KINETICS AND MECHANISM OF THE DECOMPOSITION OF $Cs_2Pt[CH_3]_2Cl_4$ IN AQUEOUS SOLUTION WITH CONCURRENT FORMATION OF C_2H_6 , C_2H_4 , AND C_2H_5Cl

V. V. Zamashchikov and V. G. Popov

UDC 541.128:546.92

Reductive elimination of ethane from $Cs_2Pt(CH_3)_2Cl_4$ in aqueous chloride solutions at 368 K is accompanied by C-H bond scission. A mechanism is proposed for the reaction which includes the intermediate formation of an ethylhydrideplatinum(IV) and an ethylplatinum(II) complex.

Reductive elimination leading to the formation of a C-C bond is an important, but little studied, reaction of organic derivatives of the transition metals; such reactions are frequently terminal stages in homogeneous catalytic processes (see [1]). For model systems – polymethyl d^6 complexes of platinum and palladium – reductive elimination of ethane is considered as the result of concerted scission of two metal-carbon bonds with the formation of a C-C bond [2, 3].

We observed that decomposition of the dimethyl complex $Cs_2Pt(CH_3)_2Cl_4$, synthesized by a known method [4], in D_2O-DCl solution (3.0 mole/liter) at 368 K gave a mixture of $C_2H_{6-i}D_i$ in the ratio 1.0:0.8:2.0:2.2:0.2:0.3:0.3 for i = 0 to 6 respectively. (It was earlier thought [5] that dimethylplatinum (IV) complexes underwent only substitution of ligands without Pt-C bond scission in aqueous solution.) Since deuterium exchange via secondary reactions of ethane with platinum (II) under these conditions can be ruled out (see [6]) and since, according to ¹H NMR results, $[Pt^{IV}(CH_3)_2]^{2+}$ complexes do not undergo H/D exchange with the medium, this result indicates C-H bond scission before separation of ethane. Consequently the concerted mechanism for ethane formation is excluded in our case.

The following scheme is proposed based on the experimental results:

$$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} Pt^{IV} \xrightarrow{I} \\ -H^{+}, 3 \end{array} \begin{array}{c} CH_{3}CH_{2} \\ H \end{array} \begin{array}{c} Pt^{IV} \xrightarrow{I} \\ -H^{+}, -3 \end{array} \begin{array}{c} C_{2}H_{5}Pt^{II} \\ +H^{+}, -3 \end{array}$$
(1)
$$C_{2}H_{4} + Pt^{0} \xrightarrow{-H^{+}}{6} C_{2}H_{5}Pt^{II} \\ Pt^{IV} \\ -H^{+}, -3 \end{array}$$
(1)

The basis for this scheme is as follows. The rate constant for ethane evolution

$$k_{\rm EtH} = \frac{1}{[{\rm Pt}^{\rm IV}({\rm CH}_3)_2]_0} \left(\frac{d[{\rm C}_2{\rm H}_6]}{d\tau}\right)_{\tau \to 0},$$

were measured by a GLC method. It did not depend on $[Pt^{IV}(CH_3)_2]_0$ in the range $1.0 \cdot 10^{-3}$ to $7.3 \cdot 10^{-3}$ mole/liter in the system $Cs_2Pt(CH_3)_2Cl_4$ (10^{-3} mole/liter) $-HCl-NaCl-H_2O$ ($[Cl^- = 3.0 \text{ mole/liter} \cdot 368 \text{ K}$) (system I). The values of k_{EtH} remained practically constant with $[H^+]$ from 0.01 to 3.0 mole/liter (see Table 1). However as a result of concurrent protolysis (stage -3) and oxidation (4) of the ethyl complex $C_2H_5Pt^{II}$ on addition of Na_2PtCl_6 (see [7]) the yield of ethane was reduced and ethyl chloride was evolved. The latter was formed by S_N^2 decomposition of ethylplatinum(IV), the oxidation product of

L. M. Litvinenko Institute of Physico-organic and Coal Chemistry, Academy of Sciences of Ukraine, Donetsk. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 29, No. 2, pp. 154-158, March-April, 1993. Original article submitted June 4, 1993 [sic].

