Published on 01 January 1976. Downloaded by North Carolina State University on 31/10/2014 04:19:09.

Donor Effect and Selectivity of Ethylene–Ethane Production in the Reduction of Acetylene with the Molybdenum-Cysteamine-related Ligands Catalyst System

By YUKIO SUGIURA,* TAKANOBU KIKUCHI, and HISASHI TANAKA

(Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 606, Japan)

Summary The catalytic effect of co-ordination donor atoms on the reduction of acetylene with the Mo-cysteaminerelated ligands system increases in the order $S > Se \gg O$; the selectivity of ethylene-ethane production in acetylene reduction by cysteamine-Mo and NN-dimethylcysteamine-Mo catalysts is of interest, the $C_2H_4:C_2H_6$ ratios being 16.5:1 and 0.14:1, respectively.

PHYSICO-CHEMICAL studies suggest that Mo co-ordinated by one or more sulphur atoms may be an important feature in the action of molybdoenzymes.¹ A cysteine-Mo complex is known to play a specific role as a chemical model in the reduction of nitrogenase substrates, acetylene, azide, and

Yields of ethylene and ethane produced from acetylene TABLE. with Mo-cysteamine-related ligands catalyst systems^a

Ligand	$C_2H_4/\mu mol$	$C_2H_6/\mu mol$	C_2H_4 ; C_2H_6
Cysteamine	$329 \cdot 2$	20.0	16.5:1
Selenocysteamine	$92 \cdot 4$	47.7	1.94:1
NN-Dimethylcysteamine	51.6	$365 \cdot 1$	0.14:1
Ethanolamine	Traces	Traces	
2-Mercaptoethanol	490·3	74.1	6.6:1
Cysteine	349.0	48.0	$7 \cdot 3 : 1$

^a Reaction conditions: solutions containing 0.029 mol of Na_2MoO_4 , 0.029 mol of ligand, and 0.15 mol of $NaBH_4$ in 3.5 ml of borate buffer (pH 9.5) were placed in glass vials and sealed with rubber serum caps. The air inside the vials was then replaced by water-washed acetylene under 1 atm pressure. The yields reported are for 60 min reaction periods at 20 °C.

dinitrogen.² We now describe the donor effect of Mo ligands and the selectivity of ethylene-ethane production in the reduction of acetylene. The Table shows the yield and ethylene-ethane ratio in the reduction of acetylene with the

Mo-cysteamine (2-mercaptoethylamine)-related ligands system in the presence of sodium borohydride. The effect of co-ordination donor atoms on the catalytic activity clearly increases in the order $S > Se \gg O$. Of special interest is a large variation in the selectivity of ethyleneethane production in these catalyst systems. The catalytic reduction of acetylene by the cysteamine-Mo system gave ethylene as the main product, the C_2H_4 : C_2H_6 ratio being 16.5:1, which is higher than with the cysteine-Mo and 2-mercaptoethanol-Mo catalysts. In contrast, the NN-dimethylcysteamine-Mo system, in which the co-ordination of the amino-group is blocked by dimethyl groups, produced ethane as the main product, the $C_2H_4: C_2H_6$ ratio being 0.14:1.

The formation of ethylene and ethane from acetylene requires transfer of two and four electrons, respectively, 2e

from the catalyst to the substrate, i.e., $\mathrm{Mo}^{\mathrm{III}} \rightarrow \mathrm{Mo}^{\mathrm{V}}\text{,}$ and

 $(\mathrm{Mo^{III}}_{-}\mathrm{Mo^{III}}) \rightarrow (\mathrm{Mo^{V}}_{-}\mathrm{Mo^{V}}). \ \mathrm{The} \ NN\text{-dimethylcysteamine} -$ Mo system presumably involves a binuclear catalytically active species. A dioxo-bridged cysteine-Mo^V complex has been fully characterized by X-ray crystallography³ and e.s.r. spectroscopy.4 The MoIII complex of 2-mercaptoethanol was also isolated recently.⁵ The present communication concerning the ethylene-ethane selectivity in the acetylene reduction will perhaps lead to a better understanding of correlation between reactivity and structure in Mo complexes of sulphur-donor ligands, and of the mechanism of the action of nitrogenase.

(Received, 10th May 1976; Com. 517.)

¹ R. C. Bray and J. C. Swann, Structure and Bonding, 1972, 11, 109; S. P. Cramer, T. K. Eccles, F. W. Kutzler, K. O. Hodgson, and L. E. Mortenson, J. Amer. Chem. Soc., 1976, 98, 1287.

- ² G. N. Schrauzer, Angew. Chem., 1975, 87, 579.
- ³ J. R. Knox and K. Prout, Acta Cryst., 1969, B25, 1857.
 ⁴ T. J. Huang and G. P. Haight, Jr., J. Amer. Chem. Soc., 1970, 92, 2336.
 ⁵ P. C. H. Mitchell and R. D. Scarle, J.C.S. Dalton, 1975, 110.