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The influence of stereochemistry on anion binding and transport

Louise E. Karagiannidis, Jennifer R. Hiscock and Philip A. Gale*

School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK

(Received 1 May 2013; final version received 13 May 2013)

Bis(thio)urea receptors (1–4) based on 1,2-bisaminocyclohexane are shown to function as transmembrane anion antiporters.

The results show that cis-receptors have a greater propensity for anion transport than analogous trans-receptors. Stability

constants using 1H NMR techniques highlight the significance of stereoisomerism on anion binding in solution, as cis-

receptors bind anions more strongly than trans-receptors.
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Introduction

The transport of anions across lipid bilayers is important to

many biological processes (1), and is often mediated by

proteins embedded within the lipid bilayer of cells, which

form ion channels. Genetic mutation of these proteins can

cause them to malfunction, leading to various diseases,

including cystic fibrosis (2), cardiac disorders, epilepsy

and Bartter syndrome (3). For this reason, there is an ever-

growing interest in the development of synthetic small

molecules, which can bind or encapsulate ions for

transport across lipid bilayers. These ‘carriers’ have

potential to be developed as therapeutic replacements for

the malfunctioning proteins that form ion channels (1).

Previous work within the Gale group has developed

structurally simple transmembrane anion receptors based

on the ortho-phenylenediamine bis-urea scaffold, which

exhibit transport activity across 1-palmitoyl-2-oleoylpho-

sphatidylcholine (POPC) bilayers at receptor to lipid ratios

as low as 1:1,000,000 (4). These receptors have shown to

bind chloride anions with stability constants of ,10–

80 M21 and bicarbonate anions with stability constants of

roughly 800–4000 M21 (in DMSO-d6/0.5% water at

298 K). The addition of an electron-withdrawing group to

the central core or peripheral phenyl groups of such

receptors results in increased anion affinity due to the

increased acidity of the H-bond donor NZH groups. We

postulated that the halogenation of the central core phenyl

group in such receptors also increases the acidity of the

phenylene CZH groups, resulting in strengthened

intramolecular H-bonds and pre-organisation of the

receptors for binding anions (5).

Fabbrizzi and co-workers investigated the binding of

enantiomeric forms R,R and S,S of an ortho-cyclohex-

anediamine-based bis-urea receptor with para-nitrophenyl

side groups to a variety of anions (6). They demonstrated

that a chiral discriminating effect does exist between

enantiomeric receptors when binding chiral guests, yet no

such effect is observed on binding achiral anions. In fact,

Odago et al. reported the use of a racemic mix of the

thiourea equivalent of this receptor for the optical sensing

of cyanide anions (7).

To investigate the effect of stereochemistry on

anion binding and transport, a series of cis- and trans-

ortho-cyclohexanediamine-based bis-(thio)ureas with

bis-trifluoromethylphenyl side groups were synthesised

(Figure 1). These four receptors were investigated for their

ability to transport chloride and bicarbonate anions across

bilayers of POPC, as well as their binding affinity with a

variety of different anions. U-tube experiments were

carried out to help determine the mode of anion transport.

Nagasawa and co-workers have previously reported

urea 3 as a catalyst for the hetero-Michael addition

reaction between pyrrolidine and g-crotonolactone, in

which 3 exhibits a low chiral induction effect on the final

product (8). In addition, thiourea 4 was shown to catalyse

the aza-Henry reaction of a Boc-protected imine, again

with a slight asymmetric induction (9). Receptor 2 has also

been previously reported (10).

Experimental

Synthesis

1,1 0-((1R,2S)-Cyclohexane-1,2-diyl)bis(3-(3,5-

bis(trifluoromethyl)phenyl)urea) (1)

3,5-Bis(trifluoromethyl)phenyl isocyanate (0.62 mL,

3.6mmol) and cis-1,2-diaminocyclohexane (0.21 mL,

1.8 mmol) were dissolved in dichloromethane (DCM)

(40 mL) and stirred for 6.5 h at rt under a nitrogen

atmosphere. A white precipitate was isolated by filtration

in a 71% yield after washing with excess DCM. 1H NMR

(DMSO-d6, 300 MHz): d ¼ 1.30–1.75 (m, 8H), 3.91 (br s,
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2H), 6.40 (d, 2H, J ¼ 6.0 Hz), 7.52 (s, 2H), 7.99 (s, 4H),

