ORIGINAL RESEARCH

Synthesis, molecular docking studies, and in vitro screening of sulfanilamide-thiourea hybrids as antimicrobial and urease inhibitors

Aamer Saeed · Sumera Zaib · Arshid Pervez · Amara Mumtaz · Mohammad Shahid · Jamshed Iqbal

Received: 13 September 2012/Accepted: 15 November 2012/Published online: 29 November 2012 © Springer Science+Business Media New York 2012

Abstract A series of novel hybrid molecules containing sulfanilamide and thiourea templates was designed and synthesized. These compounds were screened for antimicrobial and urease inhibitory activities. Some of the compounds revealed promising antibacterial and antifungal activities. Fascinatingly, the majority of the compounds exhibited potential urease inhibitory activities with IC₅₀ ranging from 0.20 to 7.50 μ M. Compound **2b** was identified as the most potent urease inhibitor (IC₅₀ 0.20 μ M), and was 100-fold more potent than thiourea, the standard inhibitor. Molecular docking studies of compounds were performed on 3D crystal structures of Jack bean and *Helicobacter pylori* ureases.

Keywords

1-Aroyl-3-(4-aminosulfonylphenyl)thioureas · Sulfanilamide-thiourea hybrids · Antibacterial activity · Molecular docking · Urease inhibition

Introduction

Over the last decade, the number of antibiotic-resistant Gram-negative and Gram-positive bacteria is reaching its

A. Saeed · A. Mumtaz Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan

S. Zaib · A. Pervez · J. Iqbal (⊠) Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan e-mail: drjamshed@ciit.net.pk

M. Shahid

Department of Bioinformatics, Fraunhofer Institute SCAI, Sankt Augustin, Germany

crucial point around the world (Gould, 2008). The increasing prevalence of multidrug resistant strains of bacteria and the recent emergence of new strains with reduced susceptibility to antibiotics raises the specter of untreatable bacterial infections (Sieradzki *et al.*, 1999). Therefore, there is an urgent need to develop anti-infective agents for the treatment of bacterial diseases. Currently, the research has been focused toward development of new antibacterial agents which may result in the discovery of novel effective compounds (Nitta *et al.*, 2002).

The limitations of current antifungal drugs, increased incidence of systemic fungal infections, and rapid development of drug resistance have highlighted the need for the discovery of new antifungal agents, preferably with novel mechanisms of action (Kontoyiannis *et al.*, 2003). While synthetic efforts remain the mainstream in antifungal drug discovery, as evidenced by the fact that 18 out of 23 antifungal drugs approved from 1980 to 2002 are synthetic (83 % belong to single azole class) (Newman *et al.*, 2003).

Urease (EC 3.5.1.5; urea amidohydrolase) is a metal containing enzyme that catalyzes the hydrolysis of urea into ammonia and carbon dioxide (Dixon et al., 1975). The activity of bacterial ureases has been shown to be important virulence factor in the development of many harmful clinical conditions for human and animal health as well as agriculture (Mobley et al., 1995). Bacterial ureases have been reported to be involved in the formation of infectious stones and development of peptic ulcers and stomach cancer (Montecucco and Rappuoli, 2001). Ureases also contribute to the development of urolithiasis, pyelonephritis, hepatic encephalopathy, hepatic coma, and urinary catheter encrustation (Mobley and Hausinger, 1989). Therefore, it is very much desired to find the potential urease inhibitors. We have reported different types of compounds as urease inhibitors (Aslam et al., 2011; Hanif et al., 2012a, b).

Sulfanilamide and its derivatives have extensively been used in chemotherapy due to their efficacy against broad range of microorganisms. Figure 1 shows some bioactive molecules reported in literature.

Sulfonyl ureas are very potent hypoglycemic agents due to their ability to stimulate the release of insulin from the pancreatic islets (Gribble and Reimann, 2003; Drews, 2000). Besides antibacterial and hypoglycemic activities, sulfonamides exhibit diuretic (Maren, 1976), anticarbonic anhydrase (Al-Rashida et al., 2011), antithyroid (Thornber, 1979), and antitumor activities (Abbate et al., 2004). Sulfonamides are also found to exhibit remarkable antimalarial activity (Ryckebusch et al., 2002; Krungkrai et al., 2005; Klingenstein et al., 2006). Several antiplasmodial 7-chloro-4-aminoquinolyl-derived sulfonamides, ureas, thioureas, and amides, have been synthesized and tested against chloroquine resistant and chloroquine sensitive Plasmodium falciparum (Koch, 2001).

Thiourea derivatives are potent antitrypanosoma (Aly et al., 2010), influenza virus neuraminidase inhibitor (Nair and Sobhia, 2008), antifungal against plant pathogenic fungi (Ramadas et al., 1998), herbicidal (Yonova and Stoilkova, 2004), and anticancer activities (Bestmann et al., 1992). In the title compounds, the sulfanilamide moiety is appended to the thiourea nucleus to combine their useful effects in a single structural unit. The aim of the synthesis is to reduce the toxicity of the parent compound and improve the therapeutic effect. The title compounds constitute a unique class of sulfonyl thioureas in which the anilino group of sulfanilamide has been incorporated into the thiourea nucleus leaving sulfonamide function intact, in contrast to most of the known sulfonyl urea/thiourea derivatives in which the sulfonamide group is masked by being a part of the urea/thiourea moiety (Saczewski et al., 2010; Faidallah et al., 2002). In the present investigation, novel sulforyl thioureas derivatives were synthesized and evaluated for in vitro antibacterial properties against four pathogenic bacterial strains and their urease inhibitory activity.