TABLE 1. Rate Constants for the Evolution of Ethane and Ethene in Systems I and II (system compositions are discussed in the text)

Parameter	I			11		
[H ⁺], mole/liter	-10 ⁻⁷	0,01	0,026	0,262	0,533	3,0
$k_{\rm EiH} \cdot 10^7$, s ⁻¹	0,16	1,79	1,76	1,94	2,13	2,35
$k_{en} \cdot 10^7$, s ⁻¹	1,6	0	0	0	0	0

TABLE 2. Dependence of the Rate Constant for the Evolution of Ethane in System I on the Acidity of the Medium and the Addition of Na_2PtCl_6 .

[H⁺] 10, mole/liter	[Pt^{IV}]·10² , mole/liter	[Pt ^{tV}]/{H ⁺ }·10	<i>к</i> ын · 10 ⁸ , s ⁻¹	גנווי10 ⁸ , ≤ ¹
2,62	0	0	19,4	19,3
7,50	3,3	0,446	10,5	11,3
2,62	2,78	1,06	7,94	7,65
2,62	5,69	2,17	5,30	5,31
2,62	11,9	4,56	3,74	3,74
0,655	4,36	7,79	2,52	3,06
0,655	4,81	18,4	1 ,97	2,46
0,147	4,27	29,0	1,98	2,29

*Calculated from Eq. (2).

 $C_2H_5Pt^{II}$ (stage 5). In agreement with scheme (1), the sum of the values of k_{EtH} and the rate constant for the evolution of ethyl chloride, k_{EtCl} , measured analogously, remains constant:

[Pt ^{IV}]/[H ⁺]	$k_{\rm EiH} \cdot 10^7$, s ⁻¹	$k_{\rm EtCl} \cdot 10^7$, s ⁻¹	$(k_{\rm EtH} + k_{\rm EtCl}) \cdot 10^7$, s ⁻¹
0	$2,3 \pm 0,1$	0	$2,3 \pm 0,1$
2,0	$0,20 \pm 0,01$	$2,2 \pm 0,2$	$2,4 \pm 0,2$

and the value of k_{EtH} is independent of $[\text{Pt}^{\text{IV}}]$ with a constant ratio $[\text{Pt}^{\text{IV}}]/[\text{H}^+] = 0.78$:

[Pt^{IV}]·10², mole/liter 1,15 4,50 10,2 20,4 $k_{\text{E1H}} \cdot 10^{3}$, s⁻¹ 2,2 2,3 2,1 2,4 2,2±0,1 (av)

Increasing the ratio $[Pt^{IV}]/[H^+]$ led to a decrease in the value of k_{EtH} (Table 2) according to the expression

$$k_{\rm EtH} = \frac{1 + (2.0 \pm 0.3) [\rm Pt^{\rm IV} / \rm H^+]}{(5.2 \pm 0.9) \cdot 10^6 + (1.01 \pm 0.08) \cdot 10^8 \cdot [\rm Pt^{\rm IV} / \rm H^+]},$$
(2)

which agrees with scheme (1). From the parameters of this equation we found $k_1 = (1.9 \pm 0.3) \cdot 10^{-7} \text{ s}^{-1}$; $k_4/k_{-3} = 2.0 \pm 0.3$; $k_2/k_3 = 0.10 \pm 0.04$, where k_i is the rate constant for the corresponding stage. Expression (2) reaches a plateau with $[\text{Pt}^{\text{IV}}]/[\text{H}^+] \ge 1.8$ which corresponds to conditions in which the intermediate $C_2H_5\text{Pt}^{\text{II}}$ is practically completely intercepted by the oxidizing agent.

On changing from acid to neutral conditions (system II, $Cs_2Pt(CH_3)_2Cl_4$ (10⁻³ mole/liter) – NaCl (3.0 mole/liter) – Na₂HPO₄ – KH₂PO₄ – H₂O, pH \approx 7 (phosphate buffer), 368 K), stage –3 decelerates because of the decrease in [H⁺] and, in the absence of an oxidizing agent route 6, the decomposition of ethylplatinum(II) to give ethene, takes over. Similar reactions are known for dialkyl d^8 complexes of platinum [1]. The rate constant for the evolution of ethene, k_{en} , measured analogously to k_{EtH} , is also independent of [Pt^{IV}(CH₃)₂]₀. The sum $k_{en} + k_{EtH}$ is practically the same (Table 1) as the value of k_{EtH} in system I where $C_2H_5Pt^{II}$ is intercepted by H⁺ in the absence of an oxidizing agent. Addition of Na₂PtCl₆ (0.01 to 0.04 mole/liter) to system II completely inhibits the formation of ethene and diverts ethylplatinum(II) to the concurrent stage 4.

