Organic Synthesis

Stereoselective C—H Borylations of Cyclopropanes and Cyclobutanes with Silica-Supported Monophosphane–Ir Catalysts

Ryo Murakami, Kiyoshi Tsunoda, Tomohiro Iwai, and Masaya Sawamura*^[a]

Abstract: Heteroatom-directed C–H borylation of cyclopropanes and cyclobutanes was achieved with silica-supported monophosphane–Ir catalysts. Borylation occurred at the C–H bonds located γ to the directing N or O atoms with exceptional *cis* stereoselectivity relative to the directing groups. This protocol was applied to the borylation of a tertiary C–H bond of a ring-fused cyclopropane.

Cyclopropanes and cyclobutanes, categorized as small-ring carbocycles, are common units in natural products, biologically active compounds, and synthetic building blocks.^[1,2] Recently, transition-metal-catalyzed C–H bond activation strategies were developed as direct methods for functionalizing small-ring frameworks, such as cyclopropanes and cyclobutanes.^[3-6] Among these reactions, C–H borylation reactions are attractive because borylated small-ring compounds can act as "handles" for diverse molecular transformations.^[7–11] Recently, Hartwig and co-workers reported the *trans*-selective borylation of substituted cyclopropanes by using Ir–phenanthroline catalyst systems.^[4] However, introduction of a boron atom with *cis* stereochemistry relative to a substituent existing in small-ring systems is still difficult. Furthermore, C–H borylation of cyclobutane derivatives has not yet been achieved.

A previous report from our laboratory described the directed borylation of primary and secondary $C(sp^3)$ —H bonds of N-alky-lated amides, ureas, and aminopyridines^[10b] and 2-alkylpyridines^[10c] catalyzed by Ir- or Rh-catalyst systems based on immobilized monophosphane ligands, such as Silica-SMAP^[12] and Silica-TRIP^[12] (Figure 1). This strategy allowed the borylation of a cyclohexane ring substituted with a pyridine directing group with *trans* stereoselectivity, but its applicability for small-ring systems was not demonstrated.

The present report describes the heteroatom-directed C–H borylation reactions of cyclopropanes and cyclobutanes catalyzed by silica-supported monophosphane–Ir systems. The reactions proceeded under mild conditions with exceptional *cis* stereochemistry relative to the directing group, and thus complement Hartwig's *trans*-selective C–H borylation of cyclopro-

R. Murakami, K. Tsunoda, Dr. T. Iwai, Prof. Dr. M. Sawamura
Department of Chemistry, Faculty of Science
Hokkaido University
Sapporo 060-0810 (Japan)
E-mail: sawamura@sci.hokudai.ac.jp
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201404362.

Chem. Eur. J. 2014, 20, 1-6

Wiley Online Library

Figure 1. Silica-supported monophosphanes.

panes.^[4,13] Applicability for borylation of a tertiary C–H bond and cyclobutane systems and the effectiveness of carbonyl-related directing groups are new features of this heterogeneous catalysis.

Initially, Ir and Rh catalyst systems based on various ligands $([M(cod)(OMe)]_2, M=Ir \text{ or Rh}, 2 \mod \% M; cod=1,5$ -cyclooctadiene) were evaluated for catalytic activity toward the borylation of 2-cyclopropylpyridine (**1 a**, 0.4 mmol) with bis(pinacolato)diboron (**2**, 0.2 mmol) in THF.^[14] As a result, the Ir complex coordinated with the commercially available silica-supported caged trialkylphosphane Silica-SMAP showed the greatest turnover efficiency (25 °C, 15 h), giving cyclopropylboronate **3 a** (150% based on **2** by ¹H NMR spectroscopy, Scheme 1) along

Scheme 1. Silica-SMAP-Ir-catalyzed borylation of 1 a.

with 2,3-bisborylation product **3**a' (6%, vide infra for details on this compound) in total yields of over 100%, which indicated that the HBpin formed during catalytic turnover also worked as a borylating reagent (theoretical maximum yield based on B atom is 200%).^[15] The C–H borylation occurred with exclusive regio- and stereoselectivity at the three-membered ring C–H bond located γ to the pyridine N atom in favor of the *cis* configuration, which indicates N-to-Ir coordination leading to a five-membered iridacyclic reaction pathway. The existence of an intramolecular N–B interaction in the product (**3**a) was indicated by ¹¹B NMR spectroscopy in CDCl₃.^[16] Aromatic C–H borylation on the pyridine ring, benzylic C–H borylation, and ring-opening of the cyclopropane were not observed. No reaction occurred with the corresponding Rh catalyst under identical reaction conditions.