Results and discussion

Chemistry

The development of solvent-free organic synthesis is of current interest on account of many advantages, for example reduced pollution, low cost, simplicity in process and handling, potential applications in combinatorial chemistry and chemical industry. Thus, a variety of freshly prepared aroyl/acyl isothiocyanates (1a-1t) were treated with sulfanilamide in 1:1 molar ratio under neat conditions without using any catalyst to furnish the corresponding 1-aroyl/alkanoyl-3-(4-aminosulfonylphenyl)thioureas (2a-2t) in high yields (Scheme 1).

Stretching vibrations attributable to free and associated NH at 3,212–3,350, C=O at 1,655–1,675, C=S at 1,244–1,263 in addition to those for the aromatic ring at

2s 2-phenylbutanoyl

Fig. 1 Some structurally

 $1.581-1.590 \text{ cm}^{-1}$ could be identified in the IR spectra of the substituted aroyl thioureas, however, the presence of sulfonamido group leads to further complexity. In compounds containing the thioamide group (HNCS), a set of fundamentals involving the N-C and C=S bonds are identified known as "thioamide" bands: I, II, III, and IV. These bands have a large contribution from C-N stretching and (N-H) deformation (I), (C-N) and (C-S) stretchings (II and III) and (C-S) (IV) stretching and usually appear around 1470, 1250, 1080, and 750 cm^{-1} , respectively (Saeed et al., 2010). In ¹H NMR the characteristic broad singlets for protons of N₁ and N₃ are observed at δ 12.76 and 9.19, respectively besides the signals for aromatic protons. ¹³C NMR showed the peaks around δ 170 and 179 for C=O and C=S, respectively (Saeed et al., 2011) except for the alkanovl derivative **2p**, where these signals appear at δ 174 and 182, respectively.

Antibacterial activity

Antibacterial activity of the synthesized 1-aroyl-3-(4-aminosulfonylphenyl) thiourea derivatives was tested against different strains of both Gram-positive bacteria viz. *Staphylococcus aureus, Bacillus subtilis,* and two Gram-negative bacteria namely, *Escherichia coli,* and *Shigella flexneri*. Ciprofloxacin was used as a standard drug for the assay. The activities are reported in Table 1, the minimum inhibitory concentrations (MICs) were determined using the broth micro-dilution method, as recommended by the National Committee for Clinical Laboratory Standards.

All of the tested compounds 2a-2t showed potent antibacterial activity against the tested strains. In particular, compounds 2e and 2o, which possess a 3-chloro and 4-choro-2-nitro groups respectively, on the aroyl ring, were found to have the most potent activity (MIC: 0.156 µg/mL) against E. coli and were equipotent in vitro as ciprofloxacin (MIC: $0.156 \mu g/mL$). In addition, these compounds were two times more potent than reference drug against S. flexneri, as ciprofloxacin showed MIC: 0.313 µg/mL, whereas 2e and 2o showed MIC: 0.156 µg/mL. The antibacterial activity of 2i and 2s having comparatively non polar 3-methyl and 2-phenylbutanyl groups, respectively, was disappointing as these compounds were less potent (MIC: 1.250 µg/mL) than reference drug against E. coli (0.156 µg/mL). In case of Gram-positive organisms, most of the compounds exhibited activity better than or comparable to that of the reference (0.625 and 0.156 µg/mL for B. subtilis and S. aureus, respectively). Some of the compounds such as 2b, 2d, 2e, 2l, 2n, and 20 having polar or electron withdrawing substituents showed excellent inhibitory potency (MIC: 0.156 µg/mL) against B. subtilis, fourfold more potent than reference drug. However, all these compounds were equipotent as reference drug against S. aureus. In contrast, a few compounds such as

Table 1 The MIC (μ g/mL) values of 1-aroyl-3-(4-aminosulfonyl-phenyl)thiourea derivatives (2a–2t) against different bacterial strains and standard ciprofloxacin

Compounds	Bacterial strains and their MIC ($\mu g/mL$)				
	E. coli	B. subtilis	S. aureus	S. flexneri	
2a	0.313	0.313	0.313	0.156	
2b	0.313	0.156	0.156	0.313	
2c	0.313	0.313	0.313	0.156	
2d	0.313	0.156	0.156	0.313	
2e	0.156	0.156	0.156	0.156	
2f	0.313	0.313	0.313	0.313	
2g	0.313	0.313	0.313	0.313	
2h	0.313	0.625	0.625	0.313	
2i	1.250	0.313	0.625	0.313	
2j	0.313	0.313	0.313	0.313	
2k	0.313	0.313	0.313	0.156	
21	0.313	0.156	0.156	0.313	
2m	0.313	0.313	0.313	0.156	
2n	0.313	0.156	0.156	0.313	
20	0.156	0.156	0.156	0.156	
2p	0.313	0.313	0.313	0.313	
2q	0.313	0.313	0.313	0.313	
2r	0.313	0.625	0.625	0.313	
2s	1.250	0.313	0.625	0.313	
2t	0.313	0.313	0.313	0.313	
Ciprofloxacin	0.156	0.625	0.156	0.313	

