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In the field of organic materials science, the design and
characterization of polycyclic aromatic hydrocarbons
(PAHs), which exhibit superior electronic, optical, and/or
self-assembling properties, has been studied intensely.[1]

Hence, efficient synthetic methods leading to functionalized
PAHs are expected to assist the rapid developments of PAH-
based functional materials.[2] The transition-metal-catalyzed
cross-coupling reactions of organometals with organic halides
are an efficient method for regio- and stereospecific forma-
tion of C(sp2)�C(sp2) bond.[3] As a result, double cross-
coupling reactions of organodimetallic reagents and dihalides
would provide a straightforward and promising method for
designing PAHs if the annulation reaction takes place
efficiently in preference to the possible oligomerization and/
or polymerization. However, the examples of such annula-
tions are limited.[4]

Herein, we report that the palladium-catalyzed double
cross-coupling reaction of 9-stannafluorenes 1 with 1,2-
dihaloarenes 2 serves as a new entry to aromatic annulation
and provides a variety of triply annulated benzene derivatives
3 in good to excellent yields [Eq. (1)]. Moreover, the
approach is applicable to the synthesis of twisted PAHs[5]

such as phenanthro[9,10-b]triphenylenes and diphenan-
thro[9,10-b :9’,10’-d]thiophene through double annulation
with tetrabromoarenes, and the reaction can be extended to
annulation with 1,1-dibromoalkenes leading to the produc-
tion of dibenzofulvenes.

Our research group has recently demonstrated that the
palladium-catalyzed double cross-coupling reaction of vic-
bis(pinacolatoboryl)alkenes and -phenanthrenes is a versatile
synthetic method for the preparation of functionalized
phenanthrenes and dibenzo[g,p]chrycenes.[4i] As illustrated
in Scheme 1, the annulation reaction can be categorized as the

coupling of 1,2-dimetal reagents 1,2-M2 and 1,4-dihalogen-
ated compounds 1,4-X2 (mode A). To expand the synthetic
utility of palladium-catalyzed aromatic annulation using
dimetal reagents, we were interested in the combination of
1,2-dihalogenated compounds 1,2-X2 and 1,4-dimetal
reagents 1,4-M2 (umpolung of mode A) as an alternative
approach (mode B). Considering that 1,4-M2 can be readily
prepared from the corresponding 1,4-X2 and, in particular, the
structural variation of available 1,2-X2 is much broader than
that of 1,2-M2: thus mode B-type annulation could greatly
expand the repertoire of accessible PAHs. However, the
precedents of mode B-type annulation were limited to only
the reactions of 2,2’-diborylbiphenyls,[4a] zirconacyclopenta-
dienes,[4b–d] [Zr(2,2’-biphenyldilyl)3][Li·(THF)4]2,

[4e–g] 2,2’-dis-
tannylbinaphthyl,[4h] and 1,4-dilithiobutadienes[4j] with 1,2-
dihalobenzenes, and there is still much room for improvement
in the scope of the substrates and reagents, yields, and
reaction conditions.

We focused our attention on 9-stannafluorene derivatives
as equivalents of 1,4-dimetal reagents, which are available
from the corresponding 2,2’-dihalobiphenyls and are often
used as precursors of 9-borafluorenes[6] but never employed
for the synthesis of PAHs.[7] We anticipated that the cyclic
form would have a beneficial effect on the reactivity toward
the first coupling of the annulation owing to the strain.[8] In
addition, the use of 9-stannafluorenes is favorable for low-
ering metal waste as compared with the corresponding 2,2’-
distannylbiphenyls.

