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Abstract. Finite element formulation based on explicit through-thickness 
• integration scheme assumes importance when applied to multilayered shells, 
as it is numerically accurate and computationally efficient. Explicit integra- 
tion becomes possible on assuming the variation of the inverse Jacobian 
through the thickness. The element stiffness matrices are discussed for (i) large 
rotation, and (ii) small rotation. Relative efficiencies of the explicit through- 
thickness integration schemes are compared with that of the conventional 
formulation involving numerical integration in three directions in each layer 
and summation over the layers. The small rotation formulation assuming 
linear variation of the Jacobian inverse across the thickness and based on 
further approximation regarding certain submatrices is seen to be computa- 
tionally efficient. The geometric nonlinear behaviours of laminated composite 
cylindrical panels subjected to external pressure are discussed. The parameters 
considered are: number of layers, symmetric/antisymmetric, cross-ply/angle- 
ply, boundary conditions and central angle. The strength of shallow panels 
with longitudinal edges hinged and curved edges free is controlled by the 
limit point load, while for deep panels it is controlled by the bifurcation 
load. The boundary conditions have significant influence on load carrying 
capacities. 

Keywords. Geometric nonlinear finite element analysis; layered shells; 
explicit through-thickness integration scheme; numerical accuracy; computa- 
tional efficiency. 

1. Introduction 

Structures made of fibre reinforced composite materials have necessarily to be of layered 
construction with different fibre orientations in order to exploit the direction-dependent 
properties of the basic lamina. The analyst has to deal with a larger number of elastic 

A list of symbols is given at the end of the paper 
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constants and, further, layered construction results in various types of coupling in structural 
behaviour such as stretching-shear, stretching-bending etc. (Vinson & Sierakowski 1986). 
Coupled behaviour leads to complexity in the analysis and prediction of load-carrying 
capacities. 

Composite shells are generally very thin and hence their load carrying capacities are 
usually controlled by their buckling strengths. Classical buckling strength calculation is 
based on the assumption of negligible pre-buckling deformations and the buckling is 
characterized by a sudden out-of-plane displacement, during which there is an exchange of 
energy from membrane state to bending state. This assumption is not strictly valid in the 
case of layered shells. Due to bending-stretching coupling, there is considerable out-of- 
plane displacement even for very small in-plane loads. In view of this characteristic 
behaviour, the buckling analysis of laminated structures cannot be treated as an eigenvalue 
problem. Nonlinear analysis is seen to be appropriate for determining the strengths of 
layered composite shell structures. Fibre reinforced composite materials exhibit linear 
stress-strain behaviour up to failure. Layered shells made of composite materials, being 
very thin, undergo large deformations and hence geometric nonlinear analysis assumes 
importance. 

In view of the complexities associated with layered composite shell structures, the 
finite element method of solution is the natural choice for analysis. In the conven- 
tional formulation of degenerated shell elements (Ahmad et al 1970; Surana 1983), 3-D 
numerical integration is carried out to compute the element matrices. The direct exten- 
sion of the same to the layered shells (Panda & Natarajan 1981) becomes computa- 
tionally inefficient when the number of layers in the laminate is large, which is usually 
the case in reality. In order to overcome this, explicit through-thickness integration 
schemes (Yunus et al 1989; Vlachoutsis 1990) have been formulated for linear problems. 
Explicit integration through the thickness becomes possible when the elements of the 
inverse Jacobian are assumed to either remain constant or have a particular variation 
through thickness. Three such models have been evaluated from the points of view of 
numerical accuracy and computational efficiency for linear stress analysis and classical 
buckling (Prema Kumar & Palaninathan 1997). In the present paper, the formulations for 
geometric nonlinear problems of laminated shells based on explicit through-thickness 
integration are discussed. Equations are presented for both large rotation and small 
rotation cases. The computational scheme which involves numerical integration in the three 
directions in each layer and then summation over the layers is designated the NI Model. 
The other schemes involve explicit through-thickness integration based on assumed 
variation of the elements of the Jacobian inverse matrix across the thickness. "The scheme 
which assumes that the elements of the Jacobian inverse vary linearly across the thickness 
is designated the EI-1 Model and that which assumes constant Jacobian inverse is 
designated the EI-2 Model. The EI-3 Model is a modification of the EI-1 Model in which 
certain submatrices whose elements have negligible magnitude (higher order terms of 
thickness coordinate) are dropped with a view to improving the computational efficiency. 
Numerical accuracies and computational efficiencies of the explicit through-thickness 
integration models have been discussed by comparing them with those of the NI Model 
with respect to geometrically nonlinear problems. The EI-3 Model under the small rotation 
scheme is found to be adequate for laminated shells with no significant sacrifice of 
numerical accuracy due to the simplifying assumptions. The results of a parametric study 
of externally pressurized layered cylindrical panels using the EI-3 Model are presented 
and discussed. 
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2. Element formulations 

The element employed in the present work is a 8-node degenerated curved shell element 
(parabolic) which is shown in figure 1. The degrees of freedom at a node n are u,, v,, w,, 
C~n and/3,. The layers are assumed to be perfectly bonded to one another and transversely 
isotropic. Serendipity shape functions (Zienkiewicz 1977) are used. The formulations for 
geometric nonlinear analysis are based on total Lagrangian description with Zienkiewicz's 
B-notation. First, the large rotation formulation for layered shells (NI Model) is presented. 
Next, the explicit through-thickness integration schemes (Models EI-1 through EI-3) are 
presented. Finally, by specialization, small rotation formulations are obtained. 