MIC minimum inhibitory concentration

2h, **2i**, **2r**, and **2s** having non polar 2- or 3-methyl, 2-furanyl or a 2-phenylbutanyl substituent, were far less active than ciprofloxacin in inhibiting the growth of *S. aureus*. In general, the analogs bearing chloro and nitro, both groups together, or a trimethoxy group on aroyl ring exhibited more activity than the reference drug against the tested Grampositive and Gram-negative organisms.

Antifungal activity

Antifungal activity of the synthesized 1-aroyl-3-(4-aminosulfonylphenyl)thiourea derivatives was tested against different strains viz. *Aspergillus niger*, *Aspergillus flavus*, *Aspergillus pterus*, and *White rot*. The activities are represented in Table 2, the zone of inhibition was determined using the hyphal extension inhibition assay.

Among all the tested compounds 2a–2j, 2n, 2o, 2r, and 2s showed no antifungal activity against the tested strains. Compounds 2k and 2t showed activity against only one strain. 2l, 2m, and 2q showed significant antifungal activity against the tested strains and showed moderate zone of inhibition. Whereas 2p among all thiourea derivatives

Table 2 The zone of inhibition (mm) values of 1-aroyl-3-(4-amin-osulfonylphenyl)thiourea derivatives (2a-2t) against different fungal strains

Compounds			Fungal strains and zone of inhibition		
	A. niger	A. flavus	A. pterus	W. rot	
2k	_	_	0.9 ± 0.44	_	
21	1.6 ± 0.73	2.1 ± 0.09	-	-	
2m	2.4 ± 0.78	2.8 ± 0.15	-	0.7 ± 0.32	
2p	4.6 ± 0.34	5.1 ± 0.62	4.9 ± 0.71	2.3 ± 1.02	
2q	1.5 ± 0.06	1.9 ± 0.69	2.7 ± 0.81	0.9 ± 0.12	
2t	0.8 ± 0.39	-	-	-	
Terbinafine	5.3 ± 0.48	5.7 ± 0.72	5.2 ± 0.38	5.9 ± 0.19	

- No activity

exhibited excellent antifungal activity against tested strains and showed maximum zone of inhibition comparable to that of standard Terbinafine.

In vitro urease inhibitory activity

The inhibitory potential of the synthesized compounds was evaluated against Jack bean urease and is shown in Table 3. The substitution of different groups at phenyl ring resulted in variable inhibition patterns depending upon type and position of substituent. Some of the substituents at phenyl ring, increased inhibition potency of compounds and some resulted in lowering in inhibition capacity. Compounds have their activities in the range of $0.20 \pm 0.01 - 7.50 \pm 1.17 \ \mu M$ (Table 3). Compound 2a having phenyl ring with no substitution was found to have K_i value 1.31 \pm 0.23 μ M. Compounds **2b** and **2l** bearing a 4-chloro, and 2-chloro-5-nitro groups, respectively, on aroyl ring were found to be the most active inhibitors, with K_i values of 0.20 \pm 0.01 and 0.44 \pm 0.01 μ M, respectively. They were also found to be 100- and 50-fold more active than the standard inhibitor (thiourea, K_i 23 \pm 3.3 µM), respectively. It is interesting to note that compound 2b having chloro group at para position was most active while 21 having chloro at ortho position and electron withdrawing nitro group at meta position was relatively less active. While compound 2f having nitro group at meta position and 2i, 2j, and 2k having electron donating 3-methyl, 3-methoxy, and 2,3-dimethoxy groups, respectively are slightly less active than 2b and 2l.

Comparing **2c** and **2i** having electron releasing methyl group on para-, ortho-, and meta-positions, respectively, showed K_i values 4.32 ± 0.19 and $0.89 \pm 0.07 \mu$ M, respectively indicating that methyl group is most effective when present at meta position. All the target compounds were very potent inhibitors of urease, in most cases even more than the standard inhibitor, thiourea. The only

Table 3 Urease inhibition activities of the compounds (2a-2t) and standard inhibitor (thiourea)

Compounds	$K_i \pm \text{SEM} (\mu \text{M})$ (or % inhibition)
2a	1.31 ± 0.23
2b	0.20 ± 0.01
2c	4.32 ± 0.19
2d	7.50 ± 1.17
2e	1.50 ± 0.06
2f	0.45 ± 0.03
2g	1.60 ± 0.33
2h	53.00 ± 7 %
2i	0.89 ± 0.07
2j	0.65 ± 0.02
2k	0.82 ± 0.01
21	0.44 ± 0.01
2m	1.49 ± 0.21
2n	1.34 ± 0.14
20	5.59 ± 0.21
2p	1.30 ± 0.20
2q	1.21 ± 0.05
2r	1.14 ± 0.11
2s	1.23 ± 0.16
2t	1.91 ± 0.18
Thiourea	23.0 ± 3.3

exception was compound **2h** having a 2-methyl group, which exhibited weak inhibition of urease. The potential inhibitory activities of the 1-aroyl-3-(4-aminosulfonylphe-nyl)thiourea derivatives may be due to their structural similarity with the thiourea, which is a natural substrate of urease.