Scheme 1. Modes of [4+2]-type aromatic annulation using dimetal
reagents and dihalogenated compounds.
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Initially, we chose 9,9-dimethyl-9-stannafluorene (1 a) and
1,2-dibromobenzene (2a) as the coupling partners. After
conducting extensive experiments,[9] we found that the
expected product triphenylene (3aa) was isolated in 90%
yield when the reaction was conducted in the presence of
[Pd(PtBu3)2] (5 mol %) in THF at 60 8C (Table 1, entry 1).[10]

No formation of oligomeric or polymeric by-products was
observed. The addition of CsF or CuI was found to be less
effective for the annulation reaction (Table 1, entries 2 and 3),
whereas using these two additives simultaneously resulted in
far from satisfactory results (Table 1, entry 4). This outcome
sharply contrasts to those of Baldwin and co-workers, who
reported the palladium-catalyzed reaction of arylstannanes
with aryl halides.[11] The presence of CsF was essential in the
case of 1,2-diiodobenzene (2a’; compare Table 1, entries 5
and 6), whereas the reaction with dichlorobenzene (2 a’’) was
unsuccessful both in the absence and presence of CsF
(Table 1, entries 7 and 8). Dibutylstannafluorene 1b under-
went the annulation reaction efficiently when CsF was added
as in the case of 2 a (compare Table 1, entries 9 and 10).
Bulkier atoms/substituents such as iodine and the butyl group
appeared to slow down the transmetalation process, while the
addition of fluorides probably accelerates the transmetalation
process by generating stannates.[12]

The scope of the present annulation reaction is summar-
ized in Table 2. Substituted dibromobenzenes 2b–2e reacted
with 1a to produce triphenylenes 3ab–3ae in high to excellent
yields (Table 2, entries 1–4). Both electron-withdrawing and
-donating substituents on 2 were tolerated. The annulation
reaction carried out with dibromothiophenes 2 f and 2g
proceeded smoothly at the 2,3- and 3,4-positions to produce
benzo[b]phenanthro[9,10-d]thiophene (3af) and phenanthro-
[9,10-c]thiophene (3ag) in 78–98% yield (Table 2, entries 5–
7). Thus, the fusion mode of a thiophene ring was easily

Table 1: Palladium-catalyzed annulation of 1a–1b with 2a–2c leading to
3aa.[a]

Entry 1 2 Additive (equiv) 3 Yield [%][b]

1 1a (R = Me) 2a (X = Br) – 87 (90)[c]

2 1a 2a CsF (5) 84
3 1a 2a CuI (0.1) 68
4 1a 2a CsF (5), CuI (0.1) 8
5 1a 2a’ (X = I) – 0
6 1a 2a’ CsF (5) 87
7 1a 2a’’ (X =Cl) – 0
8 1a 2a’’ CsF (5) 21
9 1b (R = Bu) 2a – 0
10 1b 2a CsF (5) 90

[a] Reaction conditions: 1 (0.050 mmol), 2 (0.050 mmol), [Pd(PtBu3)2]
(2.5 mmol, 5 mol%), additive as shown in Table, THF, 60 8C. [b] Yield
based on 1H NMR spectroscopy. [c] The value in parentheses is the yield
of the isolated product.

Table 2: Pd-catalyzed annulation of 1 with dibromoarenes 2.[a]

Entry 1 2 3 (yield [%])[b]

1 1a 2b (R5 = CF3;
R6 = H)

3ab (99)

2 1a 2c (R5, R6 = F) 3ac (85)
3[c] 1a 2d (R5 = OMe;

R6 = H)
3ad (95)

4[d] 1a 2e (R5, R6 = Me) 3ae (85)

5 1a 2 f 3af (78)
6[d] 1a 2 f 3af (80)

7 1a 2g 3ag (98)

8 1a 2h 3ah (71)

9 1c (R1,R4 = H;
R2,R3 = OMe)

2a (R5,R6 = H) 3ca (99)

10 1d (R1,R2,R3,R4 = Me) 2a (R5,R6 = H) 3da (77)
11 1e (R1,R2 = OMe;

R3,R4 = H)
2c (R5,R6 = F) 3ec (97)

12 1 f 2a 3 fa (74)

13 1a (R2 = H) 2 i
(R7 = OnC10H21)

3ai (80)

14 1g (R2 = OnC6H13) 2 j (R7 = H) 3gj (66)

