmol, 2 mol %), bis(pinacolato)diboron (2) (50.8 mg,
0.2 mmol), and anhydrous, degassed THF (0.3 mL) were placed in
a 10 mL glass tube containing a magnetic stirring bar. A solution
of [Ir(cod)(OMe)]2 (1.3 mg, 0.002 mmol, 1 mol %) in THF (0.7 mL)
and 2-cyclopropylpyridine (1 a) (47.7 mg, 0.4 mmol) were added
successively. The tube was sealed with a screw cap and removed
from the glove box. The reaction mixture was stirred at 25 8C for
15 h, and filtered through a glass pipette equipped with a cotton
filter. The solvent was removed under reduced pressure. An inter-
nal standard (1,1,2,2-tetrachloroethane) was added to the residue.
The yields of the products 3 a and 3 a’ were determined by 1H NMR
spectroscopy (150 and 6 % based on 2, respectively). The crude
material was then purified by Kugelrohr distillation (1 mmHg,
75 8C), to give the corresponding product 3 a (65.4 mg, 0.27 mmol,
133 % yield). Yields in excess of 100 % indicate that HBpin formed
during catalytic turnover also worked as a borylating reagent (the-
oretical maximum yield is 200 %).
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Stereoselective C�H Borylations of
Cyclopropanes and Cyclobutanes with
Silica-Supported Monophosphane–Ir
Catalysts

Heteroatom-directed C�H borylations
of small-ring carbocycles, such as cyclo-
propanes and cyclobutanes, were ach-
ieved with silica-supported monophos-
phane–Ir catalysts (see scheme). Boryla-
tion occurred at the C�H bonds located
g to the directing N or O atoms with ex-
ceptional cis stereoselectivity relative to
the directing groups.
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