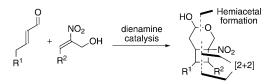

Organocatalysis

Cooperative Dienamine/Hydrogen-Bonding Catalysis: Enantioselective Formal [2+2] Cycloaddition of Enals with Nitroalkenes**

Garazi Talavera, Efraím Reyes, Jose L. Vicario,* and Luisa Carrillo

The cyclobutane scaffold is a structural motif incorporated into a wide range of naturally occurring products, as well as into transiently generated intermediates in primary and secondary metabolism.^[1] Moreover, the reactivity pattern shown by cyclobutanes when exploiting ring strain as a driving force to facilitate novel reactivity has also opened the way for their use as intermediates in the synthesis of complex molecules.^[2] However, despite their interest, the development of methodologies for the stereocontrolled synthesis of cyclobutanes has received little attention over the years.^[3] In this context, the [2+2] cycloaddition represents one of the most straightforward approaches for the stereoselective construction of this structure with several reported and efficient examples, which rely on the use of chiral ligands,^[4] auxiliaries,^[5] or Lewis acid catalysts.^[6]


Within this context, we wondered if aminocatalysis could contribute to this field by facing the challenge of setting up an enantioselective version of a [2+2] cycloaddition reaction between α,β -unsaturated aldehydes and nitroalkenes. We were inspired by recent work by Seebach, Hayashi, and coworkers,^[7] and Blackmond and co-workers^[8] (Scheme 1) in which kinetic and structural studies of O-trimethylsilyldiphenylprolinol-catalyzed Michael addition of aldehydes to nitroolefins led to the detection of an aminonitrocyclobutane intermediate, which was identified as a resting state for the catalyst. Taking this discovery into account, we hypothesized that enolizable enals could undergo a similar reaction based on the dienamine activation mode^[9] where the catalyst would be able to undergo turnover, thus furnishing a final nitrocyclobutane product. In fact, literature precedent exists for the related [2+2] cycloaddition of enamines with electronpoor alkenes, thus showing that this process can occur spontaneously without the need of photochemical activation.^[10] In contrast, there is also literature precedent which shows that the reaction of nitroalkenes with enolizable α,β unsaturated aldehydes under dienamine catalysis leads to the

Scheme 1. a) Previous work: addition to nitroolefins throuh enamine catalysis. b) Working hypothesis: formal [2+2] cycloaddition through dienamine catalysis. TMS = trimethylsilyl.

exclusive formation of Michael-type adducts through the selective α -functionalization of the dienamine intermediate and therefore no opportunity arises for cyclobutane formation.^[11]

Herein, we wish to present our initial results on a novel chiral secondary amine catalyzed enantioselective formal [2+2] cycloaddition of enolizable α,β -unsaturated aldehydes with α -hydroxymethyl-substituted nitroalkenes which leads to the formation of cyclobutanes in a single step (Scheme 2). This reaction is in sharp contrast with previously published work which, as already mentioned, shows the preference for dienamine intermediates generated from enals to undergo

Scheme 2. One-step synthesis of cyclobutanes by [2+2] cycloaddition/ hemiacetalization under dienamine catalysis.

^[*] G. Talavera, Prof. E. Reyes, Prof. J. L. Vicario, Prof. L. Carrillo Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain) E-mail: joseluis.vicario@ehu.es Homepage: http://www.ehu.es/GSA

^[**] This research was supported by the Spanish MICINN (CTQ2011-22790), the Basque Government (Grupos IT328-10 and fellowship to G.T.) and UPV/EHU (UFI11/22)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201200269.

 α functionalization with nitroalkenes.^[11] It should also be pointed out that there is only one literature precedent dealing with an enantioselective intermolecular [2+2] cycloaddition between enals and electron-rich alkenes which proceeds under iminium catalysis,^[12] and the dienamine route presented herein is still an unexplored approach^[13] which is also a complementary methodology to reported example, as it allows the [2+2] cyclocondensation of enals with an electronpoor alkene. In addition, this new process leads to the formation of cyclobutanes that are not obviously accessible using other methods.