9.16 (s, 2H). 13C{1H} NMR (DMSO-d6, 100 MHz):

d ¼ 21.7 (CH2), 28.6 (CH2), 48.7 (CH), 113.4 (Ar CH),

117.1 (Ar CH), 123.3 (q, CF3, J ¼ 270.9 Hz), 130.6 (q, Ar

CZCF3, J ¼ 32.2 Hz), 142.3 (Ar C), 154.4 (CvO).
19F{1H} NMR (DMSO-d6, 282 MHz): d ¼ 61.86. LR-MS

ES2 (m/z): 623 [M 2 H]2. HR-MS ESþ (m/z): Act.

647.1293 [M þ Na]þ. Calcd 647.1287 [M þ Na]þ, err.

(ppm) 20.9 m.p. (8C): 275.7–275.9.

1,1 0-((1R,2S)-Cyclohexane-1,2-diyl)bis(3-(3,5-

bis(trifluoromethyl)phenyl)thiourea) (2)

3,5-Bis(trifluoromethyl)phenyl isothiocyanate (0.66mL,

3.6 mmol) and cis-1,2-diaminocyclohexane (0.21 mL,

1.8 mmol) were dissolved in DCM (40 mL) and stirred for

6.5 h at rt under a nitrogen atmosphere. A white precipitate

was isolated by filtration in 78% yield after washing with

excess DCM. 1H NMR (DMSO-d6, 300 MHz): d ¼ 1.40–

1.85 (m, 8H), 4.69 (br s, 2H), 7.73 (br s, 2H), 7.99 (d, 2H,

J ¼ 6.0 Hz), 8.29 (br s, 4H), 10.13 (br s, 2H). 13C{1H}

NMR (DMSO-d6, 100 MHz): d ¼ 21.9 (CH2), 27.8 (CH2),

52.5 (CH), 116.2 (Ar CH), 121.7 (Ar CH), 125.0 (q, CF3,

J ¼ 272.49 Hz), 129.9 (q, Ar CZCF3, J ¼ 31.2 Hz), 141.7

(Ar C), 180.3 (CvO). 19F{1H} NMR (DMSO-d6,

282 MHz): d ¼ 61.45. LR-MS ES2 (m/z): 655 [M 2 H]2.

HR-MS ESþ (m/z): Act. 679.0832 [M þ Na]þ. Calcd

679.0830 [M þ Na]þ, err. (ppm) 20.3 m.p. (8C): 189.8–

189.9.

1,1 0-((1S,2S)-Cyclohexane-1,2-diyl)bis(3-(3,5-

bis(trifluoromethyl)phenyl)urea) (3)

3,5-Bis(trifluoromethyl)phenyl isocyanate (0.62 mL,

3.6 mmol) and (^ )-trans-1,2-diaminocyclohexane

(0.21 mL, 1.8 mmol) were dissolved in DCM (40 mL)

and stirred for 72 h at rt under a nitrogen atmosphere. A

white precipitate was isolated by filtration in a 96%

yield after washing with excess DCM. 1H NMR

(DMSO-d6, 300 MHz): d ¼ 1.30 (br s, 4H), 1.70 (br s,

2H), 1.87 (br s, 2H), 3.48 (br s, 2H), 6.24 (d, 2H,

J ¼ 8.29 Hz), 7.37 (s, 2H), 7.90 (s, 4H), 9.211 (s, 2H).
13C{1H} NMR (DMSO-d6, 75 MHz): d ¼ 24.6 (CH2),

32.2 (CH2), 53.7 (CH), 113.2 (Ar CH), 116.8 (Ar CH),

123.2 (q, CF3, J ¼ 271.3 Hz), 130.4 (q, Ar CZCF3,

J ¼ 31.9), 142.3 (Ar C), 155.0 (CvO). 19F{1H} NMR

(DMSO-d6, 282 MHz): d ¼ 61.72. LR-MS ESþ (m/z):

625 [M þ H]þ. HR-MS ESþ (m/z): Act. 647.1289

[M þ Na]þ. Calcd 647.1287 [M þ Na]þ, err. (ppm)

20.3 m.p. (8C): 305.3–305.5.