These are not the final page numbers! 77

Scheme 2. Silica-SMAP-Ir-catalyzed bisborylation of 1 a.

When the Silica-SMAP-Ir-catalyzed reaction of **1a** was conducted with 2.5 equivalents of **2**, a novel 1,2,3-trisubstituted cyclopropane derivative (**3a**') with all-*cis* configuration was obtained selectively (Scheme 2).^[17] Single-crystal X-ray diffraction confirmed the stereochemistry and intramolecular N–B coordination.^[18]

Homogeneous Ir catalyst systems with Ph-SMAP,^[19] PPh₃, PMe₃, PCy₃, or PtBu₃ as well as [Ir(cod)(OMe)]₂ without exogenous ligands induced much lower borylation activity (0–54% yields of **3 a**, 2 mol% of Ir at 25 or 50 °C for 15 h),^[14] which indicated the importance of immobilization. The phenanthrolinebased ligand (2,9-Me₂phen), which was the optimal ligand in the Hartwig's study for the *trans*-selective cyclopropane borylation,^[4] caused borylation of the pyridine ring (C4- and C5-positions, 78 and 59%, respectively, at 50 °C),^[14] but not at the cyclopropane ring.

Various heteroarenes functioned as a directing group (Table 1, entries 1–7). Electron-donating (**1 b**,**c**) or -withdrawing (**1 d**) substituents at the 5-position of 2-cyclopropylpyridine had little effect on the effectiveness of the cyclopropane C–H borylation (entries 1–3).

Benzoannulated N-heteroaryls, such as benzoimidazole, benzooxazole, and benzothiazole, were suitable directing groups, showing exclusive diastereoselectivity (Table 1, entries 4–7). For instance, reaction of 2-cyclopropyl-*N*-methylbenzoimidazole (**1e**) proceeded smoothly at 25 °C to afford borylation product **3e** in 133% isolated yield based on **2** (entry 4).^[20] Gram-scale borylation of **1e** was possible by decreasing catalyst loading to 0.1 mol% Ir at 80 °C (entry 5). Benzooxazole (in **1 f**) also functioned as a directing group, but $C(sp^2)$ –H borylations were minor reaction paths (entry 6). 2-Cyclopropylbenzothiazole (**1 g**) reacted cleanly at 70 °C to provide cyclopropylboronate **3g** as a sole product (entry 7). The ¹¹B NMR spectra of **3e–g** indicated that their azole groups were not coordinated to the boron atom.^[16]

Effects of alkyl substituents on the cyclopropane ring are shown in Table 1 (entries 8–10). Methyl-group substitution with *trans* geometry in **1h** and geminal dimethyl substitution in **1i** had little effect on either reaction effectiveness or diastereoselectivity. Interestingly, a tertiary C–H bond on the cyclopropane ring of 2-(7-bicyclo[4.1.0]heptyl)-1-methyl-1*H*-benzoimidazole (**1j**) successfully participated in borylation under mild conditions (50 °C, entry 10). The structure of **3j** was confirmed by single-crystal X-ray diffraction analysis (Figure 2).^[18] This is the first catalytic borylation of a tertiary C–H bond. These experimental results demonstrating good tolerance toward substituted cyclopropanes likely reflect the increased acidity of the small-ring C–H bonds with relatively high s-character, and are

