J.C.S. Dalton

The Reaction between *cis*-Bis(trifluoroacetato)bis(triorganophosphine)platinum(II) and Tetraorganotin Compounds †

By Colin Eaborn,* Kevin J. Odell, and Alan Pidcock,* School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ

The complex *cis*-[Pt(O₂CCF₃)₂L₂] (L = PMe₂Ph) reacts with SnRMe₃ compounds (R = aryl) to give *trans*-[PtR(O₂CCF₃)L₂] and *cis*-[PtR₂L₂], except for the sterically hindered mesityltrimethyltin which gives mainly *trans*-[PtMe(O₂CCF₃)L₂]. The latter is also the main product from SnMe₃(CH₂Ph). For L = PPh₃, SnMe₃Ph, and SnMe₃(C₆H₄Me- ρ) give mainly *cis*-[PtMe(O₂CCF₃)L₂]. For L = PMe₂Ph, SnMe₄ gives only *trans*-[PtMe(O₂CCF₃)L₂], but, for L = PPh₃, *cis*-[PtMe₂L₂] is also formed. The most reactive tin compound used, trimethyl-(2-thienyl)tin, readily reacts with *cis*-[Pt(O₂CCF₃)₂L₂] (L = PMe₂Ph or PEt₂Ph) or [Pt(cod)(O₂CCF₃)₂] to give exclusively *cis*-[Pt(C₄H₃S-2)₂L₂] or [Pt(cod)(C₄H₃S-2)₂]. ³¹P-{¹H} N.m.r. parameters are given.

WE have previously described the reactions of some organotin compounds, notably aryltrimethyltins, with the chloroplatinum(II) complexes (L = triorganophosphine; cod = cyclo-octa-1,5-diene) [Pt(cod)Cl₂],^{1,2} cis-[Pt(C₂H₄)Cl₂L],³ cis-[Pt(CO)Cl₂L],³ trans-[Pt(CO)(Cl)L₂]-[ClO₄],⁴ and [Pt(cod)Cl(PMe₂Ph)][BF₄].⁵ We now present the results of a study of the reaction between the tetraorganotin compounds and the trifluoroacetato-complexes cis-[Pt(O₂CCF₃)₂L₂], which, in contrast with cis-[PtCl₂L₂] complexes,² are readily converted by the organotin compounds into organoplatinum species.

RESULTS AND DISCUSSION

758

Heating a suspension of cis-[Pt(O₂CCF₃)₂(PMe₂Ph)₂] under reflux in benzene containing an excess of tetramethyltin for 4 h gave a 90% yield of *trans*-[PtMe-(O₂CCF₃)(PMe₂Ph)₂]. The presence of only one signal (with satellites) in the ³¹P-{¹H} n.m.r. spectrum of the product indicated a *trans* configuration, and this was confirmed by the appearance of a triplet for the PMe protons at τ 8.33 in the ¹H n.m.r. spectrum. [A 1:2:1 triplet at τ 9.82 is assigned to PtMe, the multiplicity arising from equal coupling to both *trans* ³¹P nuclei; the value of the coupling constant ²J(PtCH), *viz.* 85 Hz, is consistent with the presence of a ligand of low *trans* influence *trans* to the methyl group.] The i.r. spectrum contains bands at 1 690 and 1 417 cm⁻¹ characteristic of the unidentate trifluoroacetate ligand.⁶

In the reactions of other SnRMe₃ compounds the products were not isolated, but were identified in the reaction mixture by means of ³¹P-{¹H} n.m.r. spectroscopy. In each case, cis-[Pt(O₂CCF₃)₂L₂] (ca. 0.05 g) was treated with a large excess (ca. 0.3 cm³) of the SnRMe₃ compound, usually in dichloromethane (1 cm³) but sometimes in benzene (1 cm³). Reaction times are shown in Table 1, but disappearance of the cis-[Pt-(O₂CCF₃)₂L₂] may have been complete in a shorter time. The approximate compositions of the product mixtures shown in Table 1 reflect the peak heights of the relevant lines in the ³¹P-{¹H} n.m.r. spectrum. The products cis-[PtR₂L₂] (R = Me or aryl) were identified by comparison of the ³¹P-{¹H} n.m.r. spectra with those of authentic samples obtained from the [Pt(cod)R₂] com-

† No reprints available.

plexes by addition of the phosphine L^2 The products trans-[PtR(O₂CCF₃)L₂] (R = Me, aryl, or CH₂Ph) were identified by adding lithium chloride or tetraethyl-ammonium chloride to the product solution to give the corresponding chlorides trans-[PtR(Cl)L₂], and comparing the resulting ³¹P-{¹H} n.m.r. spectral parameters with those of authentic samples obtained from [Pt-(cod)R(Cl)]² by addition of the phosphine L.