Thus, the biological behavior of a molecule was not determined by the influence of a single parameter or variable. Furthermore, in most cases, the presence of various groups in a compound does not allow to accurately explain the kind and intensity of its biological activity. However, taking the necessary precautions, allows us to make some general remarks on the structure and activity.

Docking

The docking results for the compounds are ranked on the basis of their docking scores obtained with structures, 3LA4 and 4UBP, docking scores are presented in Table 4. Both structures were aligned using Chimera program with an alignment RMSD of 0.6, which indicates a very good alignment of the conserved residues in the active site pockets of both structures as shown in Fig. 2. Acetohydroxamic acid (PDB code HAE) was used as a reference ligand to define the active site pocket for docking in the

Table 4 FlexX Docking Score of compounds 2a-2t

Compound	K _i	Rank	Docking score (kcal/mol) 3LA4	Rank	Docking score (kcal/mol) 4UBP
2a	1.31	1	-36.14	1	-37.39
2b	0.20	1	-36.52	1	-37.51
2c	4.32	1	-36.28	1	-37.30
2d	7.50	2	-37.72	1	-37.40
2e	1.50	1	-38.42	1	-38.28
2f	0.45	1	-37.41	1	-38.50
2g	1.60	1	-38.44	1	-35.62
2h	53.0	1	-38.40	1	-37.77
2i	0.89	1	-38.29	1	-37.99
2j	0.65	1	-38.51	1	-37.17
2k	0.82	1	-35.51	1	-35.33
21	0.44	1	-35.69	1	-38.55
2m	1.49	1	-38.91	1	-38.10
2n	1.34	1	-35.08	1	-34.87
20	5.59	2	-37.72	1	-37.27
2p	1.30	1	-26.28	1	-35.20
2q	1.21	1	-37.82	1	-35.88
2r	1.14	1	-34.56	1	-37.75
2s	1.23	1	-35.84	1	-37.18
2t	1.91	1	-36.73	1	-35.29

aligned structures of both ureases. The same reference ligand was re-docked to both structures and the RMSD of 0.80 was obtained for the PDB structure 3LA4 while RMSD of 0.35 was obtained for the structure 4UBP.

Docking of thiourea

Thiourea was docked to both aligned structures of Jack bean as well as bacterial urease. It was observed that no

Fig. 2 Aligned pocket residues of both urease structures. Two nickel atoms overlapping each other with Acetohydroxamic acid (PDB code HAE) bound between the two nickel atoms. The surrounding HIS, ASP, and ALA residues of both urease structures are also shown in the alignment

Fig. 3 Predicted docked conformations of all compounds (2a-2t) inside the binding pocket of Jack bean urease. The *blue spheres* indicate the metal pharmacophores around the two nickels (Ni²⁺). The *dotted lines* indicate various types of interactions of the compounds with the active site residues including hydrogen bonding and aromatic interactions. The docked poses are shown in sticks representation

docking predictions were produced in the presence of metal pharmacophoric constraints. When the said constraints were relieved, the docking predictions were obtained with the similar binding modes in both urease structures. Thiourea is having hydrogen bonding interaction with ASP residue (ASP633 in Jack bean urease, ASP363 in bacterial urease), GLY residue (GLY550 in Jacbean urease, GLY280 in bacterial urease), and ALA residue (ALA636 in Jack bean urease, ALA170 in bacterial urease) as shown in Figs. 3 and 4.

The top scoring poses of all compounds were analyzed inside the binding site of the two enzymes for binding

Fig. 4 *Left* binding mode of the docked Thiourea inside the active pocket of Jack bean urease. *Right* the binding mode of Thiourea inside the active pocket of bacterial urease

Fig. 5 Interaction diagrams showing similar interactions of Thiourea to same residues in both urease structures. *Left* interaction diagram of Thiourea inside the pocket of Jack bean urease. *Right* interaction diagram of Thiourea inside the bacterial urease structure

modes. Similar binding modes have been obtained for all the compounds in both urease structures as shown in Fig. 5. The similarity in binding modes in both cases might explain the negligible differences in the docking scores that were ranging from -26 to -38 in Jack bean urease and -34 to -38 in *Helicobacter pylori* urease.

Figure 5 shows the binding modes of all compounds in the top 10 docked solutions. Out of the top 10 predictions, all compounds have a similar binding mode in the 1st ranked docked solution, except **2d** and **2o** whose ranks were 2 by 3LA4 and all compounds have a similar binding mode in the 1st ranked docked solution by 4UBP. This also indicates that all the compounds fulfilled the metal pharmacophoric constraints and the thiourea moiety interacts with the two nickel atoms.

Figures 6, 7, 8, and 9 show the interaction diagrams of four compounds, in which **2e** and **2o** are most potent against bacterial strains and **2b** and **2l** shows excellent activity against urease.