2.1 Large rotation formulations (LRF) for layered shells 

2.1a NI model: The conventional formulation which involves numerical integration in 
three directions in each layer and summation over the layers is termed the NI Model. The 
displacement field at any point (~,~,~) within the element (Panda & Natarajan 1981; 
Surana 1983) is given by 

{!}, {/+ un " F,~ 
= ~ N . ( ~ , , 7 )  v. + Z N . ( ~ , , 7 ) ~  F.v , 

, = ,  w. ~ .:, t F.+z ) 
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Figure 1. Eight-node layered shell element. 
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hk 
= a~ +-~- ~k, (lb) 

t h~ k 
ak-- 2 2 + E  hi. (lc) 

i=1 

Nonlinear functions of nodal rotations are given by 

Fny = ~sinc~.(1 ~-COSt~n)]Vlnv( --~ (COS OZ n "t- 1) s in /3n  g2ny f 
rnz t VnzJ V2nzJ 

+ (cos c~. cos ~. - 1) ) V3.y 
tV , . z  

(2) 

Applying the principle of virtual work, taking variation of residual force with respect to 
nodal displacements, {d} and making mathematical transformations, we have (Surana 
1983) 

[k T] = [k O] -{-[k LI ] + [k L2] q - [ k  crl ] q - [ k  cr2] Jr-[kcr3], ( 3 )  

where 

where 

.L / , /_ , f  hk [ k°] = ~ [B°]r [Elk [ B°] IJI t d~k dr/d~, (4) 
k=l  1 1 1 

i l/_' i' [~'] = ~ [n°lr[e]~[sq IJ1-7- 
k=l 1 1 1 

k=l 1 1 1 

[kLZ] = ~ [8~] r [e]k [B L] Ial S- d¢~ 0,7 de (6) 
k=l 1 1 l 

[k<] = ~ [G] r [s] [G]IJI t dsc dr/dO, (7) 
k=l 1 1 1 

(5) 

[B °] = [/4] [6], 
[B L] = [A] [6], 

[S]-- [ o-x[/,]. 

/ Symmetric 

~ .  [t,] ~-x~ [1,] 
o.y [I3] ry: [I3] 

0-:[13] 

(8) 
(9) 

(10) 
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For the initial stress matrices, [k a2] and [kCr3], the reader is referred to the thesis by Prema 
Kumar (1996). The effects of the nonlinear functions of rotations appear in the tangent 
stiffness matrix in the form of initial stress matrices [k ~2] and [k ~3] . In the above formula- 
tion, the matrix [k °] is a function of {d} because of large rotation. It is constant in the small 
rotation formulation. 

The internal force vector is given by 

{F e} = fv[B]T{cr} dV = [kS]{d}, 

where [k s] = secant stiffness matrix of the element, is given by 

k~l /1 fl / 1 hk [kS] = 1 1 , [o]r[E]k[B] lJ I  y d~k d~/d~, 

where 

(11) 

(12) 

(14) 

(14a) 

(14b) 

(14c) 

(14d) 

vary linearly across the shell thickness, i.e., 

J* = S a + (2/t)~S~. 

Let the determinant of the Jacobian matrix be [J[ and let 

At = ~ / ~ ,  at the top of the shell surface, 

Ab = V / ~ ,  at the bottom of the shell surface, 

= ½ +  xb), 

[/~] = [B °] + ½ [B L] is the total strain-displacement matrix. (13) 

As seen from (4) through (7), the element matrices are computed using 3-D numerical 
integration in each layer and summing over layers. It is obvious that the computational time 
for these element matrices increases linearly with the number of layers (NL).For  the case 
of a laminate with a large number of layers, it proves to be computationally expensive. The 
integrands of the above equations are complicated functions of {, ~/and 4- The integrands 
are products of three kinds of terms. [E]~ is a material property matrix which is constant for 
each layer but varies from layer to layer either due to change in fibre orientation or change 
in material. This term does not give rise to any complication with regard to the integration. 
While the variation of  the incremental strain-displacement matrix [B] with respect to { and 
~/is quite complex, its variation with respect to the thickness coordinate, ~, can be modelled 
by simple functions, particularly for thin shells. The same is true for the third term in the 
integrand, namely the determinant of the Jacobian. The variations of both these terms are 
controlled by the Jacobian inverse [J*]. While the variation of [J*] in the tangential plane 
({, ~/) is quite complex, the variation of the same in the thickness direction can be modelled 
by simple functions that are linear or constant for thin shells. Such assumptions will lead 
to the explicit integration of through-thickness effects and numerical integration in the 
tangential plane ({, ~7) of the middle surface irrespective of the number of layers in the 
laminate. It is quite obvious that this approach will result in considerable saving in 
computational time. 

2.1b EL1 model: This model assumes that the elements of the Jacobian inverse matrix 
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The square root of the determinant of the Jacobian matrix at any point is given by 

A = A a + (2 / t ) 2A  d. (15a) 

Now, the determinant of the Jacobian matrix at any point is given by 

2-  Ad'~ 2 
I J I = A 2 = A 2  l + t z - z -  ll..xa,/ =A2(1ff-ZOl)2=A2(lq'-2Z.Olq-22O12), (15b) 

where 

ol = 2 A d / ( t A a ) .  (15c) 

In general, a term of displacement gradient matrix, [G] may be split into three parts (Prema 
Kumar 1996): the first part independent of 2, the second part containing 2 and the third part 
containing 22 . Thus, we can express 

[G] ~-- [G1] q- 2[G2] -}- 22[G3]. (16) 

Similarly, we can express 

[a] = [al] + 2[A2] + z2[a3]. (17) 

The matrices [G1], [G2], [G3], [A1], [A2] and [A3] are given by Prema Kumar (1996). 
Equation (8) can be expressed as, 

[B °] = [B °] + 2[B °] + 22[B°], (18a) 

where 

and 

[B °] = [H][G,], (18b) 

[B2 °] = [H] [G2], (18c) 

[B °] = [H][Z3]. 

Equation (9) can he expressed as, 

[O L] = [B1 L] q- z[B L] q- z2[B3 L] q- 23[B L] q-- 24[BL], 

where 

[B1 ~] =[AI] [C~], 
[B L] = [AI][G2] q--- [A2][GI] , 

IBm] = [A,][~] + [A~][C~] + [A~][Cl], 
[B4 L] = [A2] [G3] + [A3] [G2], 

[S L] : [A3][G3]. 

The incremental strain-displacement matrix can be expressed as, 

. T-4 fRLI [B] : [B10 q-Bl L] +z[B2 0 q-B L] q-z2[B°-]-B~] q-z3[B4L ] q-,~ t~5]. 