INDLE I	Т	ABLE	1
---------	---	------	---

Products from the interaction of cis-[Pt(O₂CCF₃)₂L₂] (1) and SnRMe₃ compounds: trans-[PtMe(O₂CCF₃)L₂] (2), cis-[PtMe₂L₂] (3), trans-[PtR(O₂CCF₃)L₂] (4), cis-[PtR₂L₂] (5)

		Conditions ^a Product composition (%) ^b						
L	R	$\theta_c/^{\circ}C$	t/h	$\overline{(1)}$	(2)	(3)	(4)	(5)
PMe ₂ Ph	\mathbf{Ph}	20	9				38	62
-	C ₆ H ₄ OMe-o	20	12				35	65
	C ₆ H₄F-m	80 °	4				49	51
	$C_{6}H_{4}OMe-p$	80 °	2				78	12
	C_4H_3S-2	20	2					100
	$C_{6}H_{2}Me_{3}-2,4,6$	20	100	6	77		17	
	Me	80 °	10		100			
	CH ₂ Ph	20	15		100			
	CH_2Ph	80 °	24		60		40	
$PEt_{2}Ph$	C_4H_3S-2	20	2					100
PPh_3	Ph	20	9	83	17			
	$C_{6}H_{4}Me-p$	20	23		85		15	
	Me	20	18		70	30		
$\frac{1}{2}$ cod	C_6H_4OMe-p	20	3					100 ^d

^a In CH₂Cl₂ unless otherwise stated. ^b Composition derived from peak heights in ³¹P-{¹H} n.m.r. spectra. ^c In benzene under reflux. ^d Spectrum recorded after addition of dppe.

In reactions with cis-[Pt(O₂CCF₃)₂L₂] complexes (L = PMe₂Ph or PEt₂Ph), the most reactive aryltin compound used, trimethyl(2-thienyl)tin gave the diaryl complex cis-[Pt(C₄H₃S-2)₂L₂] as the sole phosphine-containing species in <2 h at room temperature. Less active SnRMe₃ (R = aryl) compounds gave mixtures of monoand di-aryl complexes, trans-[PtR(O₂CCF₃)L₂] and cis-[PtR₂L₂] (Table 1), except that the sterically hindered mesityltin compound gave mainly the methyl complex trans-[PtMe(O₂CCF₃)L₂] together with some of the aryl complex trans-[Pt(C₆H₂Me₃-2,4,6)(O₂CCF₃)L₂]. Benzyltrimethyltin in dichloromethane at room temperature gave exclusively the methyl complex cis-[PtMe-(O₂CCF₃)L₂], but in refluxing benzene this and the

³¹P-{¹H} N.m.r. parameters for *trans*-[PtR(O_2CCF_3)L₂] and *cis*-[PtR₂L₂] complexes ^a

. .

				1/
			δ/	(Pt–P)/
Complex	R	L	p.p.m. *	Hz
trans-[PtR(O2CCF3)L2]			
	Me	PMe ₂ Ph	139.3	2988
	CH ₂ Ph	-	ه 142.6	2 956 °
	Et		139.2	$3\ 179$
	C_4H_3S-2		152.8	2888
	Ph		142.7	$2\ 954$
	C ₆ H₄OMe-p		۹ 142.7	2 942 °
	C ₆ H ₄ OMe-o		143.7	2 915
	C_8H_4F-m		145.7 ه	2 817 °
	Me	PPh_{3}	110.9	3 230
	C ₆ H₄Me-⊅		117.6	$3\ 224$
$cis-[PtR_2L_2]$	-			
	Ph	PMe₂Ph	155.6	1 751
	C ₆ H ₄ OMe-o		156.1	1 951
	C_6H_4F-m		155.9	1 809
	C_6H_4OMe-p		155.1	1 762
	C_4H_3S-2	PEt_2Ph	138.2	2 024
	Me	PPh_3	112.7	1 899
	C_6H_4OMe-p	$\frac{1}{2}$ dppe	99.3	1 721

^a In CHCl₂ except where indicated. ^b Relative to external $P(OMe)_3$ in CH_2Cl_2 ; positive values are to high field of the reference. ^c In PhH.

benzyl complex cis-[Pt(CH₂Ph)(O₂CCF₃)L₂] were found in 3:2 ratio.

