

Iron Hydrogenases

Dioxygen Sensitivity of [Fe]-Hydrogenase in the Presence of Reducing Substrates

Gangfeng Huang, Tristan Wagner, Ulrich Ermler, Eckhard Bill, Kenichi Ataka, and Seigo Shima*

Abstract: Mono-iron hydrogenase ([Fe]-hydrogenase) reversibly catalyzes the transfer of a hydride ion from H_2 to methenyltetrahydromethanopterin (methenyl- H_4MPT^+) to form methylene-H₄MPT. Its iron guanylylpyridinol (FeGP) cofactor plays a key role in H_2 activation. Evidence is presented for O₂ sensitivity of [Fe]-hydrogenase under turnover conditions in the presence of reducing substrates, methylene- H_4MPT or methenyl- H_4MPT^+/H_2 . Only then, H_2O_2 is generated, which decomposes the FeGP cofactor; as demonstrated by spectroscopic analyses and the crystal structure of the deactivated enzyme. O_2 reduction to H_2O_2 requires a reductant, which can be a catalytic intermediate transiently formed during the [Fe]-hydrogenase reaction. The most probable candidate is an iron hydride species; its presence has already been predicted by theoretical studies of the catalytic reaction. The findings support predictions because the same type of reduction reaction is described for ruthenium hydride complexes that hydrogenate polar compounds.

Mono-iron hydrogenase ([Fe]-hydrogenase) reversibly catalyzes the activation and heterolytic cleavage of $H_2^{[1]}$ and transfers the hydride anion to the substrate, methenyltetrahydromethanopterin (methenyl- H_4MPT^+), to form methylene- H_4MPT (Figure 1a).^[2] The prosthetic group of [Fe]hydrogenase is the iron guanylylpyridinol (FeGP) cofactor (Figure 1b; Supporting Information, Figure S1).^[3] The iron center of the FeGP cofactor consists of a low-spin Fe^{II} ligated with two CO, cysteine-S, pyridinol-N, acyl-C, and a solvent molecule (Figure 1b).^[4] The structural and catalytic features of [Fe]-hydrogenases are particularly useful for designing new hydrogenation catalysts.^[1,5] Numerous model catalysts that

[*] G. Huang, Dr. T. Wagner, Dr. S. Shima Max-Planck-Institut für terrestrische Mikrobiologie Karl-von-Frisch-Straße 10, 35043 Marburg (Germany) E-mail: shima@mpi-marburg.mpg.de Dr. U. Ermler Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3, 60438 Frankfurt/Main (Germany) Dr. E. Bill Max-Planck-Institut für Chemische Energiekonversion 45470 Mülheim (Germany) Dr. K. Ataka Department of Physics, Freie Universität Berlin Berlin 14195 (Germany)
Supporting information, including technical details, procedures, sequences, structures, PDB codes, and the ORCID identification

number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201712293.

Figure 1. [Fe]-hydrogenase reaction and the FeGP cofactor structure. a) The *pro-R* stereospecific hydride-transfer reaction of [Fe]-hydrogenase.^[6] b) Chemical structure of the FeGP cofactor and the light-decomposed product, guanylylpyridinol.^[7]

mimic the active site of [Fe]-hydrogenase have been reported. $\ensuremath{^{[8]}}$

The stability of hydrogenases and corresponding model compounds^[9] is a critical factor for their applications. The dinuclear metal sites of [NiFe]- and [FeFe]-hydrogenases are redox active, and most of them react with O2 and are quickly deactivated.^[9,10] Nevertheless, several [NiFe]-hydrogenases from aerobic bacteria are O2 tolerant to some degree and are able to reduce O_2 to H_2O_2 , and further to water.^[11] The iron center of the FeGP cofactor in [Fe]-hydrogenase is redox inactive^[4a] and insensitive to O₂ under the conditions tested in previous studies.^[12] However, reactive oxygen species, such as H_2O_2 , and probably superoxide anion (O_2^-) , deactivate [Fe]hydrogenase.^[12a] Herein, we report that the FeGP cofactor of [Fe]-hydrogenase is decomposed under aerobic conditions in the presence of reducing substrates. [Fe]-hydrogenase catalyzes reduction of O_2 to H_2O_2 and this reactive oxygen species decomposes the iron complex of the FeGP cofactor.