(18d) 

(19a) 

(19b) 

(19c) 

(19d) 

(19e) 

(19f) 

(20) 
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Equation (13) can be expressed as, 

[[t]=[B°+½BL]+2[ B°+IL~B2] if- z2[ BO+IBL]2 3 q- z3[½ BL] q- ~4[½BL]. (21) 

In (18) and (19). the matrices [B °] through [B °] and [B L] through [B L] are independent of 
and thus through-thickness integration becomes possible. Substitution of (15b) and (18a) 
into (4), and taking the thickness integration in each layer and layer summation inside the 
integrand, results in integration over the middle surface alone as, 

[k O] -~- [[B°]T[EI][B°I] -~- [B°]T[E2][B O] + [B°I]T[E3][B O] + [B°2]T[E2][B O] 
1 1 

+ [B°]r[E3][B °] + [B°]r[E4][B °] + [B°]r[E3][B °] 
2 + [B°3]T[E4][B°] + [B°]r[Es][B°3]] A2 t d~/d~. (22) 

Substitution of (15b), (18a) and (i9a) into (5), and taking the thickness integration in each 
layer and layer summation inside the integrand, results in integration over the middle 
surface alone as, 

f f  [k Ll] = [[B°]r[E,][BIf] + [B°]r[E2][B~] + [B°]T[E3][BI~] + [B°]r[E4][B~] 
1 1 

q- [B?jT [E5][BI~] if-[B°]T[E2J[B L] q-[B°]TfE3J[B L] --~ [n°lT [E4J[g L] 
q- [B°]T [E5][B L] q-[n°]T[fe][n L] q-[n°3]T[E3][n L] q-- [B°]T [E4][B L] 
+ [B°]r[EsJ[B~] + [B°]r[E6][BI2] + [B°]r[E7][B~] + [Btf]r[E1][B °] 

+ [BLI]r[E2][B°] + [Btf]r[E3][B °] + [B~]r[E2][B °] + [B~]r[E3][B °] 
q- [BL]T [E4][B O] q-[BL]T[E3][B?] Jr-[BL]T[E4][B O] -Jr [B~]T [E5][B O] 
+ [BL]T[E4J[B °] + [BL]r[Es][B °] + [BL]r[E6][B °] + [BI~JT[Es][B°I] 

2 dr/d~, (23) + [BL]T[E6J[BO]-[-[BL]T[E7][BOJ]A2a t 

where 

NL 
[Eli = Z [ E ] k ( ( v a r  1 ) +  2c~(var 2) + c~2(var 3))k, 

k=l 
NL 

[E2] = Z [ E ] k ( ( v a r  2) + 2a(var 3) + ol2(var4))k, 
k=l 
NL 

[E3] = Z [ E ] k ( ( v a r 3 )  + 2cffvar4) + c~2(var5))k, 
k=l 

vat 1 = (~t - z+) = h, 
1 

= - z ~ ) ,  var 2 ~ (zt -~ 

1 
var3 = 
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Other [E]i matrices are not defined here for want of space. The reader may refer to Prema 
Kumar (1996). Substitution of (15b) and (16) into (7), and taking the thickness integration 
in each layer and layer summation inside the integrand, results in integration over the 
middle surface alone as, f/1 

[k 41] =- [[G1]T[s,][G,] -k [G1]T[s2][G2] + [GI]T[Sa][G3] q-[G2]r[S2][GI] 
1 1 

+ [G2]T[S3][G2] + [G2]T[s4I[G3] + [G3]T[s3][G,] 
2 

-t-[G3IT[s4] [G2] ~- [G3]T[s5J[G3]] A 2 7 d~Td{, (24) 

where the matrices [S,] through [$5] are defined by: 

NL 

[S1] = Z[S]k( (var  1 ) +  2c~(var 2 ) +  o~2(var 3))k, 
k=l 
NL 

[$21 = Z[S]k( (var  2 ) +  2a(var  3 ) +  a2(var4))~, 
k=l 
NL 

[$3] = Z[S]k( (var  3) + 2oe(var4) + c~2(var5))~ 
k=l 

etc. 
For [k t'2] and the initial stress matrices [k "2] and [k'3], the reader is referred to Prema 

Kumar (1996). Even though the various element matrices under EI-1 model are computed 
using 2-D numerical integration over the middle surface, the formulation gives rise to a 
large number of submatrices as seen in (22)-(24). 

2.1c EI-2 model: This model assumes that the elements of the Jacobian inverse matrix 
remain constant across the shell thickness. Considering a term of the matrix [Gn] at a 
typical node n, it can be easily seen that it consists of two parts: the first part independent of 

and the second part containing L Thus, we can express: 

[G] = [G4] q- z[G5]. (25) 

Similarly, we can express: 

[Z] = [a4] + z[as]. (26) 

The matrices [G4], [G5], [A4] and [As] are given by Prema Kumar (1996). We can express: 

where 

[B °] = [B °] + ~[B°], (27a) 

[B 0] = [H][G4], (27b) 

[B °] = [H] [G5]. (27c) 

We can express: 

[B L] = [B6 ~] + e[B~] + e2[B~], (28a) 



where 
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[B L] = [A4][G4] , 

[B7 L] = [A4] [G5]- } -  [A5] [G4], 

We can express: 

[8] = [8 0 + 8~1 + ~[8 ° + 8~] + ~[8~] ,  

[j~] [B4 0 1 L z [B 0 1 L ~,2[1BL]. = q- ~n6] -]'- Jr- ~n7] -]- 
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(28b) 

(28c) 

(28d) 

(29) 

(30) 

In (29) and (30), the matrices [B°], [B°], [B~] through [B~] are independent of ~ and thus 
through-thickness integration becomes possible. Substitution of (27a) into (4) and taking 
the thickness integration in each layer and the layer summation inside the integrand results 
in integration over the middle surface alone as: 

[k °] = [[B°4]r[E,,][B°4] + [B°Jr[E12][B °] + [B°JT[EI2][B O] 
1 1 

+ [ns°]r [E,3] [B°]] I1107 d~. (31) 

Substitution of (27a) and (28a) into (5) and taking the thickness integration in each layer 
and the layer summation inside the integrand results in integration over the middle surface 
alone as: 

?/' [kL1] = [[B°]r[EI,][B L] + [B°]r[E,2][B L] + [B°Jr[e,3][B L] + [B°]T[E,2][B L] 
I 1 

+ [B°]T[E13][B~] + [B°JT[E14]fB~] + [Bld]T[E,,][B °] 