We started our study by surveying the best reaction conditions for the transformation using the reaction of the enal 1a with nitroalkene 2a as a model system (Table 1). We

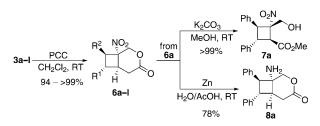
Table 1: Screening for the best experimental conditions using the reaction of aldehyde **1a** and nitroalkene **2a** as a model system.^[a]

Ph 🏷	C N	Ph Ph	co-cat	(20 mol%) alyst (20 mo olvent, <i>T</i>	· · · · · • - =	Ю2 О Чтон
	1a	2a			•	3a
		Ar Ar OTMS a: Ar=Ph b: Ar=(3,5-CF ₃)C	R´ 6H3	R N N 5a: R=H;	S N H 5b: R=CF ₃	R
Entry	4	Co-catalyst	Solvent	T [⁰C]	Yield [%] ^[b]	ee [%] ^[c]
1	4 a	PhCO₂H	CHCl ₃	4	59	74
2	4 b	PhCO₂H	CHCl₃	4	0	-
3	4 a	PhCO₂H	toluene	4	56	86
4	4 a	PhCO₂H	THF	4	< 5	n.d.
5	4a	PhCO₂H	EtOH	4	< 5	n.d.
6	4a	PhCO₂H	toluene	-20	47	90
7	4 a	5 a	toluene	-20	70	91
8	4a	5 b	toluene	-20	86	91

[a] Reaction conditions: **1a** (0.35 mmol), **2a** (0.52 mmol), catalyst **4** (20%), and co-catalyst (20%) were stirred in the specified solvent and temperature for 72 h. [b] Yield of pure product as a 1:1 mixture of α and β anomers after column chromatography. [c] Determined by HPLC analysis of the corresponding lactone. n.d. = not determined, THF = tetrahydrofuran.

initially tested the performance of catalyst 4a under standard reaction conditions, which involve the use of benzoic acid as Brønsted acid co-catalyst in CHCl₃ at 4°C (entry 1). Under these reaction conditions, the adduct 3a was isolated in moderate yield with a promising 74% ee. Importantly, NMR analysis of the crude reaction mixture indicated that 3a had been formed as a 1:1 mixture of α and β anomers. No other diastereoisomers could be detected, which indicated that the formal [2+2] cycloaddition process also had taken place with complete diastereocontrol. Increasing the steric bulk at the aryl moieties of the diarylprolinol catalyst (entry 2) did not result in any significant improvement. We next evaluated the influence of the solvent by adopting 4a as the most efficient catalyst, and observed that running the reaction in toluene led to a slight increase in the enantioselectivity (entry 3), whereas other more polar solvents were incompatible with this transformation (entries 4 and 5). We also found that working at a lower temperature led to 3a with an excellent *ee* value, but in much lower yield (entry 6). With the aim of improving this latter parameter, we next considered the possibility of a dual activation approach for both the aldehyde and the nitroalkene by using the combination of the amine catalyst 4a and the achiral thiourea 5a, which was expected to engage in selective hydrogen bonding with the nitroalkene.^[14] When we used this catalyst combination, the yield increased to 70% without affecting the enantioselectivity (entry 7), and an even better result was obtained when thiourea 5b was employed (entry 13).

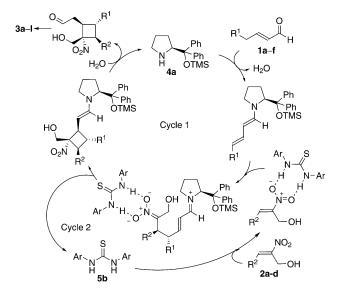
Having established the best protocol for the reaction, we next surveyed the scope of this transformation with respect to the α , β -unsaturated aldehydes and nitroolefins. As summarized in Table 2, the reaction behaved well in all cases tested


Table 2: Scope of the reaction.[a]

