

Available online at www.sciencedirect.com

Physica C 412-414 (2004) 1174-1178

www.elsevier.com/locate/physc

Microstructure and superconductivity of MgB₂ synthesized by using Mg-based compound powders

A. Kikuchi *, Y. Iijima, Y. Yoshida, N. Banno, T. Takeuchi, K. Inoue

Superconducting Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Received 29 October 2003; accepted 25 November 2003 Available online 1 June 2004

Abstract

MgB₂ can be synthesized through a new route using Mg₂Cu instead of pure Mg. When the temperature is elevated to around the melting point of Mg₂Cu (568 °C), the T_c for Mg₂Cu/B Fe-sheathed wires increases rapidly to about 37.5 K. Mg₂Cu with its low melting point promotes the diffusion reaction to form a high T_c MgB₂ at low temperatures. A lot of second phases forms with small amounts of MgB₂ in the core of the wires. However, the transport J_c value, which is greater than 10⁵ A/cm² at 4.2 K in ambient fields, is rather high. Since the J_c value is estimated from a net-cross-sectional area of MgB₂ it is expectedly high. Moreover, Mg₂ Cu/B/metal-substrate layered composites were also prepared in this study. After a heat treatment at 600 °C for 10 h in a vacuum, a 50 µm thick MgB₂ diffusion layer forms with a high-density microstructure. Cu is released from Mg₂Cu, and collects on the surface of the diffusion layer. This behavior of Cu is similar to that of the bronzed process used for Nb₃ Sn practical conductors. © 2004 Elsevier B.V. All rights reserved.

PACS: 74.72.Yg; 74.62.-c Keywords: MgB₂ compound; Superconducting wire; Diffusion process; Thick layer

1. Introduction

The discovery that MgB₂ exhibits superconductivity [1] sparked new interests into the practical conductor research because of its high critical temperature T_c of 39 K, simple binary chemical composition and relatively low material costs.

In order to achieve a reaction between Mg and B powders during the fabrication of MgB_2 , the

E-mail address: kikuchi.akihiro@nims.go.jp (A. Kikuchi).

starting powder characteristics such as particle size and surface condition should be important. It is best to start with powders that have a fine particle size and are resistive to surface oxidization. In addition, it is desirable that the heat treatment be carried out at low temperatures because of the formation of fine MgB₂ grains. We investigated the synthesis of in situ MgB₂ wires and thick-film coated layers through the liquid–solid diffusion reaction between Mg₂Cu and amorphous B. Mg₂Cu is an intermetallic brittle compound so it is easy to fabricate Mg₂Cu fine particle powders by mechanical grinding. Moreover, Mg₂Cu has a lower melting point (568 °C) than that of pure Mg

^{*}Corresponding author. Tel.: +81-298-59-2353; fax: +81-298-59-2301.

^{0921-4534/\$ -} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.physc.2003.11.080

(650 °C), thus Mg_2Cu is expected to promote a diffusion reaction at low temperatures.

2. Experimental

Mg₂Cu ingot was made in an Ar atmosphere with a Tammann furnace. The ingot was then crushed and mechanically ground into a coarse powder of about 50 µm in average diameter. Phase identification was carried out with X-ray diffraction (XRD) analysis using Ni-filtered CuKa radiation for the coarse Mg₂Cu powder. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were also carried out for the coarse Mg₂Cu powder. Both TGA and DTA were carried out with an auto simultaneous instrument (Shimadzu: TGA-60H) in open air. The Mg₂Cu powder was mixed with amorphous B powder using an atomic ratio of Mg:B = 1:2. The average size of the amorphous B powder was a few tens of microns in diameter. The Mg₂Cu and B mixture was tightly packed into Fe tube (99.99% purity) with an outer diameter and inner diameter of 10 and 6 mm, respectively. Wire drawing was carried out using a grooved-roller and cassette-roller-dies. Precursor wires had a diameter of 0.72 mm. Normal precursor wires using pure Mg and amorphous B powders were also made for comparison. For the other study, a thick MgB_2 layer on a metal substrate was fabricated. Amorphous B layer (200 µm thick) was formed on the pure Nb substratetape by using a plasma spraying technique. Then, Mg₂Cu slurry using ethyl alcohol as a solvent was coated on the surface of the plasma-sprayed amorphous B layer creating Mg₂Cu/B/metal-substrate layered composites. Both the PIT Fesheathed wires and layered composites were heated to between 550 and 650 °C in a dynamic vacuum under a pressure of less than 10^{-3} Pa.