1,1 0-((1S,2S)-Cyclohexane-1,2-diyl)bis(3-(3,5-

bis(trifluoromethyl)phenyl)thiourea) (4)

3,5-Bis(trifluoromethyl)phenyl isothiocyanate (0.66 mL,

3.6 mmol) and (^ ) - trans - 1,2 - diaminocyclohexane

(0.21 mL, 1.8 mmol) were dissolved in DCM (40 mL)

and stirred for 72 h at rt under a nitrogen atmosphere. A

white solid was collected and triturated in DCM (40 mL)

at 408C for 2 h. The precipitate was isolated by filtration

in a 98% yield after washing with excess DCM. 1H NMR

(DMSO-d6, 300 MHz): d ¼ 1.30 (br s, 4H), 1.71 (br s,

2H), 2.18 (br s, 2H), 4.33 (br s, 2H), 7.70 (s, 2H), 8.17 (s,

6H), 10.14 (br s, 2H). 13C{1H} NMR (DMSO-d6,

75 MHz): d ¼ 24.2 (CH2), 31.2 (CH2), 56.8 (CH), 116.2

(Ar CH), 122.0 (Ar CH), 123.2 (q, CF3, J ¼ 271.4 Hz),

130.0 (q, Ar CZCF3, J ¼ 33.0 Hz), 141.6 (Ar C), 180.1

(CvO). 19F{1H} NMR (DMSO-d6, 282 MHz):

d ¼ 61.48. LR-MS ESþ (m/z): 657 [M þ H]þ. HR-MS

ESþ (m/z): Act. 679.0825 [M þ Na]þ. Calcd 679.0830

[M þ Na]þ, err. (ppm) +0.8 m.p. (8C): 199.9–200.1.

Figure 1. ortho-Cyclohexanediamine-based bis-(thio)ureas of 1–4.

L.E. Karagiannidis et al.2
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Results and discussion

Anion-binding studies were carried out for receptors 1–4 to

determine their binding affinity and binding stoichiometry

on a range of different anions. Stability constants for the

interaction of receptors 1–4 with a variety of anions were

determined by fitting the data obtained from 1H NMR

titrations to binding isotherms, using WinEQNMR2 (11).

The stability constants were determined by following the

shift of NZH protons. In many cases, the resonance of the

more deshielded NZH protons (i.e. those closest to the

aromatic ring systems) was subject to peak broadening upon

addition of the guest anion. However, the downfield shift of

both NZH resonances at the beginning of the titrations does

indicate that all four NZH groups are involved in H-

bonding to the anions. Amendola et al. (6) showed that an

analogous cyclohexane-based bis-urea receptor binds a

hydrogen-bonded dihydrogen phosphate dimer in the solid

state, whereas Costero et al. (12) showed that cyclohexane-

based bis-thioureas bind dicarboxylate anions in a 1:2

receptor:anion ratio (by UV–vis in DMSO). The results of

the anion-binding studies are shown in Table 1.

Receptor 1 was found to bind all tested anionic guests

in a 1:2 receptor:anion stoichiometry. The first stability

constant associated with the binding of chloride, acetate

and benzoate is high (.104 M21), indicating a strong

affinity for the first equivalent on anion. For the remaining

anions (bicarbonate, hydrogen sulphate, dihydrogen

phosphate and sulphate) the calculated K1 values were in

a lower order of magnitude (.103 M21), but still indicate

a strong affinity for the anions. For each of the anions

mentioned (excluding sulphate), the second stability

constant is significantly lower than the first, showing the

decreased affinity of receptor 1 for a second equivalent of

anion. This is most likely a result of the charged anions

repelling each other as well as steric restraints around the

binding site.

The 1H NMR titration data between the same set of

anions and receptor 2 were also fitted to a 1:2

receptor:anion-binding isotherm, with the exception of

the data for the titration with bicarbonate, which showed

only a small downfield shift in NZH resonance position

upon addition of anion. This suggested that only a very

weak binding event was taking place, hence it was only

possible to fit the data to a 1:1 receptor:anion-binding

isotherm. The remaining results for 2 show trends similar

to those observed for 1 with each of the receptor–anion

interactions (excluding that with sulphate) having a K1

value that is greater than the K2 value.