→ H + H ² < 1		O ₂ 5b (20 mol ^o toluene, –20	%))		
1a–f	2a–d		3a–I		
3	R ¹	R ²	Yield [%] ^[b]	ee [%] ^[c]	
3 a	Ph	Ph	86	91	
3 b	$4 - MeC_6H_4$	Ph	88	92	
3 c	$4-FC_6H_4$	Ph	77	92	
3 d	2-thienyl	Ph	73	89	
3 e	Ph	$4 - MeOC_6H_4$	72	95	
3 f	$4 - MeC_6H_4$	$4-MeOC_6H_4$	91	94	
3 g	$4-FC_6H_4$	4-MeOC ₆ H ₄	91	94	
3ĥ	$4-MeOC_6H_4$	4-MeOC ₆ H ₄	90	94	
3 i	Ph	4-CIC ₆ H ₄	67	92	
3 j	$4-MeC_6H_4$	4-CIC ₆ H ₄	69	94	
3 k	Ph	2-thienyl	52	94	
31	Et	Ph	38	85	
	3 3 a 3 b 3 c 3 d 3 e 3 f 3 g 3 h 3 i 3 j 3 k	$\begin{array}{c} H + H^2 \\ \hline 1a-f \\ 2a-d \\ \hline 3 \\ R^1 \\ \hline 3a \\ Ph \\ 3b \\ 4-MeC_6H_4 \\ 3c \\ 4-FC_6H_4 \\ 3d \\ 2-thienyl \\ 3e \\ Ph \\ 3f \\ 4-MeC_6H_4 \\ 3g \\ 4-FC_6H_4 \\ 3h \\ 4-MeOC_6H_4 \\ 3i \\ Ph \\ 3j \\ 4-MeC_6H_4 \\ 3k \\ Ph \end{array}$	$\begin{array}{c} \begin{array}{c} & & & \\ & & \\ \hline 1a-f & & \\ \hline 2a-d & \\ \hline \end{array} \\ \hline \begin{array}{c} & & \\ \hline 1a-f & & \\ \hline 1a-f & & \\ \hline 2a-d & \\ \hline \end{array} \\ \hline \begin{array}{c} & & \\ \hline 1a-f & & \\ \hline 1a-f & & \\ \hline 2a-d & \\ \hline \end{array} \\ \hline \begin{array}{c} & & \\ \hline 1a-f & & \\ 1a-f & & \\ \hline 1a-f &$	$\begin{array}{c} & & & & \\ \hline & & & \\$	

[[]a] All reactions carried out on 0.35 mmol scale of **1a**. [b] Yield of pure product as a 1:1 mixture of α and β anomers (NMR analysis) after column chromatography. [c] Determined by HPLC analysis of the corresponding lactone.

when γ -aryl-substituted α , β -unsaturated aldehydes were employed, regardless of the electronic nature of the γ substituent. In this sense, both the electron-rich (1b) and electron-poor (1c) aryl-substituted enals reacted efficiently with α -hydroxymethylnitrostyrene (2a) to furnish the corresponding bicyclic adducts **3b** and **3c**, respectively, in good yields and excellent enantioselectivities (entries 2 and 3). The γ -heteroaryl-substituted enal **1d** also performed well in the reaction with 2a, thus delivering 3d in good yield and enantioselectivity (entry 4). Regarding the nitrostyrene reagent we evaluated the use of the 2a and other derivatives incorporating electron-donating or electron-withdrawing substituents at the aryl moiety, and, in all cases the reaction also proceeded with similar levels of chemical efficiency and stereocontrol (entries 5–11). We also evaluated the use of a β alkyl-substituted α , β -unsaturated aldehyde such as 2-hexenal (1 f), which led to the formation of the desired cyclobutane adduct with a somewhat lower yield, but still with good levels of stereocontrol (entry 12). This final experiment also points toward the ability of the γ -arvl substituent on the enal reagents 1a-e to stabilize the dienamine intermediate by extending the conjugated system, which facilitates the reaction. Finally, it should noted that, as it happened in the model reaction, the formation of the cyclobutane scaffold took place in all cases with complete diastereoselection, and only the expected α and β anomers, resulting from the formation of the hemiacetal moiety, were observed; no other diastereoisomer was detected in the NMR spectra of the crude reaction mixtures.


Considering that the cyclobutane adducts 3a-1 had been obtained as mixtures of anomers, we decided to carry out their oxidation to the corresponding lactones for the purpose of better characterization, thus obtaining bicyclic adducts 6a-1 in excellent yields and as single diastereoisomers (Scheme 3).

Scheme 3. Oxidation of compounds **3 a**–**I** and survey of transformations carried out on compound **6a**. PCC = pyridium chlorochromate.

We could also grow a crystal of compound **6a** suitable for Xray analysis,^[15] and established unambiguously the absolute configuration of the products **3** and **6**. In addition, we also decided to explore some possible transformations of the obtained bicyclic adducts to illustrate their potential application as chiral building blocks in organic synthesis (Scheme 3). For example, using lactone **6a** as a model substrate, we quantitatively obtained the tetrasubstituted cyclobutane **7a** by base-promoted methanolysis. We have also carried out the reduction of the nitro group under standard reaction conditions to give the corresponding amine **8a** in good yield.

