
A

N. Ogawa et al. LetterSyn  lett

SYNLETT0 9 3 6 - 5 2 1 4 1 4 3 7 - 2 0 9 6
© Georg Thieme Verlag  Stuttgart · New York
2020, 31, A–E
letter
en

ht
ed

 m
at

er
ia

l.
Synthesis of Two Stereoisomers of Potentially Bioactive 13,19,20-
Trihydroxy Derivative of Docosahexaenoic Acid
Narihito Ogawa*a 
Shinsaku Sonea 
Song Hongb,c 
Yan Lub 
Yuichi Kobayashid

a Department of Applied Chemistry, Meiji University, 1-1-1, 
Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
narihito@meiji.ac.jp

b Neuroscience Center of Excellence, Louisiana State University, 
Health Sciences Center, 2020 Gravier St., New Orleans, LA 
70112, USA

c Department of Ophthalmology, Louisiana State University, 
Health Sciences Center, New Orleans, LA 70112, USA

d Meiji University, Organization for the Strategic Coordination 
of Research and Intellectual Properties, 1-1-1 Higashimita, 
Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

OH

OH
CO2H

OH

OTBS

OTBS

CO2MeI– Ph3P+++
TBDPSO

I

AD reaction
asymmetric transfer 

hydrogenation

Sonogashira coupling
then Zn reduction with TMSCl

*

OH

Wittig olefination

*

D
ow

nl
oa

de
d 

by
: W

es
te

rn
 U

ni
ve

rs
ity

. C
op

yr
ig
Received: 29.06.2020
Accepted after revision: 16.07.2020
Published online: 17.08.2020
DOI: 10.1055/s-0040-1706415; Art ID: st-2020-u0372-l

Abstract The C16–C22 fragment with the acetylene terminus was
constructed through the asymmetric dihydroxylation of the corre-
sponding olefin, while the 15-iodo-olefin corresponding to the C11–
C15 part was prepared via the asymmetric transfer hydrogenation of
the corresponding acetylene ketone followed by hydrozirconation/io-
dination. Both pieces were joined by a Sonogashira coupling, and the
product was further converted into the title compound via a Wittig re-
action with the remaining C1–C10 segment and Boland reduction us-
ing Zn with TMSCl.

Key words DHA metabolite, trihydroxylated DHA, organic synthesis,
enyne, Boland reduction, TMSCl, Hansen protocol

Discovery of new metabolites of docosahexaenoic acid
(DHA) formed by lipoxygenases and/or cytochrome P450
enzyme pathways is an active area of study because most of
the metabolites isolated to date show properties of resolv-
ing and preventing inflammation.1 Recently, we isolated
compound 1, a dihydroxylated metabolite of DHA2 (Figure
1). Interestingly, 1 displayed wound-healing activity, a
unique property for a DHA metabolite.3 Subsequently, the
compound was synthesized, and the structure was deter-
mined.4 Similar properties were then found in new metabo-
lite 2 (‘maresin like’),5 and the structure of 2 was also deter-
mined after organic synthesis as well.6 We then envisaged
that hydroxylated compound 3 would possess similar activ-
ities because of the structural similarity in the positions of
the hydroxylated carbon atoms relative to those in 1 and 2.
Based on the fact that the -epoxide7 (19,20-epoxide) of
DHA is converted into 19,20-dihydroxy-DHA by soluble ep-

oxide hydrolases7b,8 and that 13-hydroxy-19,20-epoxy de-
rivative of DHA is isolated,9 compound 3 is likely produced
by 13-lipoxygenation8e,10,11 of the former and/or by epoxide
hydrolysis of the latter. It was envisaged that, in a similar
way, epoxide hydrolysis of 11-hydroxy-17,18-epoxy-EPA12

and 11-lipoxygenation10,13 of 17,18-dihydroxy-EPA would
produce 4, which have high potential to be bioactive.14

Figure 1  Dihydroxy-DHA metabolites with wound-healing activity and 
potentially bioactive metabolites of DHA and EPA

Among 3 and 4, we chose 3 as a synthetic target because
it has the same origin (DHA) as 1 and 2, and we hoped that
the method would be applicable to the synthesis of 4. We
established the 19,20-dihydroxy moiety as syn, based on
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the same stereochemistry seen in leukotoxin diol and isole-
ukotoxin diol,15 in which the diol unit is nonconjugated, as
that seen in 3. Consequently, diastereoisomers 3aa and 3ab,
shown in Figure 2, represent different relative stereochem-
istry and would be useful stereoisomers for biological
study. We also hoped that, once the method was estab-
lished, enantiomers of 3aa and 3ab could also be synthe-
sized as well.

Figure 2  Targeted stereoisomers of 3

Retrosynthetic analysis of 3aa indicated acetylene 5aa
to be a key precursor, which could be disconnected to diol
derivative 6a, iodo-olefin 7a, and Wittig reagent 8 (Scheme
1). We expected the asymmetric dihydroxylation (AD)16

and the asymmetric transfer hydrogenation17 to produce
the stereogenic centers in 6a and 7a, respectively. In prac-
tice, the syntheses were successful with high enantioselec-
tivity, as summarized in Schemes 2 and 3. Wittig reagent 8
was prepared by a straightforward method, as delineated in
Scheme 4.