It has been observed in all docking results from both structures that the sulfonamide moiety of the 1-aroyl-3-(4-aminosulfonylphenyl)thiourea derivatives was interacting with the bi-nickel center of the enzyme as shown in Fig. 10. The sulfur atom of the sulfonamide moiety was

Fig. 6 Interaction diagram can be seen for inhibitor 2b showing hydrogen bonding by Oxygen of Asp494 and Ala440 residues and nitro group of His593

Fig. 7 Interaction diagram can be seen for inhibitor 2e showing hydrogen bonding by Oxygen of Asp494 and Ala440 residues

Fig. 8 Interaction diagram can be seen for inhibitor **2l** (2Cl, 5-NO₂) showing hydrogen bonding by Oxygen of Ala 636, Arg439, and Cme592 residues and nitro group of His593

Fig. 9 Interaction diagram can be seen for inhibitor 20 showing hydrogen bonding by Oxygen of Arg439, Cme 592, and Ala440 residues and nitro group of His593

Fig. 10 Electrostatic potential surface of predicted docked poses of all 1-aroyl-3-(4-aminosulfonylphenyl)thiourea compounds (2a-2t) inside the Jack bean urease. The electrostatic charge distribution of functional group is shown clearly toward the bi-nickel center of the enzyme. The two nickels are represented by *small spheres* in *light blue color*

placed nearly at the same position where the phosphorus of PO_4 was located in the crystal structure. All of the compounds were having interactions with both nickel atoms. The rest of the R-groups of the compounds possess free conformations toward the opening of the binding site.

Conclusions

In conclusion, several sulfanilamide-thiourea hybrids (2a-2t) were synthesized which differ from most of the wellknown sulfonyl thiourea derivatives in having the free anilino nitrogen of sulfanilamide being incorporated into the thiourea nucleus leaving the sulfonamide amino group intact. The novel structural series exhibited excellent antibacterial activity against the entire Gram-positive and Gram-negative bacteria. Compounds 2e and 2o were found to be much more potent antibacterial agents than the standard drug ciprofloxacin. Antifungal activity results showed that compounds 2l, 2m, 2p, and 2q were potent antifungal agents. Compounds 2b and 2l were found to be the most active urease inhibitors, 100- and 50-fold more active than the standard inhibitor, respectively. Furthermore, proposed scaffold of urease inhibitor offers the possibility of convenient further modifications and extensions that could give rise to the structures with improved inhibitory activity against urease enzyme.

Experimental

Materials

Melting points were recorded using a digital Gallenkamp (SANYO) model MPD.BM 3.5 apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were determined at 300 and 75.4 MHz, respectively as CDCl₃ using a Bruker NMR spectrometer. FTIR spectra were recorded on an FTS 3000 MX spectrophotometer. Mass Spectra (EI, 70 eV) on

a MAT 312 instrument, and elemental analyses were conducted using a LECO-183 CHNS analyzer.

General procedure for synthesis of 1-aroyl-3-(4aminosulfonylphenyl)thioureas

A stirred mixture of freshly prepared suitably substituted benzoyl/acyl isothiocyanates (1a-1t) (10 mmol) were warmed with sulfanilamide (10 mmol) at 60–70 °C for 1–2 h. The progress of reaction was followed by TLC examination using hexane–EtOAc (4:1). On completion, the reaction mixture was poured into cold water and the precipitated sulfanilamido-thioureas (2a-2t) were filtered. Recrystallization from EtOH or MeOH furnished the desired products.

I-(*Phenylacetyl*)-*3*-(*4*-aminosulfonylphenyl) thiourea (**2g**) (52 %): m.p 145–146 °C; IR (Pure) v: 3212 (NH), 1661 (C=O), 1591 (C=C), 1482 (thioamide I), 1334 (C–S), 1263 (thioamide II), 1158, 1082 (thioamide III), 749 (thioamide IV) cm⁻¹; ¹H NMR (δ ppm, 300 MHz) δ : 12.9 (s, 1H, NH), 11.7 (s, 1H, NH), 7.1–7.6 (m, 5H, Ar), 7.62 (d, 2H, Ar), 6.5 (d, 2H, Ar), 4.3 (s, 2H, CH₂); ¹³C NMR (δ ppm) (75.4 MHz) δ : 180 (C=S), 173 (C=O), 139 (C–S), 136.2 (C–CO), 135.4 (C–C) 133 (Ar), 132 (Ar), 131 (Ar), 129 (Ar), 128 (Ar), 127 (Ar), 126 (Ar), 59 (CH₂); CHNS analysis Calcd/Obs.: C, 51.56; H, 4.33; N, 12.03; S, 18.35; Found: C, 52.1; H, 4.99; N, 12.78; S, 18.8; EIMS *m*/ *z* (%):349 [M⁺], 214 (8), 171 (52), 91 (100).