Entry	Substrate 1	Product 3	T [°C]	Yield ^[b] [%]
1 ^[c]	Me N 1b	Me N-Bpin 3b H	25	168 ^[d] (150)
2 ^[c]		MOMO NBpin 3c	25	108 ^[e,f] (82)
3 ^[c]	F ₃ C 1d	F ₃ C N 3d	25	164 ^[d] (158)
	X	X Bpin		
4	1 e (X = NMe)	3e (X=NMe)	25	148 ^[g] (133)
5 ^[h]	1 e (X = NMe)	3e (X=NMe)	80	82 ^[g] (78)
6	1 f (X = O)	3 f (X = O)	40	98 (87) ^[i]
7	1 g (X = S)	3 g (X = S)	70	156 (130)
8	1h N Me Me	3h N Me Me	30	137 ^(g) (123) ^(j)
9	1i N Me Me Me	3i N Me Me	40	86 ^[g] (61)
10	N 1j N Me H	3j N Me H	50	91 ^[g] (80)

Table 1. Silica-SMAP-Ir-catalyzed C-H borylation of cyclopropane deriva-

tives (1) with diboron (2).^[a]

[a] Conditions: **1** (0.4 mmol), **2** (0.2 mmol), $[Ir(cod)(OMe)]_2$ (0.004 mmol Ir), Silica-SMAP (0.004 mmol P), THF (2 mL), 15 h. [b] Yields based on **2** were determined by ¹H NMR spectroscopy. Isolated yields are in parentheses. Yield in excess of 100% indicates that HBpin formed during catalytic turnover also worked as a borylating reagent (theoretical maximum yield is 200%). [c] THF (1 mL). [d] Bisborylation products **3'** were observed in the crude mixture (entry 1, 6%; entry 3, 11%). [e] Diboron **2** remained in the crude mixture. [f] A partial N–B interaction was indicated by ¹¹B NMR spectroscopy. [g] The C=N reduction product of **1** was observed in the crude mixture (entry 4, 39%; entry 5, 68%; entry 8, 48%; entry 9, 17%; entry 10, 26%). [h] **1e** (10 mmol), **2** (5 mmol), [Ir(cod)(OMe)]₂ (0.005 mmol Ir), Silica-SMAP (0.005 mmol P), THF (5 mL), 80°C, 15 h. [i] Isolated product was contaminated with arylboronates (10%). [j] Isolated product was contaminated with regioisomers (8%).

consistent with the report of Hartwig's group describing successful nondirected cyclopropane borylation.^[4]

Carbonyl-related functional groups also acted as directing groups for cyclopropane C–H borylation as shown in Table 2. *N*-Methoxyimine derived from dicyclopropyl ketone (**1** k) reacted at 25 °C to give monoborylation product **3** k selectively (Table 2, entries 1 and 2). For *N*-methoxyimine (**1** l) derived from an unsymmetrical ketone, only the *E* isomer was converted to the corresponding cyclopropylboronate (**3** l) while the *Z* isomers remained intact (entries 3 and 4, respectively). *N*-Mesitylimine **1** m was more efficiently borylated by using Silica-TRIP than using Silica-SMAP (entries 5 and 6, respectively). Again, only the *E* isomers participated in the transformation. *N*,*N*-Diisopropylamide **1** n reacted at 80 °C using Silica-SMAP with ex-

2

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 2. Molecular structure of the tertiary alkylboronate 3j.

ChemPubSoc

related functional groups."							
Entry	Substrate 1	Product 3	Ligand	<i>T</i> [°C]	Yield ^[b] [%]		
1	^{MeO} ` <u>N</u> 1k	MeO`N	Silica-SMAP	25	107 (66)		
2	\bigtriangledown	Bpin 3k	Silica-TRIP	25	88		
3	^{MeO} `N 1I	MeO _{`N}	Silica-SMAP	25	115 ^[c] (64)		
4	Bu (E/Z 2.3:1)	Bu Bpin 3I	Silica-TRIP	25	104 ^[c]		
5 ^[d]	Mes N 1m	Mes	Silica-SMAP	100	85 ^[c,e]		
6 ^[d]	Me (E/Z 2.7:1)	Me Bpin 3m	Silica-TRIP	100	113 ^[c,e] (98)		
7 ^[f]	0¦ 1n	[/] Rr O	Silica-SMAP	80	77 (75)		
8 ^[f]	ⁱ Pr_N_i iPr	ⁱ Pr H Bpin H H 3n	Silica-TRIP	80	0		