For 1H NMR titrations of receptors 3 and 4 with the

series of anions, it was not possible to fit all the data-sets

using WinEQNMR2. Some of the titrations showed peak

broadening and peak slitting of the NZH and aromatic

CZH peaks upon addition of the anions, which could be

attributed to secondary equilibria processes in solution. Of

the results that were fitted to a 1:2 or 1:1 receptor:anion-

binding isotherm, trends similar to those of 1 and 2 were

observed. For all 1:2 receptor:anion-binding interactions

investigated for receptors 3 and 4, the first stability

constant, K1, is greater than the second stability constant,

K2, indicating a decreased affinity of the receptors to bind

a second equivalent of anion.

Receptors 1–4 were investigated for anion transport

properties using Hill analysis techniques (13). Chloride

efflux from POPC vesicles was monitored upon addition

of varying loadings of receptor, for both Cl2=NO2
3 and

Cl2=HCO2
3 antiport processes, using a chloride ion

selective electrode (ISE). Figure 2 shows the percentage of

chloride efflux upon addition of 2 mol% receptor with

Table 1. Stability constants K1 and K2 (M21) for receptors 1–4, measured in DMSO-d6/H2O 0.5% at 298 K.

Receptor 1a Receptor 2a Receptor 3a Receptor 4a

Anion K1 K2 K1 K2 K1 K2 K1 K2

Cl2 .104 70 3970 70 ,10 ,10 e e

HCO2
3
b 5490 200 ,10d N/A 1080c 40c f f

HSO2
4 6090 20 .104 60 ,10 ,10 ,10d N/A

CH3COO
2 .104 40 .104 10c .104 50 f,g f,g

C6H5COO
2 .104 160 .104 70 .104 50 .104 100

H2PO2
4 2930 330 7130 110 e e f,h f,h

SO22
4 5280 .104 .104 .104 .104 10 g,h g,h

Notes: Guest anions were added as tetrabutylammonium salts, unless otherwise stated, and the stability constants were determined by 1H NMR titrations
following the NZH resonance found closest to the aromatic region of the spectra. All data-sets were fitted to a 1:2 receptor:anion-binding isotherm using
WinEQNMR2, unless otherwise indicated.
a Errors within 15% unless otherwise stated.
b Added as the tetraethylammonium salt.
c Error . 15%.
dData fitted to a 1:1 binding isotherm.
e Titration curves slightly plateau at 1 equiv. of anion, so data cannot be fitted to a binding isotherm.
f Peak broadening upon addition of anionic guest.
g Peak hidden by aromatic CZH peaks.
h Peak splitting upon addition of anionic guest.

Supramolecular Chemistry 3

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

em
ph

is
] 

at
 0

6:
25

 3
0 

Se
pt

em
be

r 
20

13
 



respect to lipid for the Cl2=NO2
3 antiport test. It can be

seen that thioureas 2 and 4 have an increased transport

activity relative to the analogous ureas 1 and 3 (14) and

that interestingly the cis-receptors outperform the trans-

receptors.

The same trends are present in the Cl2=HCO2
3 antiport

results, with receptors 1 and 4 showing almost identical

transport activity (Figure 3).

Results of the Hill analyses are shown in Table 2.

The EC50 values for the Cl2=NO2
3 and Cl2=HCO2

3

tests show similar trends, indicating the thiourea receptors

to be more efficient antiporters than the analogous ureas

(14), and show the most active transporter to be receptor 2,

with an EC50 of 0.61 mol% for Cl2=NO2
3 antiport and

1.47 mol% for Cl2=HCO2
3 antiport. The Hill coefficient

values support a mobile carrier transport mechanism for all

receptors.

This trend in transport efficiency may be explained by

considering the spatial arrangements of the cis- versus

trans-receptors. The hydrogen bond donor NZH groups of

the cis-receptors (1 and 2) are more favourably orientated

in an axial–equatorial arrangement, to bind to a guest

molecule (Figure 4). They are closer together and in better

spatial agreement to direct four hydrogen bonds towards

the guest species than analogous trans-receptors (3 and 4).

This is especially true when compared with the axial–

axial conformer of the trans-receptor, where the two arms

of the receptor point in opposite directions. The difference

in spatial arrangement likely makes it more difficult for the

trans-receptors to shield the charged guest from the

lipophilic interior of the POPC bilayer. This makes it

more difficult for the trans-receptors to partition into the

phospholipid bilayer, resulting in decreased transport

efficiency with respect to that of the cis-receptors.