According to previous reports, [Fe]-hydrogenase is not deactivated in the absence of substrate under 100% O₂ (Supporting Information, Figure S2).^[12] First information about a deactivating effect of O₂ on this enzyme was gained by the enzyme assays following the oxidation of methylene-H₄MPT and reduction of methenyl-H₄MPT⁺. The rate of methylene-H₄MPT oxidation to methenyl-H₄MPT⁺ decreases progressively under an N₂/O₂ (80%/20%) gas phase compared to 100% N₂ (Figure 2 a). Notably, the initial rate of the reaction did not change and the exchange of the gas phase of the O₂-damaged [Fe]-hydrogenase sample to 100% N₂ did not reactivate the enzyme. Likewise, the enzyme activity of the reverse reaction, the reduction of methenyl-H₄MPT⁺ with H₂,

Angew. Chem. Int. Ed. 2018, 57, 4917-4920

Figure 2. Deactivation of [Fe]-hydrogenase by O₂. a) Oxidation of methylene-H₄MPT to methenyl-H₄MPT⁺. b) Reduction of methenyl-H₄MPT⁺ to methylene-H₄MPT. The gas phases were exchanged at the time indicated by arrows. c) Effect of O₂ on [Fe]-hydrogenase activity in the presence of methylene-H₄MPT under N₂ containing 10% H₂ and different concentrations of O₂, as indicated.

also decreases with time under H_2/O_2 (80%/20%) compared to 100% H_2 (Figure 2b). Again, no reactivation has been achieved by exchanging the gas phase to 100% H_2 . The initial rate of the reaction did not appear to be changed but the O_2 deactivation rate was quicker than in the case of methylene- H_4 MPT oxidation. These results indicated that O_2 does not inhibit but slowly deactivates [Fe]-hydrogenase under the enzyme assay conditions.

Based on these observations, the effect of O_2 on the deactivation of [Fe]-hydrogenase was tested in the presence of variable O_2 , H_2 , methenyl- H_4MPT^+ , and methylene- H_4MPT concentrations. We incubated [Fe]-hydrogenase with methylene- H_4MPT under a gas phase containing 10% H_2 and variable concentrations of O_2 (0–40%) prior to testing the activity (Figure 2c). [Fe]-hydrogenase is deactivated progressively and the deactivation rate increases with increasing O_2 concentrations.

The influence of the H₂ concentration on O₂-deactivation of [Fe]-hydrogenase was tested in the presence of the substrates methylene-H₄MPT (Supporting Information, Figure S3a) and methenyl-H₄MPT⁺ (Supporting Information, Figure S3b). Increasing H₂ concentrations stimulate the deactivation of [Fe]-hydrogenase; the effect of H₂ is more obvious in the case of methenyl-H₄MPT⁺ than that of methylene-H₄MPT. To study the impact of the substrate concentration, [Fe]-hydrogenase was incubated with various concentrations of methenyl-H₄MPT⁺ and methylene-H₄MPT under an N₂/O₂/H₂ (85%/5%/10%) gas phase. Again, higher substrate concentrations and, concomitantly, a higher turnover rate increased the deactivation rate (Supporting Information, Figure S4).

The irreversibility of O_2 deactivation is presumably a result of the destruction of the FeGP cofactor of [Fe]hydrogenase, which was investigated by UV/Vis and IR spectroscopies, and X-ray crystallography. UV/Vis absorbance peaks at 300 and 360 nm correspond to the absorbance of the pyridinol ring and iron complex of the intact FeGP cofactor, respectively. Upon deactivation with O_2 , the absorbance at 360 nm decreases and the absorbance at 300 nm increases (Supporting Information, Figure S5). These changes indicate a decomposition of the FeGP cofactor because the same UV/Vis spectral behavior was observed when the iron site of [Fe]-hydrogenase was degraded by light.^[12b,13] Initially, IR spectroscopic analysis confirmed the presence of the bands at 2008 and 1938 cm⁻¹ of the intrinsic CO ligands of the enzyme-bound FeGP cofactor, which were previously reported (Supporting Information, Figure S6).^[4b,d,12a] In the absence of methylene-H₄MPT and methenyl-H₄MPT⁺, the bands did not change after incubating the enzyme under $O_2/N_2/H_2$ (20%/80%/0%) and $O_2/N_2/H_2$ (20%/70%/10%) gas phases (Supporting Information, Figure S6a). In their presence, however, the IR peaks decrease and almost disappear after longterm (1 h) incubation at 40°C indicating

Angewandte

Chemie

the loss of the CO ligands (Supporting Information, Figure S6b).