The decomposition of $[Pt^{IV}(CH_3)_2]^{2+}$ in system II gave ethane as well as ethene (Table 1) and addition of Na₂PtCl₆ had practically no effect on the rate of ethane evolution ($k_{EtH} = (2.3 \pm 0.6) \cdot 10^{-8} \text{ s}^{-1}$ with $[Pt^{IV}] = 0$ to 0.04 mole/liter). We emphasize that, according to scheme (1), the formation of ethane under these conditions does not involve steps 3 and -3. Consequently the values of k_{EtH} obtained coincide with the value of $k_{EtH} = 2.0 \cdot 10^{-8} \text{ s}^{-1}$ in system I with $[Pt^{IV}]/[H^+] \ge 1.8$ when the same "shortened" route for ethane evolution occurs.

The first kinetically significant intermediate in scheme (1) is the ethylhydride complex of platinum(IV). The reversible elimination of H⁺ from this complex (step 3) leads to the formation of an ethyl complex of platinum(II), while step (2) gives ethane (see [6]). Introduction of the complex $C_2H_5Pt^{IV}H$ into scheme (1) provides an explanation for the evolution of ethane- d_1 during the decomposition of $Cs_2Pt(CH_3)_2Cl_4$ in a medium containing D⁺. It is known that similar alkyl hydride d^6 complexes of Rh and Ir are able to rearrange [8]:

$$\frac{D}{RCH_2}Pt \neq \frac{RCHD}{H}Pt$$

We note that the formation of $C_2H_5Pt^{IV}H$ from $[Pt^{IV}(CH_3)_2]^{2+}$ may occur via an intermediate carbene complex of platinum(IV). Such a route has been discussed [3] as one variant for the decomposition of trimethylpalladium(IV), an analog of $[Pt^{IV}(CH_3)_2]^{2+}$.

It is natural to ask why the dimethyl complex "chooses" the complex path, including steps 1 and 2, to eliminate ethane. According to the results of quantum chemical calculations on the decomposition of $Pt^{II}(CH_3)_2$ and $Pd^{II}(CH_3)_2$ by direct interaction of two sp^3 centers (methyl ligands) in a concerted reaction to evolve ethane corresponds to a very high energy barrier. This makes a multistage reductive elimination mechanism preferable.

REFERENCES

- 1. J. Collman, L. Higedas, J. Norman, and R. Finke, Organometallic Chemistry of the Transition Metals, Vol. 1 [Russian translation], Mir, Moscow (1989).
- 2. S. Roy, R. J. Puddephat, and J. D. Scott, J. Chem. Soc. Dalton Trans, No. 11, 2121-2125 (1989).
- 3. P. K. Byers, A. J. Carty, M. Crespo, et al., Organometallics, 7, No. 6, 1363-1367 (1988).
- 4. V. V. Zamashchkov, V. V. Popov, S. L. Litvinenko and K. Yu. Chotii, Metallorgan. Khim., 3, No. 4, 955-956 (1990).
- 5. J. R. Hall and G. A. Swile, J. Organometal. Chem., 139, No. 3, 403-418 (1977).
- 6. A. E. Shilov and A. A. Shteinman, Kinet. Katal., 18, No. 5, 1129-1145 (1977).
- 7. V. P. Tret'yakov and E. S. Rudakov, Complexes of Platinum Group Metals in Synthesis and Catalysis [in Russian], Chernogolovka (1983), pp. 71-80.
- 8. R. J. Bergman, J. Organometal. Chem., 400, No. 1/2, 273-282 (1990).
- 9. J. J. Low and W. A. Goddard, Organometallics, 5, No. 4, 609-622 (1986).