I-(2-Furanyl)-3-(4-aminosulfonylphenyl) thiourea (2r) (68 %): m.p 169–170 °C; IR (Pure) v: 3245 (NH), 1660 (C=O), 1590 (C=S), 1531 (thioamide I), 1330 (C–S), 1234 (thioamide II), 1151, 1097 (thioamide III), 747 (thioamide IV) cm⁻¹; ¹H NMR (δ ppm, 300 MHz) δ : 12.78 (s, 1H, NH), 11.6 (s, 1H, NH), 7.51 (d, 1H, furanyl), 6.7 (d, 1H, furanyl), 6.67 (d, 1H, furanyl),7.62 (d, 2H, Ar), 6.5 (d, 2H, Ar);¹³C NMR (δ ppm) (75.4 MHz) δ : 180 (C=S), 173 (C=O), 144.1 (furanyl), 139 (C–N), 136 (C–CO), 133 (Ar), 131 (Ar), 129 (Ar), 128 (Ar), 127 (Ar), 126 (Ar),124 (Ar), 109.4 (furanyl), 108.7 (furanyl); CHNS analysis Calcd/ Obs.: C, 44.43; H, 3.73; N, 14.13; S, 21.57; Found: C, 44.39; H, 3.81; N, 14.07; S, 21.64; GC–MS *m/z*: 297.02 (M⁺⁺, 100).

Antibacterial activity

The antibacterial activity was evaluated in vitro by MIC using the serial tube dilution method (Zampini *et al.*, 2009). For the assay, two Gram-positive bacteria namely, *S. aureus*, *B. subtilis*, and two Gram-negative bacteria namely, *E. coli* and *S. flexneri* were used. Bacterial strains stored in Muller-Hinton broth (Merck), were subcultured

for testing in the same medium and were grown at 37 °C. Then the cells were suspended, in saline solution, to produce a suspension of about 10^{-5} CFU/mL (colony-forming units per mL). Serial dilutions of the test compounds, previously dissolved in *N*,*N*-dimethylformamide (DMF), were prepared in test tubes to final concentrations of 2.5, 1.25, 0.625, 0.313, and 0.156 µg/mL. 100 µL of a 24 h old inoculum was added to each tube. The MIC, defined as the lowest concentration of the test compound, which inhibited the visible growth after 18 h, was determined visually after incubation for 24 h at 37 °C. Tests using DMF as negative control were carried out in parallel. Ciprofloxacin was used as control drug. Because the MIC values were not spectacular, no statistical calculations were made.

Antifungal assay

Synthetic 1-aroyl-3-(4-aminosulfonylphenyl)thiourea derivatives were screened for antifungal activity by agar welldiffusion method (Rojas et al., 2006) with little modifications, with sterile cork borer of size 6.0 mm. The cultures of 48 hold grown on potato dextrose agar (PDA) were used for inoculation of fungal strains viz, A. niger, A. flavus, A. pterus, and W. rot on PDA plates. An aliquot (20 μ L) of inoculum was introduced to molten PDA and poured into a petri dish by pour plate technique. After solidification, the appropriate wells were made on agar plates using cork borer. In agar welldiffusion method, 50 µL of sample was introduced serially after successful completion of one compound analysis. Incubation period of 24-48 h at 28 °C was maintained for observation of antifungal activity. The antifungal activity was evaluated by measuring zones of inhibition of fungal growth surrounding the sample compound. The complete antifungal analysis was carried out under strict aseptic conditions. The zones of inhibition were measured with antibiotic zone scale in mm and the experiment was carried out in triplicates.

Urease inhibition assay

Urease inhibition activities were determined by measuring the release of ammonia by the indophenol method, (Weatherburn, 1967). The amount of ammonia liberated was assessed by measuring indophenol blue formed in Berthelot reaction over 30 min incubation at 30 °C following the changes in absorbance at 625 nm. In brief, the assay mixture containing 10 μ L of enzyme (5 U/mL) and 10 μ L of test compound in 40 μ L buffer (100 mM urea, 0.01 M K₂HPO₄, 1 mM EDTA and 0.01 M LiCl₂, pH 8.2), were incubated for 30 min at 30 °C in 96-well plates. A 40 μ L each of phenol reagents (1 %, w/v phenol and 0.005 %, w/v sodium nitroprusside) and 40 μ L of alkali reagent (0.5 %, w/v NaOH and 0.1 % active chloride NaOCl) were added to each well. The absorbance was measured after 30 min, using a microplate reader (Bio-Tek ELx 800TM, Instruments, Inc. USA). All reactions were performed in triplicate. Percentage inhibition was calculated using the formula 100 – (OD test well/OD control) × 100. Thiourea was used as the standard inhibitor of urease. The Cheng-Prusoff equation was used to calculate the K_i values from IC₅₀ values, determined by the nonlinear curve fitting program PRISM 5.0 (GraphPad, San Diego, California, USA). Following equation was used:

$$K_i = (IC_{50})/(1 + ([S]/[K_m]))$$

where K_i = inhibition constant, IC₅₀ = the inhibitory strength of the compound, [S] = concentration of substrate, [K_m] = substrate concentration, where enzyme activity is at half maximal.