After heat treatment, T_c and transport critical current I_c (4.2 K) were measured by a DC fourprobe method. I_c (4.2 K) measurements were made under magnetic fields up to 10 T using a superconducting magnet. J_c for the PIT Fe-sheathed wires is defined as the I_c divided by a total crosssectional area of the powder filled core. Magnetic transition curves were also measured using a SQUID magnetometer (Quantum Design: MPMS-5). X-ray diffraction (XRD) analysis for the phase identification was made for both specimens, and microstructures were observed using a field-emission scanning electron microscope (FE-SEM). Elemental mapping and quantitative composition analysis were carried out with an energy dispersive X-ray (EDX) spectrometer.

3. Results and discussion

Fig. 1 shows the TGA–DTA results for Mg₂Cu and pure Mg. The Mg₂Cu melting point (568 °C) is lower than that of pure Mg (650 °C). Both weight ratios, Mg₂Cu and pure Mg, increase with increasing temperature, which indicates that both powders oxidize at high temperatures. However, the weight ratio for Mg₂Cu is smaller than that of pure Mg, therefore, Mg₂Cu should be more resistive to oxidation compared to pure Mg.

Fig. 2 shows the relationship between T_c versus temperature for Mg₂Cu/B/Fe and Mg/B/Fe wires. When the temperature is elevated to around the melting point of Mg₂Cu (568 °C), the T_c for Mg₂Cu/B Fe-sheathed wire specimens rapidly increased and reached about 37.5 K due to the formation of the MgB₂ phase through the liquid (Mg₂Cu)-solid (B) diffusion reaction. The T_c values are comparable to the reported values for

Fig. 1. Comparison of TGA–DTA results for Mg₂Cu and pure Mg. Solid circles and triangles represent increasing weight ratios calculated from TGA data for the Mg₂Cu and pure Mg, respectively.

Fig. 2. T_c versus heating temperature for Mg₂Cu/B (open circle) and Mg/B (solid circle) Fe-sheathed wires. Heating time is fixed for 10 h.

 MgB_2 single crystal [2]. This result indicates that the MgB_2 superconducting phase can be synthesized through a new route using Mg_2Cu instead of pure Mg. At the same temperatures, MgB_2 also formed in the Mg/B Fe-sheathed wires. In this case, MgB_2 was synthesized by a solid (Mg)–solid (B) diffusion reaction through rather slower reaction.

Fig. 3(a), (b) and (c) show XRD patterns for Mg₂Cu/B Fe-sheathed wires reacted at 600 °C for 10 min, 30 min and 1 h, respectively. As the reactions progressed the Mg₂Cu decomposed and released Mg, thus changing the phase composition into MgCu₂. The Mg that was released reacted with amorphous B and formed the MgB₂ superconducting phases. These chemical reactions occurred within 10 min at 600 °C. No diffraction peaks for MgO were observed in Fig. 3. The intensity of diffraction peaks for MgB₂ became stronger with increasing heating time, however the volume fraction of MgB2 was still small and a lot of second phases such as MgCu₂ remained in the core even though the specimens were heat treatment for 10 h. According to SEM observation, the second phases are as large as a few tens of microns in diameter and may become obstacles to the superconducting current flow. The transport current

Fig. 3. XRD patterns of the Mg₂Cu/B Fe-sheathed wire reacted at 600 °C as a function of heating time. (a), (b) and (c) are for wires reacted at 10 min, 30 min and 1 h, respectively.