Table 2. Ir-catalyzed C-H borylation of cyclopropanes (1) with carbonyl-

[a] Conditions: **1** (0.4 mmol), **2** (0.2 mmol), $[Ir(cod)(OMe)]_2$ (0.004 mmol Ir), ligand (0.004 mmol P), THF (1 mL), 24 h. [b] Yields based on **2** were determined by ¹H NMR spectroscopy. Isolated yield is in parentheses. Yields in excess of 100% indicate that HBpin also worked as a borylating reagent (theoretical maximum yield is 200%). [c] The *Z* isomers of substrates remained intact in the crude mixture. [d] In THF (2 mL), for 15 h. [e] The *C*= N reduction product of **3** was observed in the crude mixture (entry 5, 9%; entry 6, 4%). [f] In hexane (1 mL).

ceptional *cis* selectivity to afford cyclopropylboronate **3n** (entries 7 and 8). Coordination of the carbonyl oxygen atom to the Ir atom is thought to be responsible for the regio- and stereoselectivities.

Next, the Silica-SMAP-Ir system was applied to the C–H borylation of cyclobutanes, which had not been reported previously. Results are summarized in Table 3. Reaction of 2-cyclobutylpyridine (**4a**) occurred at 25 °C to give cyclobutylboronate **5a** as the sole product (Table 3, entry 1). The borylation showed exceptional *cis* selectivity, and no ring opening was detected. *N*-Methylbenzoimidazole and benzooxazole were also suitable directing groups (entries 2–4).^[18] Gram-scale borylation of **4b** with a reduced catalyst loading (0.1 mol% Ir, at 80 °C) proceeded efficiently to give **5b** in 94% isolated yield (entry 3).

These are not the final page numbers! 77

[a] Conditions: **4** (0.4 mmol), **2** (0.2 mmol), $[Ir(cod)(OMe)]_2$ (0.004 mmol Ir), ligand (0.004 mmol P), THF (2 mL), 15 h. [b] Yields based on **2** were determined by ¹H NMR spectroscopy. Isolated yield is in parentheses. Yield in excess of 100% indicates that HBpin also worked as a borylating reagent (theoretical maximum yield is 200%). [c] In THF (1 mL). [d] Isolated **5a** was contaminated with traces of impurities. [e] The C=N reduction products of **4** were observed in the crude mixture (entry 2, 39%; entry 3, 21%). [f] Isolated products were contaminated with arylboronates (entry 2, 6%; entry 3, 6%; entry 4, 20%). [g] **4b** (10 mmol), **2** (5 mmol), [Ir-(OMe)(cod)]₂ (0.005 mmol Ir), Silica-SMAP (0.005 mmol P), THF (5 mL), 80°C, 15 h.

The cyclopropyl and cyclobutyl boronates (**3e** and **5b**, respectively) obtained through C–H borylation were used for transformations as shown in Scheme 3. Cyclopropylboronate **3e** underwent transformation to a trifluoroborate salt,^[11a] onecarbon-homologation/oxidation sequence,^[21] and Pd-catalyzed Suzuki–Miyaura coupling with aryl or alkenyl bromides.^[11a,22] The alkenylated cyclopropane **8d** is structurally related to chrysanthemic acid derivatives, which is a class of pyrethroids insecticides.^[23] Cyclobutylboronate **5b** was converted to pri-

Scheme 3. Transformations of borylation products.

Chem. Eur. J. **2014**, *20*, 1–6 **www.chemeurj.org**

3

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

mary alcohol **9** through the one-carbon-homologation/oxidation sequence. These transformations occurred with retention of configuration to give the corresponding 1,2-*cis*-disubstituted small-ring compounds.^[18]

In summary, silica-supported monophosphane–Ir catalyst systems enabled N- or O-atom-directed C–H borylation of cyclopropanes and cyclobutanes. Borylation occurred with exceptional regio- and stereoselectivities with the assistance of various directing groups, including *N*-heteroarenes, an oxime, imine, and amide, resulting in formation of *cis*-substituted cyclopropyl- and cyclobutylboronates. The successful borylation of sterically congested C–H bonds of substituted cyclopropanes, including a tertiary C–H bond, demonstrates the potential of this heterogeneous borylation strategy toward functionalization of small-ring systems.