Protocol of docking study

In docking study, the crystal structures of Jack bean Urease (PDB Code: 3LA4) and H. pylori urease (PDB Code: 4UBP) were used. The protein structures were prepared prior to be used in docking study. The structure preparation included addition of hydrogens and force-field based parameterization of atoms followed by energy minimization. Protonate3D (Labute, 2007) algorithm implemented in MOE (MOE, 2010) was applied to protonate the protein structures and AMBER99 force-field was selected for energy minimization. It was made sure to set up the correct metal states for the two Ni atoms in the binding site of these enzymes. By Protonate3D, the four surrounding histidine residues in the active site pocket were protonated according to the bound state of the two Nickel ions. After protonation, the crystal structures were energy minimized. Protein heavy atoms were restrained during the minimization to allow the flexibility of protein side-chains and hydrogen atoms only. After minimization, the water molecules and co-crystallized bound compounds were removed. The two structures were also aligned using UCSF Chimera. The RMSD value was 0.6 indicating the goodness of alignment. The binding sites of the two ureases also aligned very well indicating the similarity in binding sites. Redocking of the bound ligands was performed with both structures to test the docking parameters and check for the correct preparation of crystal structures for use in screening by molecular docking.

Compounds library preparation

Before proceeding to perform docking compounds inside the protein structures, it is also of much importance to prepare the small molecules for docking. Preparation of small molecule includes generation of 3D confirmations of the molecules, ionization, and protonation states as well as generation of possible tautomeric forms at variable pH values. A molecule with different ionization state will interact differently inside the binding pocket of the protein. The ligand molecules were also prepared with MOE, by implementing MMFF94x force-field and using the "wash" module by setting up the parameters for ionization and protonation states. The resulting molecule structures were then energy minimized before screening against the prepared target structures.

Docking

FlexX program was used in the docking study. Before carrying out the dockings of small molecules into the protein structures, the non-standard protein residues (KCX and CME) and the metal ions were included in the binding site specification. The binding site for Jack bean urease was defined by 10 Angstrom spacing of the residues surrounding the bound PO₄ and similarly, HAE (the co-crystallized ligand in bacterial urease structure) was used to define the binding site in the *H. pylori* urease. The geometry parameters of the two metal atoms were set to be derived automatically by FlexX and the metal pharmacophores were defined in spherical form to interact in all directions instead of statistically derived coordinates of the metal atoms. The default docking parameters were used and the top 10 solutions were retained for later analysis.

Acknowledgments This study was financially supported by COMSTECH–TWAS and German-Pakistani Research Collaboration Programme to JI.

References

- Abbate F, Casini A, Owa T, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorg Med Chem Lett 14(1):217–223
- Al-Rashida M, Ashraf M, Hussain B, Nagra SA, Abbas G (2011) Discovery of new chromone containing sulfonamides as potent inhibitors of bovine cytosolic carbonic anhydrase. Bioorg Med Chem 19(11):3367–3371
- Aly AA, Brown AB, Ramadan M, Abdel-Aziz M, Abuo-Rahma GE-DAA, Radwan MF, Gamal-Eldeen AM (2010) Selectivity of *N*aroyl-*N'*-arylthioureas towards 2-(1,3-dioxo-1H-inden-2(3H)ylidene)malononitrile. New synthesis of (Z)-*N*-((E)-4-amino-1aryl-5-cyano-6-oxo-1H-indeno[1,2-d][1,3]- thiazepin-2(6H)-ylidene)-4-arylamides of antitumor and antioxidant activities. J Heterocycl Chem 47(3):503–508. doi:10.1002/jhet.344
- Aslam MA, Mahmood SU, Shahid M, Saeed A, Iqbal J (2011) Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur J Med Chem 46(11):5473–5479

- Bestmann HJ, Kern F, Schäfer D, Witschel MC (1992) 3,4-Dihydroisocoumarins, a new class of ant trail pheromones. Angew Chem Int Ed Engl 31(6):795–796. doi:10.1002/anie. 199207951
- Dixon NE, Gazzola TC, Blakeley RL, Zermer B (1975) Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc 97(14):4131–4133
- Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964 8361 [pii]
- Faidallah HM, Albar HA, Makki MSI, Sharshira EM (2002) Synthesis of novel cyclic benzenesulfonylurea and thiourea derivatives. Phosphorus Sulfur Silicon Relat Elem 177(3):685–693. doi: 10.1080/10426500210275
- Gould IM (2008) The epidemiology of antibiotic resistance. Int J Antimicrob Agents 32(Suppl 1):S2–S9
- Gribble FM, Reimann F (2003) Differential selectivity of insulin secretagogues: mechanisms, clinical implications, and drug interactions. J Diabetes Complications 17(2 Suppl):11–15
- Hanif M, Saleem M, Hussain MT, Rama NH, Zaib S, Aslam MAM, Jones PG, Iqbal J (2012a) Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3H-1,2,4triazole-3-thiones and their 3,6-disubstituted 1,2,4-triazolo[3,4b]1,3,4-thiadiazole derivatives. J Braz Chem Soc 23:854–860
- Hanif M, Shoaib K, Saleem M, Hasan Rama N, Zaib S, Iqbal J (2012b) Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1,3,4-oxadiazole derivatives. ISRN Pharmacol 2012:928901. doi:10.5402/2012/928901
- Klingenstein R, Melnyk P, Leliveld SR, Ryckebusch A, Korth C (2006) Similar structure-activity relationships of quinoline derivatives for antiprion and antimalarial effects. J Med Chem 49(17):5300–5308. doi:10.1021/jm0602763
- Koch KR (2001) New chemistry with old ligands: N-alkyl- and N,Ndialkyl-N'-acyl(aroyl)thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coord Chem Rev 216–217:473–488. doi:10.1016/s0010-8545(01)00337-x
- Kontoyiannis DP, Mantadakis E, Samonis G (2003) Systemic mycoses in the immunocompromised host: an update in antifungal therapy. J Hosp Infect 53(4):243–258
- Krungkrai J, Scozzafava A, Reungprapavut S, Krungkrai SR, Rattanajak R, Kamchonwongpaisan S, Supuran CT (2005) Carbonic anhydrase inhibitors. Inhibition of *Plasmodium falciparum* carbonic anhydrase with aromatic sulfonamides: towards antimalarials with a novel mechanism of action? Bioorg Med Chem 13(2):483–489
- Labute P (2007) Protonate 3D: assignment of macromolecular protonation state and geometry. Chemical Computing Group Inc., Montreal
- Maren TH (1976) Relatons between structure and biological activity of sulfonamides. Annu Rev Pharmacol Toxicol 16:309–327. doi: 10.1146/annurev.pa.16.040176.001521
- Mobley HL, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53(1): 85–108
- Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59(3):451–480
- MOE (2010) The molecular operating environment version 201010. Chemical Computing Group Inc., Montreal. http://www.chem compcom