We propose a catalytic cycle (Scheme 4) which starts with the activation of the enal by the amine catalyst 4a through dienamine formation, and then generation of the cyclobutane ring is proposed to most likely occur by means of a stepwise Michael/Michael process, in which the dienamine undergoes a conjugate addition at its γ -carbon atom with the nitroalkene 2 and a subsequent intramolecular reaction of the generated nitronate intermediate with the remaining α,β -unsaturated iminium ion moiety. Once this cascade takes place, an enamine intermediate is formed which undergoes hydrolysis, thus releasing the catalyst and delivering the final adduct 3 after an hemiacetalization process. The thiourea co-catalyst is proposed to be involved in the activation of the nitroalkene in the initial Michael reaction, although it can also participate in the stabilization of the nitronate intermediate during the subsequent intramolecular Michael reaction. Similarly, the formation of the final adducts as stable hemiacetal derivatives is also believed to play a crucial role,^[16] thereby providing a thermodynamic driving force for the reaction to proceed to completion.

Scheme 4. Proposed reaction mechanism.

In summary, we have presented an efficient methodology for the enantio- and diastereoselective synthesis of substituted cyclobutanes by direct reaction of enolizable α,β unsaturated aldehydes and α -hydroxymethylnitrostyrenes using a chiral secondary amine and an achiral thiourea as a catalytic couple. The success of the reaction relies on the dual activation of both the enal and the nitroalkene reagents by the two catalysts, the former being engaged in a cascade Michael/Michael reaction through activation by the amine catalyst and the latter being activated by the thiourea through hydrogen bonding. This is the first example of a cascade reaction involving the dienamine/iminium manifold and also a good example of the great potential offered by the combination of the different organocatalytic activation mechanisms, which can lead to the discovery of new transformations and novel reactivity patterns.

Received: January 11, 2012 Published online: March 16, 2012

Keywords: asymmetric synthesis · carbocycles · cycloadditions · Michael addition · organocatalysis

- a) The Chemistry of Cyclobutanes (Eds.: Z. Rappoport, J. F. Liebman), Wiley, Chichester, 2005; b) R. Ortuno, A. G. Moglioni, G. Y. Moltrasio, Curr. Org. Chem. 2005, 9, 237.
- [2] a) T. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew. Chem. 2011, 123, 7884; Angew. Chem. Int. Ed. 2011, 50, 7740; b) M. J. Campbell, J. S. Johnson, A. T. Parsons, P. D. Pohlhaus, S. D. Sanders, J. Org. Chem. 2010, 75, 6317; c) J. C. Namyslo, D. E. Kaufmann, Chem. Rev. 2003, 103, 1485.
- [3] a) A. W. Schmidt, H.-J. Knoelker, Synlett 2010, 2207; b) E. Lee-Ruff, G. Mladenova, Chem. Rev. 2003, 103, 1449.
- [4] a) S. Breitenlechner, T. Bach, Angew. Chem. 2008, 120, 8075; Angew. Chem. Int. Ed. 2008, 47, 7957; b) T. Bach, H. Bergmann, B. Grosch, K. Harms, E. Herdtweck, Synthesis 2001, 1395.
- [5] a) G. Zhao, C. Yang, H. Sun, R. Lin, W. Xia, Org. Lett. 2012, 14, 776; b) B. Darses, A. E. Greene, S. C. Coote, J.-F. Poisson, Org. Lett. 2008, 10, 821; c) W.-C. Yeo, G.-K. Tan, L. L. Koh, P.-H.

Leung, *Eur. J. Inorg. Chem.* **2005**, 4723; d) K. Takao, H. Saegusa, T. Tsujita, T. Washizawa, K. Tadano, *Tetrahedron Lett.* **2005**, *46*, 5815; e) A. Avenoza, J. H. Busto, N. Canal, J. M. Peregrina, M. Perez-Fernandez, *Org. Lett.* **2005**, *7*, 3597; f) S. Faure, S. Piva-Le-Blanc, C. Bertrand, J.-P. Pete, R. Faure, O. Piva, *J. Org. Chem.* **2002**, *67*, 1061; g) K. Takasu, M. Ueno, M. Ihara, *J. Org. Chem.* **2001**, *66*, 4667; h) D. Haag, H.-D. Scharf, *J. Org. Chem.* **1996**, *61*, 6127.