Experimental Section

Procedure for the borylation of 2-cyclopropylpyridine (1 a) with Silica-SMAP-Ir catalyst (Scheme 1)

In a nitrogen-filled glove box, Silica-SMAP (0.07 mmol g^{-1} , 57.1 mg, 0.004 mmol, 2 mol%), bis(pinacolato)diboron (2) (50.8 mg, 0.2 mmol), and anhydrous, degassed THF (0.3 mL) were placed in a 10 mL glass tube containing a magnetic stirring bar. A solution of [lr(cod)(OMe)]₂ (1.3 mg, 0.002 mmol, 1 mol%) in THF (0.7 mL) and 2-cyclopropylpyridine (1 a) (47.7 mg, 0.4 mmol) were added successively. The tube was sealed with a screw cap and removed from the glove box. The reaction mixture was stirred at 25 °C for 15 h, and filtered through a glass pipette equipped with a cotton filter. The solvent was removed under reduced pressure. An internal standard (1,1,2,2-tetrachloroethane) was added to the residue. The yields of the products 3a and 3a' were determined by ¹H NMR spectroscopy (150 and 6% based on 2, respectively). The crude material was then purified by Kugelrohr distillation (1 mmHg, 75 °C), to give the corresponding product 3a (65.4 mg, 0.27 mmol, 133% yield). Yields in excess of 100% indicate that HBpin formed during catalytic turnover also worked as a borylating reagent (theoretical maximum yield is 200%).

Acknowledgements

This work was supported by a Grants-in-Aid for Scientific Research on Innovative Areas "Organic Synthesis Based on Reaction Integration" from MEXT, and by CREST and ACT-C from JST.

Keywords: borylation · C–H activation · cyclobutanes · cyclopropanes · iridium catalysts

- For cyclopropanes, see: a) The Chemistry of the Cyclopropyl Group (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester, **1987**; b) W. A. Donaldson, Tetrahedron **2001**, *57*, 8589; c) H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. **2003**, *103*, 977; d) J. Pietruszka, Chem. Rev. **2003**, *103*, 1051; e) A. Reichelt, S. F. Martin, Acc. Chem. Res. **2006**, *39*, 433; f) D. Y.-K. Chen, R. H. Pouwer, J.-A. Richard, Chem. Soc. Rev. **2012**, *41*, 4631.
- [2] For cyclobutanes, see: a) The Chemistry of Cyclobutanes (Eds.: Z. Rappoport, J. F. Liebman), Wiley, Chichester, 2005; b) E. Lee-Ruff, G. Mladenova, Chem. Rev. 2003, 103, 1449; c) J. C. Namyslo, D. E. Kaufmann, Chem.

Chem. Eur. J. **2014**, *20*, 1–6 **www.chemeurj.org**

Rev. **2003**, *103*, 1485; d) V. M. Dembitsky, *J. Nat. Med.* **2007**, *62*, 1; e) T. Seiser, T. Saget, D. N. Tran, N. Cramer, *Angew. Chem.* **2011**, *123*, 7884; *Angew. Chem. Int. Ed.* **2011**, *50*, 7740.