must flow like a percolation due to the weak linkage between MgB₂ grains. However, Mg₂Cu/B Fe-sheathed wire that reacted at 600 °C for 1 h shows a high transport J_c which was greater than 10⁵ A/cm² at 4.2 K in a ambient field as shown in Fig. 4. The J_c (4.2 K)-B curve for the Mg₂Cu/B Fesheathed wire is comparable with a result reported by Goldacker et al. [3]. As expected, the J_c of the present Mg₂Cu/B wire should be very high since it is estimated from the net-cross-sectional area of MgB₂. An improvement in J_c for the PIT in situ wires using Mg₂Cu is promising if the volume fraction of second phases can be reduced by optimizing wire-fabrication conditions, such as the size of starting powders and the powder mixture ratio, etc. When fine second phase particles are dispersed in the wire core, it can also be expected that they will behave as effective flux pinning centers.

Fig. 5 shows the SEM image and EDX element mappings of the cross-section of Mg₂Cu/B/Nb tape-substrate composite reacted at 600 °C for 10 h in a dynamic vacuum. The diffusion layer that formed near the surface of the specimen was about 50 μ m thick and showed a high-density microstructure. On the other hand, the plasma-sprayed

Fig. 4. $J_c(4.2 \text{ K})$ -B curves for Mg₂Cu/B/Fe wire reacted at 600 °C for 1 h. Data reported by Goldacker et al. is attached for a comparison.

B layer shows porous and granular microstructures. When the Mg_2Cu on the plasma-splayed B layer melted, liquid Mg_2Cu easily infiltrated into spaces among amorphous B particles. However, most of the Cu collected on the surface of the diffusion layer with heat treatment. This behavior is similar to that of the bronze process used for Nb₃ Sn practical conductors. Its magnetic superconducting transition measured by SQUID appeared at about 38 K. The thick, high density MgB_2 layer may be promising for applications involving magnetic-shielding tubes or in the superconducting cavity.

4. Conclusions

Mg₂Cu exhibits a stronger resistivity to oxidation than that of pure Mg resulting in a reduced amount of MgO contamination. Mg₂Cu, which has a low melting point of 568 °C promoted the formation of MgB₂. Mg₂Cu changed into MgCu₂ with the decomposition and release of pure Mg. The Mg that was released reacted with B and formed MgB₂ superconducting phase by a liquid(Mg₂Cu)–solid(B) reaction at low temperatures. Although a lot of second phases such as Mg₂Cu formed in the core of the Mg₂Cu/B Fesheathed wires, its transport J_c exhibited a rather high value, which was over 10⁵ A/cm² at 4.2 K in ambient fields. J_c estimated from the MgB₂

Fig. 5. SEM image and EDX element mappings of the cross-section of $Mg_2Cu/B/Nb$ tape-substrate composite reacted at 600 °C for 10 h in a dynamic vacuum.

net-cross-sectional area should be very high. For the other study, the Mg₂Cu/amorphous B/metalsubstrate layered composite that was prepared after a heat treatment at 600 °C for 10 h in a vacuum, formed a 50 μ m thick MgB₂ diffusion layer with a high density microstructure. Cu was released from Mg₂Cu, and collected on the outermost surface. This characteristic is similar to that of bronze processing for Nb₃ Sn practical conductors. A thick, dense MgB₂ layer may be promising for magnetic shielding tube or superconducting cavity applications.

Acknowledgements

The authors would like to thank Dr. A. Matsumoto of NIMS for his assistance with the 13 T superconducting magnet during J_c -B measurements. A part of this study was financially supported by the Industrial Technology Research Grant Program from New Energy and Industrial Technology Organization (NEDO) of Japan, and by the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology.

References

- N. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410 (2001) 63.
- [2] M. Xu, H. Kitazawa, Y. Takano, J. Ye, K. Nishida, H. Abe, A. Matsushita, N. Tsuji, G. Kido, Appl. Phys. Lett. 79 (2001) 2779.
- [3] W. Goldacker, S.I. Schlachter, S. Zimmer, H. Reiner, Supercond. Sci. Technol. 14 (2001) 787.