15 1a 2k 3ak (85)

[a] Reaction conditions: 1 (1.0 mmol), 2 (1.0 mmol), [Pd(PtBu3)2]
(50 mmol, 5 mol%), THF, 60 8C, 12 h. [b] Yield of isolated product. [c] 1
(1.0 mmol), 2 (1.0 mmol), [Pd(PtBu3)2] (50 mmol, 5 mol%), CsF (5 mmol),
1,4-dioxane, 130 8C, 12 h. [d] CsF (5 mmol) was used as the additive.
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controlled. Dibenzo[f,h]quinoline (3 ah) was obtained in 71%
yield from 1a and 2,3-dibromopyridine (2h ; Table 2,
entry 8).[13] Substituted 9-stannafluorenes 1c–1e also partici-
pated in the annulation reaction to give symmetrical triphe-
nylenes 3ca and 3da as well as an unsymmetrical one 3ec in
high to excellent yields (Table 2, entries 9–11). Dithienostan-
nole 1 f also underwent the double cross-coupling reaction as
the equivalent of 2,2’-dimetalbithiophene with 2a to produce
3 fa in 74% yield (Table 2, entry 12). Moreover, a double
annulation reaction that allows the facile synthesis of twisted
PAHs was performed by using tetrabromoarenes as an
electrophile (Table 2, entries 13–15). Thus, 1,2,4,5-tetrabro-
mobenzenes 2 i and 2 j and 2,3,4,5-tetrabromothiophene (2k)
were coupled with two equivalents of 1 to produce
phenanthro[9,10-b]triphenylenes 3ai and 3gj,[4e] and diphe-
nanthro[9,10-b :9’,10’-d]thiophene 3ak,[14] respectively, in
good to high yields. The present annulation reaction is, to
the best of our knowledge, the first demonstration of 1 to be
utilized as 2,2’-dimetalobiaryl equivalents for C�C bond-
forming annulation.

To gain understanding of the characteristic reactivity
patterns of 1, we subjected 2,2’-bis(trimethylstannyl)biphenyl
(4) and dimethyldiphenylstannane (5) to the reaction con-
ditions ([Pd(PtBu3)2], THF, 60 8C, 12 h) that were optimized
for 1, in the presence of 2a. However, no coupling reaction
took place and with only quantitative recovery of the stannyl
reagents in both cases (Scheme 2).[15] These results clearly

indicate that 1 is much more reactive than 4 or 5. Meanwhile,
the Pd0 catalyst which is regenerated in the cross-coupling
reaction of 1,2-dibromobenzenes and arylboronic acids with
the aid of [Pd2(dba)3]/PtBu3 was reported to undergo oxida-
tive addition exclusively with the remaining C�Br bond of the
initial product over the diffusion process.[16] Therefore, the
success of the present annulation reaction may be ascribed to
both the high reactivity of 1, induced by the cyclic structure,
and the unique behavior of 2 with regard to the second
oxidative addition process.

Furthermore, 1,1-dibromoalkenes 7a and 7b were also
found to undergo a double cross-coupling reaction with 1
(Scheme 3). Although the addition of CsF at a higher reaction

temperature (in the case of 7a) was necessary to promote the
formation of a five-membered ring, the expected products
dibenzofulvenes 8a[17] and 8b[18] were isolated in 65% and
87% yield, respectively.

In summary, we have developed a palladium-catalyzed
double cross-coupling reactions of 9-stannafluorenes and
dithienostannole with 1,2-dihaloarenes and 1,1-dibromoal-
kenes, by which diverse polycyclic aromatic hydrocarbons can
be synthesized in good to excellent yields. We have also
disclosed that the reactivity of 9,9-dimethyl-9-stannafluorene
toward this palladium-catalyzed cross-coupling reaction is
much higher than that of 2,2’-bis(trimethylstannyl)biphenyl.
Further studies on the elucidation of the mechanism and the
development of functional organic materials using the present
annulation reaction are in progress.
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