- [3] Metal-catalyzed C-H functionalizations of cyclopropanes: a) A. Kubota, M. S. Sanford, Synthesis 2011, 2579; b) M. Wasa, K. M. Engle, D. W. Lin, E. J. Yoo, J.-Q. Yu, J. Am. Chem. Soc. 2011, 133, 19598; c) S. Rousseaux, B. Liégault, K. Fagnou, Chem. Sci. 2012, 3, 244; d) M. Wasa, K. S. L. Chan, X.-G. Zhang, J. He, M. Miura, J.-Q. Yu, J. Am. Chem. Soc. 2012, 134, 18570; e) T. Saget, N. Cramer, Angew. Chem. 2012, 124, 13014; Angew. Chem. Int. Ed. 2012, 51, 12842; f) C. L. Ladd, D. S. Roman, A. B. Charette, Org. Lett. 2013, 15, 1350; g) T. Saget, D. Perez, N. Cramer, Org. Lett. 2013, 15, 1354; h) R. Parella, B. Gopalakrishnan, S. A. Babu, Org. Lett. 2013, 15, 3238; i) D. S. Roman, A. B. Charette, Org. Lett. 2013, 15, Kobayashi, M. Arisawa, S. Shuto, Org. Lett. 2013, 15, 6202.
- [4] C. W. Liskey, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 3375.
- [5] Metal-catalyzed C–H functionalizations of cyclobutanes: a) W. R. Gutekunst, P. S. Baran, J. Am. Chem. Soc. 2011, 133, 19076; b) W. R. Gutekunst, R. Gianatassio, P. S. Baran, Angew. Chem. 2012, 124, 7625; Angew. Chem. Int. Ed. 2012, 51, 7507; c) R. Parella, B. Gopa-lakrishnan, S. A. Babu, J. Org. Chem. 2013, 78, 11911. See also refs [3c,d].
- [6] Stoichiometric C–H funtionalizations of cyclopropanes and cyclobutanes with organolithium or organomagnesium reagents: a) P. E. Eaton, C.-H. Lee, Y. Xiong, J. Am. Chem. Soc. 1989, 111, 8016; b) M.-X. Zhang, P. E. Eaton, Angew. Chem. 2002, 114, 2273; Angew. Chem. Int. Ed. 2002, 41, 2169; c) P. E. Eaton, M.-X. Zhang, N. Komiya, C.-G. Yang, I. Steele, R. Gilardi, Synlett 2003, 1275.
- [7] Recent reviews on transition-metal-catalyzed C–H borylation: a) I. A. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, *Chem. Rev.* 2010, *110*, 890; b) J. F. Hartwig, *Chem. Soc. Rev.* 2011, *40*, 1992; c) A. Ros, R. Fernández, J. M. Lassaletta, *Chem. Soc. Rev.* 2014, *43*, 3229.
- [8] Organoboron compounds as biologically active molecules: R. Smoum, A. Rubinstein, V. M. Dembitsky, M. Srebnik, Chem. Rev. 2012, 112, 4156.
- [9] Metal-catalyzed primary C(sp³)–H borylations: a) H. Chen, S. Schlecht, T. C. Semple, J. F. Hartwig, *Science* 2000, *287*, 1995; b) Y. Kondo, D. García-Cuadrado, J. F. Hartwig, N. K. Boaen, N. L. Wagner, M. A. Hillmyer, J. Am. Chem. Soc. 2002, *124*, 1164; c) J. D. Lawrence, M. Takahashi, C. Bae, J. F. Hartwig, J. Am. Chem. Soc. 2004, *126*, 15334; d) J. M. Murphy, J. D. Lawrence, K. Kawamura, C. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2006, *128*, 13684; e) T. Ohmura, T. Torigoe, M. Suginome, J. Am. Chem. Soc. 2012, *134*, 17416; f) T. Ohmura, T. Torigoe, M. Suginome, Organometallics 2013, *32*, 6170. Benzylic C(sp³)-H borylations; g) S. Shima-da, A. S. Batsanov, J. A. K. Howard, T. B. Marder, Angew. Chem. 2001, *113*, 2226; Angew. Chem. Int. Ed. 2001, *40*, 2168; h) T. Ishiyama, K. Ishida, J. Takagi, N. Miyaura, Chem. Lett. 2001, *30*, 1082; i) T. A. Boebel, J. F. Hartwig, Organometallics 2008, *27*, 6013.
- [10] Metal-catalyzed secondary C(sp³)—H borylations: a) C. W. Liskey, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 12422; b) S. Kawamorita, T. Miyazaki, T. Iwai, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2012, 134, 12924; c) S. Kawamorita, R. Murakami, T. Iwai, M. Sawamura, J. Am. Chem. Soc. 2013, 135, 2947; d) T. Mita, Y. Ikeda, K. Michigami, Y. Sato, Chem. Commun. 2013, 49, 5601; e) S. H. Cho, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 8157; f) S. H. Cho, J. F. Hartwig, Chem. Sci. 2014, 5, 694. See also ref. [4].
- [11] For C–C bond-forming transformations of cyclopropyl- and cyclobutyltrifluoroborates, see: a) G. A. Molander, P. E. Gormisky, J. Org. Chem. 2008, 73, 7481; b) G. A. Molander, V. Colombei, V. A. Braz, Org. Lett. 2011, 13, 1852.
- [12] Silica-SMAP and Silica-TRIP can be purchased from Wako Pure Chemical Industries. For their applications, see refs. [10b,c].
- [13] For the stereoselective synthesis of cyclopropyl- and cyclobutylboronates through copper-catalyzed reactions of allyl and homoallyl alcohol derivatives with 2, see: a) H. Ito, Y. Kosaka, K. Nonoyama, Y. Sasaki, M. Sawamura, Angew. Chem. 2008, 120, 7534; Angew. Chem. Int. Ed. 2008, 47, 7424; b) C. Zhong, S. Kunii, Y. Kosaka, M. Sawamura, H. Ito, J. Am. Chem. Soc. 2010, 132, 11440; c) H. Ito, T. Toyoda, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 5990.
- [14] See the Supporting Information for ligand effects.