Jr-[BLjTfE12JfB05] "t- [Bf]T [E12] [B04] Jr-[BLIT[E13I[BO5J 

+ [B8 L] r [E,3] In ° ] + [n~] r [El4] [B°]] I1107 d~. (32) 

The matrices JEll] through [E15] are defined by: 

NL 
[e, ,]  = ~ [e]k(~, - ~b)k, 

k=l 
l NL 

1 NL 
[El3] = ~ [g]k( ~3 -- Z';)k' 

l NL 
[E,4] = ~ ~ [E]k(2 ~ - 24) k, 

l k~ ' ~5) 
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where 

k k-I 
t h t 

Zt=-- '2-} -  Z "j' Zb=- -2 -~ -  Z hj" 
j=l j=l 

Substitution of (25) into (7) and taking the thickness integration in each layer and 
the layer summation inside the integrand results in integration over the middle surface 
alone as: f/1 

[k ~rl] = [[G4]T[s6][G4] -I- [G4]T[s7][G5] + [G5]T[s7][G4] 
1 1 

+ [as]r [58] [65]] I11 d,7 04 (33) 

where the matrices [$6] through [$8] are defined by: 

NL 
[$61 ----- ~ [S]k(-Zt- Zb)k, 

k=l 
1NL 

[sT] = ~ ~ [s]~(e~ - ~2)~, 

1 NL 
[s+] = ~ ~ [s]~(~ - ~)k. 

Comparing (22)-(24) with (31)-(33) respectively, it may be seen that the number of sub- 
matrices involved in the computation of various element matrices are considerably less in 
the EI-2 model. In other words, the EI-2 model is computationally efficient. However, its 
numerical accuracy needs to be ascertained. 

2.1d EI-3 model: This model is obtained from the EI-1 model by dropping some 
submatrices of the EI-1 model whose elements are seen to be of very small magnitude. This 
is expected to result in computational efficiency. [G3] in (16) is one such matrix. After 
dropping [G3], (16) becomes: 

[G] = [G,] + ~[G2]. (34) 

Similarly, referring to (17) for EI-1 model and dropping the matrix [A3], we have: 

[a] = [All + ~[a2]. (35) 

As a result of the dropping of the matrices [G3] and [A3], the expressions for the key 
matrices for EI-3 model become: 

[B °] = [B °] + E[B°], 

[B L] = [B L] + ~.[B2 c] + 7.2 [O~], 

Is] = [8 ° + 8~] + e[~ ° + 82q + ~2[@, 
[B] := [8 0 -t- bSD1]" IoL] _]_ ~[B 0 _]_ 1 B L] Jr- ~2[/B~]. 

(36) 

(37) 

(3s) 
(39) 
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Equation (22) reduces to: 

[k o] = [[B°]~[e,] [B °] + [B°]~[e~] [B ° ] + [B°]~[e~] [B °] 
1 1 

2 
+ [B°]r[E3][B°]] AZa t dr/d¢ (40) 

Equation (23) reduces to: /1/ 
[~'] = [[B°]~[e,][@ + [B°]~[e~][B~] + [Bl°]~[e~][B~] + [B°]~[e~l[B: ~] 

I 1 

+ [B°]r[E3][B L] + [B°]T[E4][BIf] + [BL]T[EI][B °] 

+ [BL] r [E2][B °] + [BL]T[E2][B °] + [BL]r[E3][B °] 
2 -]-[BL]T[E3I[B°I] + [BL]T [E4][B°2]] A2a 7 dT/d¢. (41) 

Equation (24) reduces to: //1 
[k 'r'] = [[G1]T[sI][G1] + [a,]~[&][a2] + [G2]r[S2][G1] 

1 1 

2 
-4- [G2]T[s3][G2]] A2 t dvd¢" (42) 

The number of submatrices for EI-3 model is the same as that for EI-2 model. Hence, this 
model is expected to be computationally as efficient as the EI-2 model. However, the 
numerical accuracy needs to be ascertained. 

2.2 Small rotation formulations (SRF) for layered shells 

SRF is the conventional formulation which assumes that the nodal rotations during a load 
step are small (in fact, infinitesimal to be exact). This formulation requires small load 
increments leading to more load steps. In this case, cos c~ = 1; cosfl~ = l; s i n ~  = c~ 
and sin ~, = fin and the functions of nodal rotations given in (2) become: 

i, l ,v,x, Fny =c~ .~V , , , l - / 3 .  V2y( • (43) 

The first derivatives of functions of nodal rotations become: 

J Of .~ i { " Of nx 5S2a. o9° 
OFnr Vlx I Of ny 

= Vjv~ ; 
I v,i  ;o 09° 
10F~- OFn: t ~  , oA, 

~ - -  g 2 v  

v~ n 
(44) 
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The second derivatives of functions of nodal rotations become: 

f OFnx ] f 02Fnx ] "02Fnx ] 
IO °1 I 

= ; = • , . (45) 
/ / , l :  ' 

t ~ J  t ~ J  .o,.j~2 
The initial stress matrices [k °2] and [k ~3] which involve higher derivatives vanish. The 
expression for the element tangent stiffness matrix then becomes: 

[k T] = [k°].+ [k L1] + [k L2] + [k~l]. (46) 

The element matrix [k °] is not a function of {d} in SRF. 

2.2a NI, EL1 and EI-2 models: The expressions for the element matrices [k°], [k c~] and 
[k °1] aregiven by (4), (5) and (7) for the NI model, (22) through (24) for the EI-1 model 
and (31) through (33) for the EI-2 model. 