- Montecucco C, Rappuoli R (2001) Living dangerously: how *Helicobacter pylori* survives in the human stomach. Nat Rev Mol Cell Biol 2(6):457–466. doi:10.1038/35073084
- Nair PC, Sobhia ME (2008) Quantitative structure activity relationship studies on thiourea analogues as influenza virus neuraminidase inhibitors. Eur J Med Chem 43(2):293–299
- Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66(7):1022–1037. doi:10.1021/np0300961
- Nitta T, Arai T, Takamatsu H, Inatomi Y, Murata H, Iinuma M, Tanaka T, Ito T, Asai F, Ibrahim I, Nakanishi T, Watabe K (2002) Antibacterial activity of extracts prepared from tropical and subtropical plants on methicillin-resistant *Staphylococcus aureus*. J Health Sci 48(3):273–276. doi:10.1248/jbs.48.273
- Ramadas K, Suresh G, Janarthanan N, Masilamani S (1998) Antifungal activity of 1,3-disubstituted symmetrical and unsymmetrical thioureas. Pestic Sci 52(2):145–151. doi:10.1002/ (sici)1096-9063(199802)52:2<145:aid-ps677>3.0.co;2-j
- Rojas JJ, Ochoa VJ, Ocampo SA, Munoz JF (2006) Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of nonnosocomial infections. BMC Complement Altern Med 6:2
- Ryckebusch A, Deprez-Poulain R, Debreu-Fontaine MA, Vandaele R, Mouray E, Grellier P, Sergheraert C (2002) Parallel synthesis and anti-malarial activity of a sulfonamide library. Bioorg Med Chem Lett 12(18):2595–2598
- Saczewski F, Kuchnio A, Samsel M, Lobocka M, Kiedrowska A, Lisewska K, Saczewski J, Gdaniec M, Bednarski PJ (2010) Synthesis of novel aryl(heteroaryl)sulfonyl ureas of possible biological interest. Molecules 15(3):1113–1126
- Saeed A, Erben MF, Flörke U (2010) Effect of fluorine substitution on the crystal structures and vibrational properties of phenylthiourea isomers. J Mol Struct 982(1–3):91–99. doi:10.1016/j.molstruc. 2010.08.012
- Saeed A, Mumtaz A, Ishida H (2011) Synthesis, characterization of some new 1-aroyl-3-(4-aminosulfonylphenyl)thioureas and crystal structure of 1-(3,4,5-trimethoxybenzoyl)- 3-(4-aminosulfonylphenyl)thiourea. J Sulfur Chem 32(1):45–54. doi:10.1080/ 17415993.2010.541461
- Sieradzki K, Roberts RB, Haber SW, Tomasz A (1999) The development of vancomycin resistance in a patient with methicillin-resistant *Staphylococcus aureus* infection. N Engl J Med 340(7):517–523. doi:10.1056/NEJM199902183400704
- Thornber CW (1979) Isosterism and molecular modification in drug design. Chem Soc Rev 8(4):563–580
- Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974. doi:10.1021/ ac60252a045
- Yonova PA, Stoilkova GM (2004) Synthesis and biological activity of urea and thiourea derivatives from 2-aminoheterocyclic compounds. J Plant Growth Regul 23(4):280–291. doi:10.1007/ s00344-003-0054-3
- Zampini IC, Cuello S, Alberto MR, Ordonez RM, D'Almeida R, Solorzano E, Isla MI (2009) Antimicrobial activity of selected plant species from "the Argentine Puna" against sensitive and multi-resistant bacteria. J Ethnopharmacol 124(3):499–505