Aryl transfer from tin to platinum is markedly less effective for $L = PPh_3$; treatment of $cis-[Pt(O_2CCF_3)_2-$ (PPh₃)₂] with SnMe₃Ph at room temperature for 9 h gives solely the monomethyl complex trans-[PtMe(O₂CCF₃)- $(PPh_3)_2$ (in 17% yield), whereas under the same conditions cis-[Pt(O₂CCF₃)₂(PMe₂Ph)₂] undergoes complete conversion into cis-[PtPh(O₂CCF₃)(PMe₂Ph)₂] and trans-[PtPh₂(PMe₂Ph)₂]. Even trimethyl(p-tolyl)tin gives mainly trans-[PtMe(O₂CCF₃)(PPh₃)₂] together with some trans-[$Pt(C_6H_4Me-p)(O_2CCF_3)(PPh_3)_2$]. In contrast, towards tetramethyltin the triphenylphosphine complex $cis-[Pt(O_2CCF_3)_2(PPh_3)_2]$ is more reactive than the corresponding PMe₂Ph complex in the sense that it gives the dimethyl complex cis-[PtMe₂(PPh₃)₂] together with trans-[PtMe(O₂CCF₃)(PPh₃)₂]. The low reactivity of the triphenylphosphine complexes towards aryltin compounds and their preference for accepting Me rather than aryl groups can reasonably be attributed to steric hindrance.

The sequence of ease of transfer of R groups from SnRMe₃ compounds to platinum in reactions with $cis-[Pt(O_2CCF_3)_2(PMe_2Ph)_2], \quad viz.$ $(R =) C_4 H_3 S-2 >$ $C_6H_4X > Me$, and CH_2Ph , is consistent with regarding the reaction as involving electrophilic attack on the carbon atom of the Sn-R bond, as suggested for the reaction between $SnRMe_3$ (R = aryl) compounds and [Pt(cod)Cl₂]. However, the much greater reactivity of cis-[Pt(O₂CCF₃)₂L₂] than of cis-[PtCl₂L₂] complexes $(L = PMe_{2}Ph)$ suggests that there may be a cyclic transition state of the type (A); the bond makings and breakings need not be fully synchronous, and so there could still be substantial Wheland-intermediate character for R = aryl. The results in Table 1 indicate that replacement of the first trifluoroacetate ligand of cis $[Pt(O_2CCF_3)_2L_2]$ by the R group is normally substantially faster than that of the second. We tentatively suggest that cis- $[PtR(O_2CCF_3)L_2]$ is initially produced, and can either (a) react with further SnRMe₃ to give cis- $[PtR_2L_2]$ or (b) isomerize to trans- $[PtR(O_2CCF_3)L_2]$,

which then reacts only very slowly with $SnRMe_3$. Further work would be needed to establish this.

The reaction of tetraethyltin with cis-[Pt(O₂CCF₃)₂L₂] (L = PMe₂Ph) in dichloromethane was also examined. After 24 h at room temperature the ³¹P-{¹H} n.m.r. spectra showed the presence of only one phosphinecontaining species, with δ 139.2 p.p.m., ¹J(Pt-P) 3 179 Hz. This was identified as *trans*-[PtEt(O₂CCF₃)L₂] by (*i*) comparison of the spectrum with that of a solution obtained by treatment of *trans*-[PtEt(Cl)L₂]² with silver(1) trifluoroacetate,⁷ and (*ii*) by addition of [NEt₄]Cl to the product solution to give a spectrum [δ 142.3 p.p.m., ¹J(Pt-P) 3 071 Hz] identical with that of *trans*-[PtEt-(Cl)L₂]. Because of its high solubility in the common organic solvents the product could not be isolated crystalline.