2.2b 
[A3] is retained for improving the numerical accuracy. Thus we have: 

[o] : [o,} + ~[c~], 

[a] = [a,] + E[A2] + E2[A3], 

[B °] : [B °] + ~[8°], 

where 

EI-3 model: In the SRE the matrix [G3] is taken as the null matrix and the matrix 

(47) 

(48) 

(49) 

(50a) 

[B~] -- [A,][C,], (50b) 

[8~] -- [A,][C2] + [A2][C,], (50c) 

[B~] = [Az][G2] + [A3][G1], (50d) 

[B~] : [A~][C~], (50e) 

[~] : [B7 + B, ~] + ~[B ° + 8~] + ~:[B~] + ~ l '~ ] ,  (51) 

[B] [ 8 ° + ~ B ~ ] + ~ [ ' ° + - ' B  ~] -~,  ~ ~ ,  = 2 2 -Jr- Z [~B3] q- [5B4]- (52)  

Equation (22) reduces to: 

/ /  [k °] = [[B°]T[EI][B °] + [B°]T[E2][B °] + [B°]T[E2][B°I] + [B°]T[E3][B °] 
, I 

+ [BT]T[E3][BT] q-[BT]T[E4][BT]]A~ 2 d~Td~. (53) 
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Equation (23) reduces to: 

/ 'f  [kL1] = [[B°]r[El][B L] + [B°]r[E2][B~] + [B°]r[E3][B L] + [B°I]r[E4][B L] 
I 1 

-~- [B°]T[E2][B L] -Jr-[B°]T[E3] B L [ 21 + + 
+ [BL]~'[E1][B °] + [B~]T[E2][B °] + [BL]r[E2][B °] + [BL]T[E3][B °] 

q-[BL]T[E3][B O] + [BL]T[E4][B O] q-[BL]T[E4][B O] 

2 
+ [BI4]r[Es][B°]] A2 t dr/d~. (54) 

Eqn. (24) reduces to: 

//l [k °l] = [[G1]r[S1][G1] + [G1]T[s2][G2] + [G2]r[S2][G,] 
1 1 

2 
+ [G217"[$3] [G2]] A2 t d~ de. (55) 

3. Solution methodology 

For path-following, the single displacement control method (Haisler et al 1977; Batoz & 
Dhatt 1979) or the combined arc-length and minimum residual displacement method 
(Crisfield 1981; Chan 1988) is adopted. The iterative process in any load step is terminated 
when DNORM _< DTOL and FNORM _< FFOL where 

= m= Z 
where (AD~) m is the change in the displacement component, m, during the ith step andjth 
iteration cycle, (D~) m is the total value of the displacement component, m at the end of the 
ith step and jth iteration and NEQ is the total number of structural degrees of freedom, 

(NE~ i 2 1/2/( NEQZ )1/2 
F N O R M  = (Ri) m (P~)2 m , m=l m=l 

where J (Ri)  m is the value of the residual force component, m, (P~)m is the value of the total 
external force component at the end of ith step and jth iteration, and DTOL and FTOL are 
pre-specified tolerances on displacement and force norms respectively. 

While tracing the equilibrium path of a structure by a path-following method, the change 
of equilibrium state is detected by the sign of the product of the determinants of the tangent 
stiffness matrix of the structure at two consecutive solution points. When this product 
changes its sign, a critical point (limit or bifurcation point) is recognized to be lying in 
between the two solution points (vide figure 2). NNPE which represents the number of 
negative pivotal elements in the diagonalised tangent stiffness matrix (= number of negative 
eigenvalues of the tangent stiffness matrix) may also be employed to detect a critical 
point. A critical point is detected to be lying in between two solution points when NNPE 
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DISPLACEMENT Figure 2. Critical points. 

changes its value. Bergan's current stiffness parameter (1978) changes its sign at the load 
limit point whereas it does not change its sign at the bifurcation point when we are moving 
on the primary equilibrium path. This fact is utilized for distinguishing between limit and 
bifurcation points. Further, the fact that the load factor (A) has an extremum value at a limit 
point also helps in distinguishing between a limit and a bifurcation point. For pin,pointing 
the limit and bifurcation points, the bisection method or the regula-falsi method is used. For 
branch-switching, the method of eigenmode injection (Wagner & Wriggers 1988) is used. 

4. Validation checks 

Geometric nonlinear analyses of standard literature problems have been performed and 
the results obtained for the NI model and the literature results are compared for validating 
the capabilities of the program. Two problems are presented here. For other validation 
problems, the reader is referred to Prema Kumar (1996). The convergence tolerances used 
in the analysis are: DTOL = 0.001 and F-fOL = 0.01. The integration order employed for 
the NI model is 2 × 2 x 2. 

4.1 Angle-ply cylindrical panel subjected to central point load 

An angle-ply cylindrical panel hinged along the longitudinal edges and completely free 
along the circular edges is considered. The geometrical details of the panel are: radius = 
2540 mm, length = 508 mm, angle subtended at the centre = 0.2 radian, layer thickness = 
6.3 mm and number of layers = 2. The lay-up is [+ 45/-45].  The material properties are: 
EL = 3.3 GPa, Er = 1.1GPa, GLr = 0.66GPa and V/~r = 0.25. Saigal et al (1986) have 
considered a quarter of the panel .for finite element modelling and used a 2 × 2 mesh in 
their analysis. The analysis in the present work (for comparison purpose) is carried out 
following their finite element model. For using the quarter of the shell, proper boundary 
conditions, either symmetry or antisymmetry displacements/rotations along the cut edges, 
are to be applied. The type of boundary conditions used in the reference has not been 
mentioned. For the present comparison, symmetry conditions have been used. For path- 
following, the single displacement control method is employed, the key displacement 
component selected for incrementation being the radial deflection under the load. The 
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Figure 3. Load versus central 
radial deflection for an angle-ply 

01 I I cylindrical panel hinged along 
0 10 20 30 straight edges and free along circu- 

Central rad ia l  deflection (ram) lar edges (LRF). 

load-deflection curve is obtained by applying equal displacement increments at the centre 
of the panel, each of magnitude 2.0 mm. The load-deflection curves obtained using LRF 
and SRF for the NI model are compared with that of Saigal et al (1986) in figures 3 and 4. 
The load-deflection curves depict snap-through behaviour. The comparisons are good 
except for a small difference at the first load limit point. Saigal et al (1986) have used a 4- 
node quadrilateral element with 48 degrees of freedom. 