U-tube experiments, as described in the electronic

supplementary information (ESI), were used to probe the

mode of anion transport. The results of the U-tube

experiment show an increase in the chloride concentration

of the sodium nitrate receiver solutions over time, indicating

that all the receptors function as mobile carriers. The large

volume, and hence distance separation, of the two aqueous

Figure 3. Chloride efflux as a function of time, promoted by the
addition of receptors 1 and 2 (2 mol% with respect to lipid) from
unilamellar POPC vesicles containing 451 mM NaCl buffered to
pH 7.2 with 20 mM sodium phosphate salts. The vesicles were
dispersed in the external solution containing 150 mM Na2SO4

buffered to pH 7.2 with 20 mM sodium phosphate salts. The
receptor was loaded as a DMSO solution at 0 s, and a spike of
NaHCO3 (33 mM) added at 120 s. At the end of the experiment,
the vesicles were lysed to calibrate the ISE to 100% chloride
efflux. Each point represents the average of three repeats.

Figure 2. Chloride efflux as a function of time, promoted by the
addition of receptors 1–4 (2 mol% with respect to lipid) from
unilamellar POPC vesicles containing 489 mM NaCl buffered to
pH 7.2 with 5 mM sodium phosphate salts. The vesicles were
dispersed in 489 mM NaNO3 buffered to pH 7.2 with 5 mM
sodium phosphate salts. The receptor was loaded as a DMSO
solution at 0 s. At the end of the experiment, the vesicles were
lysed to calibrate the ISE to 100% chloride efflux. Each point
represents the average of three repeats.

Table 2. EC50 values of 1–4 for the release of chloride from
POPC vesicles in Cl2=NO2

3 and Cl2=HCO2
3 antiport systems at

270 and 390 s, respectively.

Receptor
EC50

a, 270 s
(Cl2=NO2

3 )
nb

(Cl2=NO2
3 )

EC50
a, 390 s

(Cl2=HCO2
3 )

nb

(Cl2=HCO2
3 )

1 1.74 1.20 7.04 1.75
2 0.61 1.18 1.47 1.43
3 c c c c

4 3.48 1.90 9.24 1.08

a EC50, defined as the concentration (mol% carrier to lipid) required to
obtain 50% chloride efflux from inside the vesicles.
b Hill coefficient.
c Receptor 3 was virtually inactive and at 20 mol% receptor loading, with
respect to lipid, showed only 5.20% chloride efflux at 270 s for Cl2=NO2

3

antiport and 3.99% chloride efflux at 390 s for Cl2=HCO2
3 . Consequently

the data obtained for this receptor was not fitted to the Hill equation.

L.E. Karagiannidis et al.4
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phases of the U-tube experiment ensures that channel

formation across the spanof theorganic phase isnot possible,

hence a channel mechanism of transport is not conceivable.

Conclusions

The cis-receptors 1 and 2 have a greater activity as anion

antiporters than the corresponding trans-receptors 3 and 4.

The evidence presented supports our previous findings that

thioureas are more effective functional group motifs than

ureas for promoting anion antiport across lipid bilayers,

possibly due to the increased lipophilicity of sulphur atoms

as compared with oxygen atoms (16). In addition, the

difference in transport efficiency between cis- and trans-

stereoisomers can be rationalised with respect to their

differing ability to shield hydrophilic receptor regions and

anionic guests from the lipophilic interior of phospholipid

membranes. Anion-binding investigations were able to

highlight the significance of stereoisomerism on anion

binding in solution, as the cis-receptors interact with anions

more favourably than the trans-receptors, and show how a

lack of conformational isomers in cis-receptors allows for

less complex binding equilibria.

Supplementary Information

Please see ESI for additional information on anion

transport studies using vesicles, mobility assays, anion

binding studies and for general experimental procedures.
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Figure 4. Axial–equatorial conformation of 2, axial–axial
conformation of 4 and equatorial–equatorial conformation of 4.
Structure was generated using Spartan’10 for Macintosh (PM3
molecular dynamics energy minimisation) (15). Spheres have
been resized for clarity.
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