The 1.29 Å structure of O_2 -deactivated enzyme (Supporting Information, Table S1) clearly revealed that the FeGP cofactor is decomposed into guanylylpyridinol (Figure 3b). Guanylylpyridinol was identified as a light-deactivated product of the isolated FeGP cofactor (Figure 1b).^[7] The iron in the O_2 -deactivated enzyme has lost pyridinol-N, acyl-C, and two CO ligands, but is still coordinated with Cys172-S, and

Figure 3. Crystal structure of O₂-deactivated [Fe]-hydrogenase at 1.29 Å resolution. a) The active-site structure of the intact [Fe]-hydrogenase inhibited with 2-naphthylisocyanide,^[14] which is the only available crystal structure of [Fe]-hydrogenase derived from *Methanothermobacter marburgensis.* b) The active-site structure of the O₂-deactivated [Fe]-hydrogenase, in which the $2F_o-F_c$ electron density contoured at 3.0 σ is represented (Supporting Information, Table S1). GP: guanylyl-pyridinol.

Communications

Figure 4. Kinetics of deactivation of [Fe]-hydrogenase exposed to O₂ in the presence of methylene-H₄MPT and H₂O₂ formation. a) Methylene-H₄MPT (100 μM) and variable concentrations of [Fe]-hydrogenase (enzyme) under N₂/O₂ (95%/5%). b) [Fe]-hydrogenase (100 μM) and variable concentrations of methylene-H₄MPT (substrate) under N₂/O₂ (95%/5%). c) [Fe]-hydrogenase (100 μM) and methylene-H₄MPT (100 μM) under N₂ with variable concentrations of O₂. The residual activity (\odot) and the respective H₂O₂ concentrations (\bullet) were determined. The standard error of three measurements was calculated.

forms new bonds with the carboxymethyl-O of the guanylylpyridinol, His203, and Asp189 from the partner monomer. Thus, the number of ligands of iron is decreased from six to four by decomposition (Figure 3).

Based on the presented findings and previous data regarding decomposition of [Fe]-hydrogenase by reactive oxygen species, $^{[12a]}$ we hypothesized that O_2 is reduced by this enzyme to H_2O_2 or O_2^- and that the reactive oxygen species destroys the FeGP cofactor of [Fe]-hydrogenase. To test this hypothesis, [Fe]-hydrogenase was decomposed in an assay solution composed of [Fe]-hydrogenase (500 µM) and methylene-H₄MPT (500 μ M) under 100 % O₂. We found production of sub-stoichiometric amounts of H_2O_2 (ca. 3 µM), only in the presence of both enzyme and substrate (Supporting Information, Table S2). On the other hand, O_2^- was not detected. The relationship between the enzymatic activity of [Fe]-hydrogenase and H_2O_2 production under the O_2 gas phase was studied kinetically (Figure 4). Higher concentrations of the enzyme, methylene- H_4MPT or O_2 in the gas phase increased the amount of H2O2 produced, which directly correlates with the decrease in enzyme activity. When the enzyme became fully deactivated, the increase of H₂O₂ stopped.

To explore the dependency of the H_2O_2 concentration on the deactivation of [Fe]-hydrogenase, 26, 2.6, and 0.26 µM of H_2O_2 were added to a solution of 26 µM [Fe]-hydrogenase (final concentrations) and incubated (Supporting Information, Figure S7). In the presence of stoichiometric concentrations (26 µM) of H_2O_2 , [Fe]-hydrogenase was fully deactivated within 5 min, but less than 10% of H_2O_2 was lost in the deactivation assay. In the case of sub-stoichiometric concentrations of H_2O_2 (2.6 µM and 0.26 µM H_2O_2), substantial amounts of [Fe]-hydrogenase were decomposed; the residual [Fe]-hydrogenase activity was only 30% and 60% within 10 min (Supporting Information, Figure S7). Altogether, these results demonstrated that [Fe]-hydrogenase is catalytically deactivated by sub-stoichiometric amounts of H_2O_2 .