4.2 Single layer isotropic cylindrical panel simply supported along all edges and 
subjected to external pressure 

This example is taken to validate the pin-pointing and branch- switching capability at 
the bifurcation point. The geometric details of the panel are: radius = 7620 mm (300 in.), 
length -- 6096 mm (240 in.), central angle = 30 degrees and thickness = 76.2 mm (3 in.). 
The material properties are: E = 20685MPa (3.0xl06psi)  and u =  0.0. The panel is 
simply supported along all the boundaries and subjected to pressure loading. The entire 
panel is taken for discretization and a 6 x 6 mesh is used as there may be a change in the 
mode shape during bifurcation. The primary and secondary branches obtained using SRF 
for the NI model are Compared with those of Kiciman & Popov (1978) in figure 5. The 
pressure at the bifurcation point obtained in the present work is 346.15 kN/m 2 (50.203 psi) 
against the reference value of 357.16 kN/m 2 (51.8 psi), the percentage difference being 3.08. 
It may be seen that the agreement is reasonably good in predicting the bifurcation point and 
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the secondary path-following. The present computer program takes about 5 steps o n  the 
secondary path and then returns to the primary path. Details of  the element used by Kiciman 
& Popov (1978) are not available. 

5. Numerical accuracy and computational efficiency 

The numerical accuracy of the explicit through-thickness integration models (EI-1, EI-2 
and EI-3 models) has been evaluated with reference to the conventional 3-D numerical 
integration model (NI model) for geometric nonlinear problems. The numerical accuracy of 
the NI model has already been established by comparison with literature values in the 
previous section. The four models give results which are almost coincident or are very 
close, such that the curves in graphical comparisons either overlap or are indistinguishable. 
Hence, the results are presented here in the form of tables (tables 1 and 2). Convergence 
tolerances used in the analysis are: DTOL = 0.001 and FTOL = 0.01. The integration 
order employed is 2 × 2 × 2 for the NI model and 2 x 2 for other models. Numbers within 
parentheses in the tables represent the number of  iterations taken for convergence. For the 
problem considered under validation check, tables 1 and 2 give the results obtained for the 
various models using LRF and SRF respectively. The deflections predicted by all the four 
models are almost the same. The number of  iterations taken by models EI-1 and EI-3 using 
LRF in higher steps are larger compared to the other two models. When using SRF, all the 
models are observed to take the same number of iterations. 

The computational efficiency of the explicit through-thickness integration models 
(models EI-1, EI-2 and EI-3) is evaluated relative to the numerical integration model (NI 
model). The model that takes the least computer time is the one that an analyst looks for, 
which is termed 'computationally efficient'. A layered cylindrical panel hinged along the 
longitudinal straight edges, completely free along the circular edges and subjected to a 

Table 1. Load and central radial deflection values for an angle-ply cylindrical panel hinged along 
the straight edges, free along the circular edges and subjected to a central concentrated load (using 
LRF). 
Numbers within parentheses denote the number of iterations taken for convergence. 

Central load (kN) 

Central radial NI model El-1 model EI-2 model EI-3 model 
deflection (mm) (LRF) (LRF) (LRF) (LRF) 

2.O O.35O (3) 
4.0 0.625 (3) 
6.O 0.831 (3) 
8.0 0.973 (3) 

10.0 1.048 /3) 
12.0 1.054 (3) 
14.0 0.978 (3) 
16.0 0.799 (4) 
18.0 0.514 (4) 
20.0 0.273 (4) 
22.0 . 0.262(5) 
24.0 0.455 "(4) 
26.0 -. 0.804 (4) 
28.0 . . . . .  1.288 (4) 

O.35O (3) 
0.625 (3) 
0.831 (3) 
0.973 (3) 
1.048 (3) 
1.054 (4) 
O.978 (4) 
O.799 (5) 
0.514 (6) 
0.273 (6) - .  " i  
0.262(6') - ~ 
O.455 (6) 
0=804(5) " 
122"88 (5), 

0.350 (3) 0.350 (3). 
0.626 (3) 0.625 (3) 
0.832 (3) 0.832 (3) 
0.974 (3) 0.973 (3) 
1.049 (3) 1.049 (3) 
1.055 (3) 1.055 (4) 
0.978 (3) . 0.979 (4) 
0.798 (4) 0.800 (5) 
0.5~ 1. (-4~ 0.515 (6) 
0.267 (4}- 0.273 (6) 
0".255 (5) 0.261 (7) 
0.448 (4) 0.453 (6) 
0.796 (4) - " 0.801 (5) 
1.28"1 (4) 1.285 (5) 
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Table 2, Load and central radial deflection values for an angle-ply cylindrical panel hinged along 
the straight edges, free along the circular edges and subjected to a central concentrated load (using 
SRF). 
Numbers within parentheses denote the number of iterations taken for convergence. 

Central load (kN) 

Central radial NI model EI-1 model EI-2 model EI-3 model 
deflection (mm) (SRF) (SRF) (SRF) (SRF) 

2.0 0.350 (3) 0.350 (3) 0.350 (3) 0.350 (3) 
4.0 0.625 (3) 0.625 (3) 0.626 (3) 0.625 (3) 
6.0 0.832 (3) 0.832 (3) 0.832 (3) 0.832 (3) 
8.0 0.973 (3) 0.973 (3) 0.974 (3) 0.973 (3) 

10.0 1.049 (3) 1.049 (3) 1.050 (3) 1.050 (3) 
12.0 1.054 (3) 1.054 (3) 1.056 (3) 1.055 (3) 
14.0 0.978 (3) 0.978 (3) 0.979 (3) 0.979 (3). 
16.0 0.797 (4) 0.797 (4) 0.799 (4) 0.799 (4) 
18.0 0.512 (4) 0.512 (4) 0.512 (4) 0.513 (4) 
20.0 0.274 (3) 0.274 (3) 0.272 (3) 0.274 (3) 
22.0 0.266 (4) 0.266 (4) 0.263 (4) 0.265 (4) 
24.0 0.461 (3) 0.461 (3) 0.458 (3) 0.459 (3) 
26.0 0.813 (3) 0.8t3 (3) 0.809 (3) 0.810 (3) 
28.0 1.301 (3) 1.301 (3) 1.297 (3) 1.297 (3) 
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central concentrated load is considered. The geometrical details of the panel are: inner 
radius = 2540 mm, panel angle = 0.2 radian, panel length = 508 ram. The total thickness 
of the panel is kept constant at 30 mm and the number of layers (NL) is varied from 1 to 40. 
A geometric nonlinear analysis of the panel is performed using SRF and single displace- 
ment control method. Due to symmetry of the problem, a quarter of the panel is discretized 
using a 2 × 2 finite element mesh. The key displacement component selected for incre- 
mentation is the radial deflection component a.t the centre of the panel. Four displacement 
increments, each of 2.5 mm magnitude, are applied. A personal computer with 66MHz 
speed in DOS environment was used for the study. The computational times taken by the 
computer for the second, third and fourth steps are almost equal. Figure 6 shows a 
comparison of percentage of computational time taken by the three EI models for executing 
a typical step (here, third step) with reference to that by the NI model for the above 
example. All the models take three iterations for convergence. The EI-2 model takes the 
least time, closely followed by the EI-3 model. When NL = 1, models El-l, EI-2 and EI-3 
take more time than that taken by the NI model. It may be seen that the EI-1 model takes 
almost twice the time taken by the NI model. As the number of layers (NL) increases, there 
are substantial reductions in the computer time. Beyond NL = 15, the curves level off. 
About 75% saving of computer time is possible in the case of the EI-1 model and about 
85% in the case of models EI-2 and EI-3 when NL is greater than 20. It can be easily seen 
that the saving in computer time would be much more when more iterations are required in 
a load step. Figure 7 shows for all the models plots of time taken for executing the third 
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step versus number of layers. Linear variations of time with number of layers are shown. 
The slope for the NI model is the highest indicating steep increase in time with number of 
layers. The other three models indicate almost the same slope i.e., the rate of variation of 
time with number of layers is almost the same for the explicit through-thickness integration 
models. 