As expected, the cod complex $[Pt(cod)(O_2CCF_3)_2]$ was found to be very reactive towards organotin compounds, and thus treatment with SnMe₃(C₆H₄OMe-*p*) in dichloromethane at room temperature for 3 h gave the diaryl complex $[Pt(cod)(C_6H_4OMe-p)_2]$ in 100% yield; formation of this product from $[Pt(cod)Cl_2]$ required refluxing in this solvent for several hours.²

The high reactivity of cis-[Pt(cod)(O₂CCF₃)] led us to hope that it might react usefully with tetraorganosilanes, so the complex was treated with SiMe₃(C₆H₄OMe-p) in sym-dichloromethane for 10 h, and with SiMe₃(C₄H₃S-2) in chloroform for 0.5 h. In each case the only product isolated was [Pt(cod)Cl₂], and addition of 1,2-bis(diphenylphosphino)ethane (dppe) to the product solution and examination of the ³¹P-{¹H} n.m.r. spectrum [8 98.7 p.p.m., ¹J(Pt-P) 3 621 Hz] showed [PtCl₂(dppe)] to be the only phosphine-containing product present. The chloride ligands must have come from the solvent, and reactions in non-chlorinated solvents have yet to be examined.

Sodium tetraphenylborate was found to be more effective than aryltrimethyltin compounds in arylating platinum in cis-[Pt(O_2CCF_3)₂L₂] (L = PPh₃). When the complex was treated with a large excess of Na[BPh₄] in dichloromethane-tetrahydrofuran for 12 h at 25 °C the ³¹P-{¹H} n.m.r. spectrum of the solution indicated that ca. 90% of trans-[PtPh(O_2CCF_3)L₂] [δ 117.0 p.p.m., ¹J(Pt-P) 3 213 Hz] had been formed together with ca. 10% of trans-[PtPh(Cl)L₂] [δ 115.6 p.p.m., ¹J(Pt-P) 3 157 Hz]. The spectrum did not change after another

J.C.S. Dalton

2 d, but addition of sodium chloride caused conversion of all the trans- $[PtPh(O_2CCF_3)L_2]$ into trans- $[PtPh(Cl)L_2]$. The formation of the complex [PtPh(Cl)L₂] in the reaction mixture can be accounted for by assuming that the commercial sample of Na[BPh₄] used contained $\geq 1\%$ of NaCl.

EXPERIMENTAL

Dried deoxygenated solvents were used, and reactions were carried out under dry nitrogen.

Preparation of Complexes $cis-[Pt(O_2CCF_3)_2L_2]^{.8}-(i)$ An excess of trifluoroacetic acid (1.5 cm³) was added to a

Preparation of trans-[PtMe(O2CCF3)(PMe2Ph)2].-A suspension of cis-[Pt(O₂CCF₃)₂(PMe₂Ph)₂] (0.25 g, 0.36 mmol) in benzene (10 cm³) containing an excess of tetramethyltin (0.5 cm^3) was heated under reflux for 5 h then set aside overnight. The solvent was removed in vacuo, and the residual waxy solid dissolved in warm diethyl ether (7 cm³). Addition of pentane followed by cooling gave white plates bis(dimethylphenylphosphine)methyl(trifluoroacetato)of platinum(II) (0.195 g, 90%), m.p. 103-108 °C; v(OCO)_{asym} at 1 690 cm⁻¹, ν (OCO)_{sym} at 1 417 cm⁻¹; τ (CDCl₃) 9.81 [t, PtMe, ²J(PtCH) 83, ³J(PPtCH) 7.0 Hz], 8.33 [t, PMe, |²J(PCH) + ⁴J(PPtPCH)| 6.9, ³J(PPtCH) 29.5 Hz], 2.38-2.68 (m, C₆H₅) (Found: C, 37.6; H, 4.2. C₁₉H₂₅F₃O₂P₂Pt

TABLE 3

Yields, analyses, and physical constants for complexes $[Pt(O_2CCF_3)_2L_2]$

		Analysis(%)						91D (11	T)		
			Found Calc.		$\nu(OCO)/cm^{-1}$		³¹ P-{ ¹ H} n.m.r. ^b				
		M.p.	بريم د						•	1/(Pt-P)/	•
Complex	Yield(%)	$(\theta_{\rm e}/{\rm °C})$	С	н	С	Н	asym	sym	δ/p.p.m.	Hz	Notes
cis-[Pt(O ₂ CCF ₃) ₂ (PMe ₂ Ph) ₂]	95	168 - 172	34.6	3.4	34.4	3.2	1692	1 412	161.5	3 770	с
$cis-[Pt(O_2CCF_3)_2(PEt_2Ph)_2]$	85	162	38.3	4.0	38.3	4.0	1 694	1 408	143.3	3 765	
$cis-[Pt(O_2CCF_3)_2(PPh_3)_2]$	90	d	50.4	4.1	50.8	3.2	1 692	1 412	136.1	3 938	е
$trans-[Pt(O_2CCF_3)_2(PPh_3)_2]$	80	190 - 230	50.2	3.0	50.8	3.2	1 724	1 405	126.3	2815	
$cis-[Pt(cod)(O_2CCF_3)_2]$	70	135 - 155	26.8	2.7	27.2	2.3	1 700	1 406			f