To determine whether the interaction of O_2 with the iron center and the reduction of O_2 to H_2O_2 are correlated with

Fe^{II} oxidation, electron paramagnetic resonance (EPR) spectroscopy was used. The low-spin Fe^{II} active site of [Fe]-hydrogenase is EPR silent. Upon deactivation by O_2 in the presence of 0.1 mm methylene-H₄MPT under the gas phase $(N_2/O_2/H_2)$ (70%/ 20%/10%)), only a minor EPR signal at g = 4.3 from high-spin Fe^{III} emerged, with a spin concentration of less than 7% of the total enzyme (Supporting Information, Figure S8). An even weaker fraction of low-spin Fe^{III} products appeared around g=2. Thus, no significant oxidation of Fe^{II} to Fe^{III} occurs and most likely

O₂ is not reduced in an iron-bound state.

The presented study indicates that the deactivation of [Fe]-hydrogenase upon O₂ exposure does not occur directly in response to O_2 but via a reduction to H_2O_2 , which subsequently decomposes the FeGP cofactor without loss of H₂O₂. On the basis of the proposed catalytic mechanism of [Fe]hydrogenase (Supporting Information, Figure S9), the most probable reductant is an iron hydride. The proposed type of metal-hydride-driven hydrogenation reaction has precedent in inorganic ruthenium complex chemistry;^[15] thereby increasing the plausibility of the mechanism. Metal-hydride formation in the [Fe]-hydrogenase reaction was already postulated on the basis of calculations^[8c, 16] and modelcomplex studies^[5,17] but experimental evidence was, thus far, not provided. If our conclusions are correct, [Fe]-hydrogenase stabilizes a hydride on its iron center in the catalytic cycle. This finding may open a perspective to apply [Fe]-hydrogenase for the reduction of non-polar compounds (which might be polarized in the enzyme) and as a template for developing new hydrogenating model catalysts (for example, a selective H_2O_2 -forming catalyst^[18]).

Acknowledgements

We thank the staff of the PXII beamline at the Swiss Light Source, Villigen for help during data collection. U.E. thanks Prof. Dr. Hartmut Michel for continuous support. This work was supported by a grant from the Max Planck Society and the Deutsche Forschungsgemeinschaft Priority Program "Iron-Sulfur for Life" (SH87/1-1) to S.S.; G.H. was supported by a fellowship from China Scholarship Council (CSC).

Conflict of interest

The authors declare no conflict of interest.

Keywords: [Fe]-hydrogenase \cdot enzyme catalysis \cdot H₂ \cdot hydrogenation \cdot O₂ sensitivity

How to cite: Angew. Chem. Int. Ed. 2018, 57, 4917–4920 Angew. Chem. 2018, 130, 5011–5014

- a) W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, *Chem. Rev.* 2014, *114*, 4081–4148; b) J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, *Chem. Rev.* 2007, *107*, 4273–4303.
- [2] S. Shima, U. Ermler, Eur. J. Inorg. Chem. 2011, 963-972
- [3] a) S. Shima, O. Pilak, S. Vogt, M. Schick, M. Salomone-Stagni, W. Meyer-Klaucke, E. Warkentin, R. K. Thauer, U. Ermler, *Science* 2008, 321, 572-575; b) T. Hiromoto, K. Ataka, O. Pilak, S. Vogt, M. Salomone-Stagni, W. Meyer-Klaucke, E. Warkentin, R. K. Thauer, S. Shima, U. Ermler, *FEBS Lett.* 2009, 583, 585-590; c) T. Hiromoto, E. Warkentin, J. Moll, U. Ermler, S. Shima, *Angew. Chem. Int. Ed.* 2009, 48, 6457-6460; *Angew. Chem.* 2009, 121, 6579-6582.
- [4] a) S. Shima, E. J. Lyon, R. K. Thauer, B. Mienert, E. Bill, J. Am. Chem. Soc. 2005, 127, 10430-10435; b) E. J. Lyon, S. Shima, R. Boecher, R. K. Thauer, F. W. Grevels, E. Bill, W. Roseboom, S. P. J. Albracht, J. Am. Chem. Soc. 2004, 126, 14239-14248; c) M. Korbas, S. Vogt, W. Meyer-Klaucke, E. Bill, E. J. Lyon, R. K. Thauer, S. Shima, J. Biol. Chem. 2006, 281, 30804-30813; d) S. Shima, M. Schick, K. Ataka, K. Steinbach, U. Linne, Dalton Trans. 2012, 41, 767-771.
- [5] T. Xu, C. J. M. Yin, M. D. Wodrich, S. Mazza, K. M. Schultz, R. Scopelliti, X. Hu, J. Am. Chem. Soc. 2016, 138, 3270–3273.
- [6] C. Zirngibl, W. van Dongen, B. Schwörer, R. von Bünau, M. Richter, A. Klein, R. K. Thauer, *Eur. J. Biochem.* 1992, 208, 511– 520.
- [7] S. Shima, E. J. Lyon, M. Sordel-Klippert, M. Kauss, J. Kahnt, R. K. Thauer, K. Steinbach, X. L. Xie, L. Verdier, C. Griesinger, *Angew. Chem. Int. Ed.* 2004, 43, 2547–2551; *Angew. Chem.* 2004, *116*, 2601–2605.
- [8] a) C. M. Moore, E. W. Dahl, N. K. Szymczak, *Curr. Opin. Chem. Biol.* **2015**, *25*, 9–17; b) K. M. Schultz, D. Chen, X. Hu, *Chem. Asian J.* **2013**, *8*, 1068–1075; c) S. Shima, D. Chen, T. Xu, M. D.