Scheme 1  Retrosynthesis of 3aa

Synthesis of 6a was started with mesylation of alcohol
9, which was followed by the CuI-assisted coupling18 with
TMS-acetylene to afford 11 and the SN2′ regioisomer (struc-
ture not shown) in a 72:28 ratio, as determined with 1H
NMR spectroscopy (Scheme 2). Although the mixture was
difficult to separate by chromatography on silica gel, the di-
ols after the AD reaction were separated by chromatogra-

phy on silica gel to afford 12 in 35% yield with 86% ee, as
determined by 1H NMR spectroscopy of the derived MTPA
ester. Diol 1219 was protected as TBS ether 13, which pro-
duced 6a in 93% yield after TMS-desilylation with K2CO3.

Scheme 2  Synthesis of diol intermediate 6a

Synthesis of 7a was carried out according to our previ-
ous method.20 In brief, 1,3-propanediol was converted into
alcohol 15 with 96% ee, as determined by HPLC analysis, via
the asymmetric transfer hydrogenation17 of ketone 1421

(Scheme 3). TBDPS protection of the hydroxy group in 15
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Scheme 3  Synthesis of 7a and ent-7a
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and subsequent deprotection of the TMS group afforded 16,
which was subjected to hydrozirconation with in situ gen-
erated Cp2Zr(H)Cl,22 iodination, and TBS desilylation to give
trans-iodide 17 stereo- and regioselectively in 80% yield. In
a similar manner, ketone 14 was converted into ent-15 with
98% ee, and the subsequent transformations furnished ent-7a.

Wittig reagent 8 was synthesized from alcohol 1823 by
the method delineated in Scheme 4. Thus, mesylation of 18
followed by CuI-assisted coupling18 with acetylene 19 af-

forded 20, which gave olefin 21 in 81% yield upon reduction
with P-2 Ni24 under hydrogen. Desilylation, iodination, and
the reaction of the resulting iodide with PPh3 proceeded
cleanly to furnish Wittig reagent 8 in a good yield.

Construction of the target compound 3aa began with
the Sonogashira coupling of 7a with 6a (1.1 equiv) to afford
22 in 83% yield (Scheme 5). Oxidation with SO3·pyri-
dine(Py)/Et3N afforded the somewhat unstable aldehyde
23, which was then subjected to a Wittig reaction with the
ylide generated from 8 and NaHMDS in the presence of
HMPA (11 equiv, THF/HMPA = 5:1).25 Olefin 24 was pro-
duced stereoselectively and cleanly, and subsequently,
treated with TBAF to furnish the key intermediate 5aa in
63% yield from alcohol 22. Next, 5aa was subjected to the
Boland reduction of the triple bond under the modified
conditions reported by Hansen,26 who added TMSCl to
Zn(Cu/Ag) in aqueous MeOH. In practice, the reduction was
successful in cleanly affording 25 in 81% yield. By contrast,
an attempted reduction under the standard conditions27

(without TMSCl) caused elimination of the hydroxy group
at C13 and afforded a mixture of 25 and the elimination by-
products in a 73:27 weight ratio.28 A similar elimination re-
action has been reported previously.29 Finally, hydrolysis of
25 produced 3aa in 84% yield.

Scheme 4  Synthesis of the Wittig reagent 8
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Scheme 5  Synthesis of 3aa and 3ab
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In a similar way, the coupling reaction of ent-7a with 6a
gave 26, which was converted into 5ab in 66% yield. Reduc-
tion of 5ab with Zn/TMSCl proceeded cleanly, and the re-
sulting ester 27 was hydrolyzed to acid 3ab. The 1H NMR
spectra of 3aa and 3ab were completely superimposed,
whereas some of the olefinic carbons in the 13C NMR spec-
trum were observed at different positions (see the Support-
ing Information).

In summary, we developed a method to produce the ti-
tle triol and successfully performed the syntheses of 3aa
and 3ab through the Boland reduction of enyne 5aa and
5ab with Zn(Cu/Ag), which proceeded cleanly in the pres-
ence of TMSCl.30 The 13C NMR spectra of these products
were found to be useful for determining the relative stereo-
chemistry between the carbon atoms at C13 and syn
C19,C20. Synthesis of the enantiomers of 6a and 7a is un-
doubtedly possible by changing the chirality of the catalysts
and would furnish the enantiomers of 3aa and 3ab. The
asymmetric dihydroxylation reaction of the cis olefin corre-
sponding to 11 produces the anti diol, which is the key in-
termediate for the synthesis of another set of targets with
anti stereochemistry at C19 and C20.
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J = 11.2 Hz, 1 H), 6.55 (dd, J = 15.2, 11.2 Hz, 1 H). 13C NMR (100
MHz, CDCl3):  = 10.1, 22.9, 25.7, 25.9, 26.6, 32.3, 34.1, 35.4,
51.7, 71.9, 73.5, 75.1, 125.0, 125.3, 127.5, 127.9, 128.0, 128.3,
129.4, 130.8, 131.2, 136.5, 173.8. HRMS (FD): m/z calcd for
C23H36O5 [M]+: 392.25627; found: 392.25781.
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