^a In Nujol. ^b In CH₂Cl₂ relative to external P(OMe)₃. ^c ¹H N.m.r., τ 8.45 [d, PMe, ²*J*(PCH) 11.5, ³*J*(PtPCH) 35 Hz]. ^d Lit., ^a m.p. 230—235 °C. ^e Product contained some *cis*-isomer. ^f ¹H N.m.r., τ 7.3 (m, CH₂CH₂), 4.33 [t, CH=CH, ²*J*(PCH) 67.5 Hz]. Weak ν (OCO)_{asym} bands at 1 570 and 1 710 cm⁻¹ and weak ν (OCO)_{asym} bands at 1 387 and 1 230 cm⁻¹ are attributed to [Pt₂(O₂CCF₃)₃- $(C_8H_{12}CO_2CF_2)_2$ impurity, which also gives rise to a weak ¹H n.m.r. multiplet at τ 7.7–8.7.

solution of $[Pt(CO_3)(PMe_2Ph)_2]$ (2.5 g, 4.7 mmol) in dichloromethane (60 cm³). The mixture was boiled under reflux for 2.5 h, then set aside at room temperature overnight. The solvent was removed, and diethyl ether (10 cm³) added to give a white solid, which was filtered off, washed with diethyl ether, dried in vacuo, and shown to be cis-bis(dimethylphenylphosphine)bis(trifluoroacetato)platinum-(II) (3.1 g, 95%).

(ii) The corresponding complexes with $L = PPh_3$ and PEt₂Ph were prepared analogously. Analyses and physical constants for all three complexes are given in Table 3, which also gives data for trans-[Pt(O2CCF3)2(PPh3)2], which was obtained, contaminated with a little of the cis isomer, by refluxing a dichloromethane solution of cis-[PtCl₂(PPh₃)₂] for 6 h with a small excess of silver(I) trifluoroacetate.

(iii) A mixture of $Ag[O_2CCF_3]$ (1.4 g, 6.5 mmol), [Pt(cod)Cl₂] (1.1 g, 2.9 mmol), and dichloromethane (20 cm³) was boiled under reflux for 6 h with protection from light. The mixture was filtered, and the filtrate reduced in volume to ca. 5 cm³. Addition of diethyl ether gave colourless needles of (cyclo-octa-1,5-diene)bis(trifluoroacetato)platinum-(II) (1.05 g, 68%). The i.r. and ¹H n.m.r. spectra indicated that a small quantity of [Pt₂(O₂CCF₃)₂(C₈H₁₂·CO₂CF₃)₂] was also present (see Table 3), having been formed by attack of the carboxylate ion at the olefinic bond.9

requires C, 38.1; H, 4.2%). The ³¹P-¹{H} n.m.r. data are given in Table 2.

We thank the S.R.C. for the award of a Research Studentship (to K. J. O.), and Chugoku Marine Paints Ltd. for a generous gift of dichlorodimethyltin.

[8/984 Received, 25th May, 1978]

REFERENCES

- ¹ C. Eaborn, K. J. Odell, and A. Pidcock, J. Organometallic Chem., 1975, 96, C38. ² C. Eaborn, K. J. Odell, and A. Pidcock, J.C.S. Dalton, 1978,
- 357.
- ³ C. Eaborn, K. J. Odell, and A. Pidcock, J.C.S. Dalton, 1978,
- 1288. 4 C. Eaborn, K. J. Odell, and A. Pidcock, J.C.S. Dalton, 1979, 134. ⁵ C. Eaborn, K. J. Odell, and A. Pidcock, J. Organometallic
- Chem., 1978, 146, 17.
- ⁶ S. D. Robinson and M. F. Uttley, J.C.S. Dalton, 1973, 1912. 7 H. C. Clark and H. K. Kurosawa, Inorg. Chem., 1972, 11, 1275.
- ⁸ C. J. Nyman, C. E. Wymore, and G. Wilkinson, J. Chem. Soc. (A), 1968, 561. S I Bette A
- S. J. Betts, A. Harris, R. N. Hazeldine, and R. V. Parish, J. Chem. Soc. (A), 1971, 3699.