Wodrich, T. Fujishiro, K. M. Schultz, J. Kahnt, K. Ataka, X. Hu, *Nat. Chem.* **2015**, *7*, 995–1002.

- [9] B. Friedrich, J. Fritsch, O. Lenz, Curr. Opin. Biotechnol. 2011, 22, 358-364.
- [10] a) S. T. Stripp, G. Goldet, C. Brandmayr, O. Sanganas, K. A. Vincent, M. Haumann, F. A. Armstrong, T. Happe, *Proc. Natl. Acad. Sci. USA* 2009, *106*, 17331–17336; b) A. Kubas, C. Orain, D. De Sancho, L. Saujet, M. Sensi, C. Gauquelin, I. Meynial-Salles, P. Soucaille, H. Bottin, C. Baffert, V. Fourmond, R. B. Best, J. Blumberger, C. Leger, *Nat. Chem.* 2017, *9*, 88–95.
- [11] a) P. Wulff, C. C. Day, F. Sargent, F. A. Armstrong, *Proc. Natl. Acad. Sci. USA* **2014**, *111*, 6606–6611; b) L. Lauterbach, O. Lenz, *J. Am. Chem. Soc.* **2013**, *135*, 17897–17905.
- [12] a) R. Hidese, K. Ataka, E. Bill, S. Shima, *Chembiochem* 2015, *16*, 1861–1865; b) E. J. Lyon, S. Shima, G. Buurman, S. Chowdhuri, A. Batschauer, K. Steinbach, R. K. Thauer, *Eur. J. Biochem.* 2004, *271*, 195–204.
- [13] S. Shima, M. Schick, H. Tamura, *Methods Enzymol.* 2011, 494, 119–137.
- [14] H. Tamura, M. Salomone-Stagni, T. Fujishiro, E. Warkentin, W. Meyer-Klaucke, U. Ermler, S. Shima, *Angew. Chem. Int. Ed.* **2013**, *52*, 9656–9659; *Angew. Chem.* **2013**, *125*, 9838–9841.
- [15] S. E. Clapham, A. Hadzovic, R. H. Morris, *Coord. Chem. Rev.* 2004, 248, 2201–2237.
- [16] a) E. D. Hedegård, J. Kongsted, U. Ryde, Angew. Chem. Int. Ed.
 2015, 54, 6246 6250; Angew. Chem. 2015, 127, 6344 6348; b) X.
 Yang, M. B. Hall, J. Am. Chem. Soc. 2009, 131, 10901 10908.
- [17] a) K. A. Murray, M. D. Wodrich, X. Hu, C. Corminboeuf, *Chem. Eur. J.* **2015**, *21*, 3987–3996; b) D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, T. B. Rauchfuss, *Chem. Rev.* **2016**, *116*, 8693–8749.
- [18] J. K. Edwards, B. Solsona, E. N. N, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, *Science* **2009**, *323*, 1037–1041.

Manuscript received: November 30, 2017 Accepted manuscript online: February 20, 2018 Version of record online: March 22, 2018