6. Externally pressurized cylindrical panels 

A parametric study of cylindrical panels subjected to external pressure has been carded out. 
The geometrical details of the panels considered are: length = 508 mm, internal radius = 
2540mm and total thickness = 12.6ram. The central angle is 11.46 ° in the case of the 
shallow panel and 60 ° for the deep panel. The material properties are: EL = 3300 MPa, 
Er = 1100 MPa, uLr = 0.25 and urr = 0.25. Laminate stacking designations (cross-ply, 
angle-ply, symmetry/antisymmetry etc.) (Jones 1975) have been followed here. NL repre- 
sents the number of layers in the laminate. The following notations are used for designating 
the boundary conditions. H t denotes a simply supported panel edge with tangential 
displacements allowed and C ~ denotes a clamped panel edge with tangential displacements 
allowed. H denotes a hinged panel edge (immovable) and C denotes a rotationally and 
translationally clamped panel edge. F denotes a completely free edge. The first and third 
symbols in the boundary condition designation refer to the straight longitudinal edges of 
the panel, whereas the second and fourth symbols refer to the curved edges. For example, a 
panel having simply supported straight edges and clamped circular edges with in-plane 
displacements at all edges unrestrained is designated as H~-C'-H~-C~. The entire panel is 
taken for discretization and a 6 x 6 finite element mesh is used for analysis. The EI-3 
model and an integration order of 2 x 2 have been used. 

6.1 Shallow cylindrical panels with H-F-H-F boundary condition 

Pressure versus central radial deflection curves for different lay-ups are presented in 
figure 8 for four types of laminates. All the curves depict snap-through behaviour. In the 
case of lay-ups marked (1) and (2) in figure 8, there is no bifurcation i.e., the first limit point 
is followed by the second limit point. In the case of lay-ups marked (3) and (4), bifurcation 
takes place in between the first and the second limit points. In curve (3), bifurcation takes 
place just before the second limit point whereas in the case of curve (4), bifurcation takes 
place just after the first limit point. The secondary paths are not traced as the pressure at the 
first limit point governs the load carrying capacity. The pressures at the first limit point for 
the above cases (1), (2), (3) and (4) are 7.702, 7.703, 10.133 and 8.800kPa respectively. 
Cross-ply panels are seen to have higher load carrying capacity as compared to angle-ply 
panels. 

6.2 Shallow cylindrical panels with H-H-H-H boundary condition 

Pressure versus central radial deflection curves for different lay-ups are presented" in figure 9. 
Apart from the geometrical and material data including loading, the lamination parameters 
of the panels are same as those of the previous problem. The only change is the boundary 
condition from H-F-H-F to H-H-H-H. This gives rise to a change in the load-deflection 
response from snap-through (figure 8) to hardening type of nonlinearity (figure 9). As the 
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Figure  8. 
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number of layers is large, the effects of the coupling terms have diminished and hence all the 
four laminate constructions exhibit almost the same behaviour. 

6.3 Shallow cylindrical panels with C-C-C-C boundary condition 

Pressure versus central radial deflection curves for different lay-ups are presented in 
figure 10. Geometric and material data, and lamination parameters including loading, are 
the same as those of the previous two problems. The only change is the boundary condition, 
C-C-C-C. The load-deflection responses are of the hardening type similar to those of panels 
with all edges hinged (figure 9). However, the extent of nonlinearity is more in the case of 
clamped panels than in that of hinged panels. The term "extent of nonlinearity" is taken to 
mean the deviation from linear behaviour (represented by the straight line tangent to the 
curve at the origin). 

6.4 Deep cylindrical panels with H-F-H-F boundary condition 

Pressure versus central radial deflection curves for different lay-ups are presented in 
figure 11. The response of a deep panel is entirely different from that of a shallow panel. In 
the present case, the primary path consists of a steep straight line followed by a horizontal 
line (large deflections for small pressure increments) in comparison to the snap-through 
behaviour, figure 8. It is also observed that the panels undergo bifurcation failures at 
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Figure 11. 
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different pressure levels depending on the lamination schemes. Bifurcation load levels are 
found to be less than half of the maximum loads. 

6.5 Deep cylindrical panels with H-H-H-H boundary condition, 

Pressure versus central radial deflection curves for different lay-ups are presented in 
figure 12. The behaviour of the panels is seen to be different from that of panels in figure 
11. This is a hardening type of nonlinearity and no bifurcation occurs. Referring to figure 9, 
a comparison of shallow and deep panels reveals that the lamination schemes have some 
effect on the pressure-deflection response. 