4

[15] The reaction using HBpin instead of **2** under otherwise identical reaction conditions gave **3a** in 77 % yield.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FR These are not the final page numbers!

- [16] The presence or absence of an N–B interaction of the borylation products in solution was determined by ¹¹B NMR spectroscopic analysis (see the Supporting Information). See also: a) A. Ros, B. Estepa, R. López-Rodríguez, E. Álvarez, R. Fernández, J. M. Lassaletta, *Angew. Chem.* 2011, *123*, 11928; *Angew. Chem. Int. Ed.* 2011, *50*, 11724; b) L. Zhu, S. H. Shabbir, M. Gray, V. M. Lynch, S. Sorey, E. V. Anslyn, *J. Am. Chem. Soc.* 2006, *128*, 1222.
- [17] a) L. E. Zimmer, A. B. Charette, J. Am. Chem. Soc. 2009, 131, 15624;
 b) H. Y. Kim, L. Salvi, P. J. Carroll, P. J. Walsh, J. Am. Chem. Soc. 2009, 131, 954.
- [18] CCDC-1005180 (3 a'), CCDC-1005181 (3 j), CCDC-1005182 (5 b), and CCDC-1005183 (8 a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif. See the Supporting Information for details.
- [19] a) A. Ochida, K. Hara, H. Ito, M. Sawamura, Org. Lett. 2003, 5, 2671; b) A. Ochida, G. Hamasaka, Y. Yamauchi, S. Kawamorita, N. Oshima, K. Hara, H. Ohmiya, M. Sawamura, Organometallics 2008, 27, 5494.
- [20] The crude reaction mixture contained a significant amount of a byproduct (2-cyclopropyl-1-methyl-2,3-dihydro-1*H*-benzoimidazole, 39%) resulting from C=N reduction of the starting material (1e); however, the borylation product 3e did not undergo C=N reduction. Therefore, 3e could be isolated easily by bulb-to-bulb distillation.
- [21] a) H. C. Brown, S. M. Singh, M. V. Rangaishenvi, J. Org. Chem. 1986, 51, 3150; b) D. S. Matteson, Chem. Rev. 1989, 89, 1535.
- [22] D. J. Wallace, C. Chen, Tetrahedron Lett. 2002, 43, 6987.
- [23] D. Arlt, M. Jautelat, R. Lantzsch, Angew. Chem. 1981, 93, 719; Angew. Chem. Int. Ed. Engl. 1981, 20, 703.

Received: July 11, 2014 Published online on ■■ ■, 0000

COMMUNICATION

Organic Synthesis

R. Murakami, K. Tsunoda, T. Iwai, M. Sawamura*

Stereoselective C–H Borylations of Cyclopropanes and Cyclobutanes with Silica-Supported Monophosphane–Ir Catalysts

Heteroatom-directed C-H borylations

of small-ring carbocycles, such as cyclopropanes and cyclobutanes, were achieved with silica-supported monophosphane–Ir catalysts (see scheme). Borylation occurred at the C–H bonds located γ to the directing N or O atoms with exceptional *cis* stereoselectivity relative to the directing groups.