- [6] a) E. Canales, E. J. Corey, J. Am. Chem. Soc. 2007, 129, 12686;
 b) M. R. Luzung, P. Mauleon, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 12402;
 c) K. Narasaka, Y. Hayashi, H. Shimadzu, S. Niihata, J. Am. Chem. Soc. 1992, 114, 8869.
- [7] K. Patora-Komisarska, M. Benohoud, H. Ishikawa, D. Seebach, Y. Hayashi, *Helv. Chim. Acta* 2011, 94, 719.
- [8] J. Burés, A. Armstrong, D. G. Blackmond, J. Am. Chem. Soc. 2011, 133, 8822.
- [9] Reviews: a) D. B. Ramachary, Y. V. Reddy, *Eur. J. Org. Chem.* 2012, 865; b) M. Nielsen, D. Worgull, T. Zweifel, B. Gschwend, S. Bertelsen, K. A. Jørgensen, *Chem. Commun.* 2011, 47, 632. For pioneering work, see c) S. Bertelsen, M. Marigo, S. Brandes, P. Diner, K. A. Jørgensen, *J. Am. Chem. Soc.* 2006, 128, 12973.
- [10] For example, see: a) J. M. O'Brien, J. S. Kingsbury, J. Org. Chem.
 2011, 76, 1662; b) M. R. Siebert, A. K. Yudin, D. J. Tantillo, Org. Lett. 2008, 10, 57; c) H. M. Sheldrake, T. W. Wallace, C. P.
 Wilson, Org. Lett. 2005, 7, 4233; d) G. L. Mislin, M. Miesch, J. Org. Chem. 2003, 68, 433.
- [11] a) D. B. Ramachary, K. Ramakumar, *Eur. J. Org. Chem.* 2011, 2599; b) B. Han, Y.-C. Xiao, Z.-Q. He, Y.-C. Chen, *Org. Lett.* 2009, *11*, 4661. Enones have been reported to undergo γ addition in the Michael reaction with nitroalkenes by dienamine catalysis: c) G. Bencivenni, P. Galzerano, A. Mazzanti, G. Bartoli, P. Melchiorre, *Proc. Natl. Acad. Sci. USA* 2010, *107*, 20642.

- [12] a) K. Ishihara, K. Nakano, J. Am. Chem. Soc. 2007, 129, 8930.
 For a report of an intramolecular [2+2] photocycloaddition with hydrogen-bonding catalysis, see: b) C. Müller, A. Bauer, M. M. Maturi, M. Cuquerella, M. A. Miranda, T. Bach, J. Am. Chem. Soc. 2011, 133, 16689.
- [13] After our manuscript had been submitted the elegant work by Jørgensen and co-workers appeared describing a similar formal [2+2] cycloaddition reaction between enals and nitroalkenes under dienamine catalysis: L. Albrecht, G. Dickmeiss, F. C. Acosta, C. Rodriguez-Escrich, R. L. Davis, K. A. Jørgensen J. Am. Chem. Soc. 2012, 134, 2543.
- [14] For some selected examples of cooperative aminocatalysis/ hydrogen-bonding catalysis, see: a) Y. Zhou, Z. Shan, J. Org. Chem. 2006, 71, 9510; b) N.Z. Burns, M. R. Witten, E. N. Jacobsen, J. Am. Chem. Soc. 2011, 133, 14578; c) S. Lin, L. Deiana, G.-L. Zhao, J. Sun, A. Cordova, Angew. Chem. 2011, 123, 7766; Angew. Chem. Int. Ed. 2011, 50, 7624.
- [15] CCDC 861549 (6a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.
- [16] The reaction of **1a** with nitrostyrene under the reaction conditions reported herein afforded the corresponding cyclobutane product in <10% yield, which is also consistent with the results reported by Jørgensen and co-workers (see Ref. [13]). We have also tested the reaction of **1a** with α -methylnitrostyrene under our reaction conditions and in this case the cyclobutane adduct was isolated in 15% yield. All these experiments points towards the key role played by the hemiacetal formation step as driving force for bringing the reaction to completion.