6.6 Deep cylindrical panels with C-C-C-C boundary condition 

Pressure versus central radial deflection curves for different lay-ups are presented in 
figure 13. The behaviour of the panels is of hardening type. Cross-ply panels are seen to be 
stiffer than angle-ply laminates. , , ,, 

-~  + -  

7. Conclusions "" 
" + ' 4  . 

Based on the type of examples used in the present work, the following conclusions are made: 

(1) All the explicit through-thickness integrati6n m0del~ predict global response (deflection) 
with almost the same accuracy as ,the, numerical integration.model :(NI model). For 
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geometric parameters of practical range, it may be concluded that no sacrifice on numerical 
accuracy is made due to the simplifying assumptions leading to the explicit integration 
schemes. 
(2) The explicit through-thickness integration models EI-l, EI-2 and EI-3 exhibit expo- 
nential decrease in computational time compared to the numerical integration model (NI 
model) as the number of layers increases. Models EI-2 and EI-3 take lower computer times 
compared to the EI-1 model. The saving in computer time ranges from 40 to 60% depend- 
ing on the problem type in the case of linear analyses (Prema Kumar & Palaninathan 1997). 
Efficiencies of EI-2 and EI-3 models increase further in the case of nonlinear problems, 
with savings of computer time of about 85%. 
(3) In general, for the geometric parameters and numerical examples considered, it may be 
concluded that the Et-3 model is the best from the points of view of numerical accuracy 
and computational efficiency as the EI-2 model does not predict the variation of stress 
across the thickness (Prema Kumar & Palaninathan 1997). 
(4) The NI model is computationally efficient for homogeneous and laminated shells with 
very few layers. 
(5) Small rotation formulation for geometric nonlinear analysis is seen to result in almost 
the same numerical accuracy as that of large rotation formulation and the former is 
computationally efficient for the problems and step sizes considered in the present work. 
However, if the sample problem taken involves large rotations, the difference between the 
small and large rotation formulations may come out clearly. 

Based on the parametric study made of externally pressurized cylindrical panels, the 
following conclusions are made: 

(1) The strength of a shallow cylindrical panel with longitudinal edges hinged and curved 
edges free and subjected to external pressure is controlled by the limit point load, whereas 
for a deep panel, with other parameters remaining the same, the strength is controlled by 
the bifurcation load. 
(2) Shallow and deep panels under external pressure with all edges either hinged or 
clamped, exhibit hardening type of nonlinearity. 
(3) Boundary conditions have significant influence on load carrying capacities. Panels with 
longitudinal edges hinged and curved edges free are to be avoided in construction, as they 
undergo either limit point or bifurcation failure at very low load levels compared to other 
edge conditions. 

List of symbols 

(d} 
DTOL 

matrix of size 6 × 9 as defined by {eL) = ½[A]{g); 
= [B °] + [Be], matrix relating incremental Green's strains and incremental 
nodal displacements at a point; 
matrix relating incremental linear strains and incremental nodal displace- 
ments at a point; 
matrix relating incremental nonlinear strains and incremental nodal dis- 
placements at a point; 
matrix relating total strains and total nodal displacements at a point; 

vector of element degrees of freedom of size 40 x 1; 
analyst-specified tolerance on displacement norm; 
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{D} 

EL, ET 

FTOL 
Fnx,Fny,Fnz 

{g} 

[C] 
GLr, Grr 
hk 

]HI 

[13] 
J ; , J ;  

[J] 
[J*] 
IJI 

Ik°l 
[kL], [kL1], [ L2] 

[k°'l], [kcr2], [k ~3] 
[k ] 
LRF 
NEQ 
NL 
N. 
NNPE 
SRF 
t 
U, V, W 
Un, Vn, Wn 
Vi, V2, V3 
Vi o ,  o o Viny~ Vinz 
OLn, ~n 

vector of structure degrees of freedom; 
elasticity matrix of size 6 x 6 relating stresses and strains in the global 
directions of kth layer; 
moduli of elasticity in the fibre and transverse directions respectively of a 
layer ;  
analyst-specified tolerance on force norm; 
nonlinear functions of nodal rotations at a node n; 

IO .  Ov o .  ov Ow Ou ov Ow\ 
(--\Ox' Ox' Ox ' Oy' Oy' Oy' Oz' Oz' -~$Oz / = vector of derivatives of 

displacements in the global directions at a point; 

displacement gradient matrix defined by 6{g} = [G]6{d}; 
shear moduli 
thickness of kth 

1 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 1 0 

unit matrix of 

element of 
respectively; 

of lamina; 
layer; 

0 0 0 0 0 
0 1 0 0 0 
0 0 0 0 0 
0 0 1 0 1 
0 0 0 1 0 
1 0 0 0 0 

size 3 x 3; 

inverse Jacobian 

_ 

0 
1 
0 
0 
0 

at outer and inner surfaces of shell 

1 * 1 * (J; + J~,) and ~ (J; - J~) respectively; 

Jacobian matrix of size 3 x 3; 

inverse of the Jacobian matrix; 

determinant of the Jacobian matrix; 

linear element stiffness matrix of size 40 x 40; 

initial displacement matrices each of size 40 x 40; 

element secant stiffness matrix of size 40 x 40 

initial stress matrices each of size 40 x 40; 

element tangent stiffness matrix of size 40 x 40; 
large rotation formulation; 
total number of structure degrees of freedom; 
number of layers; 
shape function for node n; 
number of negative pivot elements; 
small rotation formulation; 
total thickness of shell; 
displacements in the global x-, y-, z-directions respectively at a point; 
displacements in the global x-, y-, z-directions respectively at node n; 
local axes mutually perpendicular to one another at a node n; 
direction cosines of V/° axis with respect to global axes, i = 1, 2, 3; 
rotations of the normal about local axes V2n and V1, respectively at a 
node n; 



V 

I)LT, VTF 

{Cr} 

6 
( ) 
{ } 
[ ]  
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(ex, ey, e:, %=, 7xz, 7x.) 7" = vector of  Green's strains in the global direc- 
tions at a point; 
vector of  linear strains in the global directions at a point; 

vector of nonlinear strains in the global directions at a point; 
Poisson's ratio; 
major and minor Poisson's ratios of a lamina 

(crx, Cry, Crz, Tyz, 7-xz, Txy) T = vector of Piola-Kirchhoff stresses in the global 
directions at a point; 
curvilinear coordinates at a point; 
natural coordinate in the thickness direction for kth layer; 
denotes variation of the following variable; 
denotes a row vector; 

denotes column vector; 

denotes a matrix; 

denotes the transpose of a matrix. 
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