

HOLGER C.HANSEN, ALEXANDER SENNING, and RITA G.HAZELL

Kemisk Institut, Aarhus Universitet, 8000 Århus C, Denmark

(Received in UK 12 July 1985)

Abstract - Novel bis(perhaloalky1) pentathiodipercarbonates <u>5b-d</u> have been synthesized by reaction of sulfenyl chlorides with metal trithiocarbonates, and the heptathio analog <u>21a</u> was prepared similarly. Lenthionine <u>19</u> is the main product when diiodomethane is treated with sodium tetrathiopercarbonate. A rearrangement of bis(alkyldithio)chloromethanesulfenyl chlorides <u>22</u> to alkyldithio)(alkyltrithio)dichloromethanes <u>24</u> has been observed. Additions of sulfenyl chlorides and of thiosulfenyl chlorides to the thiocarbonyl compounds <u>5</u> and <u>21a</u> were achieved in acetonitrile. The structures of the first crystalline pentathiodipercarbonate <u>5a</u> and α, α, α -tris(disulfide) <u>29a</u>, and of the first reported α, α, α -tris(trisulfide)<u>31a</u> have been determined by X-ray crystallography.

INTRODUCTION

A perhaloalkyl group as substituent R in <u>e.q.</u> classes of compounds with an oligosulfide substructure, $R-S_x^-$, often has a stabilizing effect and may facilitate the isolation and handling of otherwise labile species. Thiocarbonic acid esters with the general formula <u>1</u> are uncommon, most of the literature concerning <u>1</u> being patents claiming syntheses and applications,¹ and for x > 1 only the trihalomethyl substituted compounds <u>2</u> (n = 0, ^{2,3} n = 1, ⁴ n = 2, ⁴ n = 3)⁴⁻⁶ and <u>3</u>⁴ have with certainty been isolated and satisfactorily characterized. No compound <u>1</u> with x or y larger than 3 has been reported.

$$\begin{array}{ccccccc}
R^{1}-S_{x}-C_{y}-R^{2} & (CC1_{3}-nF_{n}SS)_{2}C=S & (CF_{3}SSS)_{2}C=S \\
\underbrace{1}_{S} & \underbrace{2}_{y} n = 0-3 & \underbrace{3}_{y} \\
\underbrace{1}_{y} = 2, 3 & 3
\end{array}$$

Whereas the pentathiodipercarbonate 5a (2, n = 0) in reactions with a number of nucleophiles is degraded, merely acting as a thiophosgene substitute,² we recently found ^{3,7} that new derivatives can be obtained from the reaction of electrophiles with the thiocarbonyl functionality of 5a.

This paper describes an elaboration of similar reactions of novel pentathiodipercarbonates and related substances.

RESULTS AND DISCUSSION

Spectral and analytical data and yields of new compounds are summarized in Tables 1 and 2. Mass spectra are not given because in general no molecular peaks could be detected and only uncharacteristic fragmentation patterns of poor reproducibility appeared.

Reaction of Sulfenyl Chlorides and of Thiosulfenyl Chlorides* with Metal Trithiocarbonates

The new pentathiodipercarbonates 5b-d can be prepared by either of the two methods (A) and (B), eq. (1).

D C O		(A):	$Na_2CS_3(aq)/CH_2Cl_2$	R-S-S	(1)
K-3	-61	(B):	BaCS3/CH3CN	R-S-S	(1)
4				<u>5</u>	
	R				
8:	CC13			the second se	
<u>b</u> :	CCl ₃ CCl ₂			R-S-S	(0)
<u>c</u> :	CC1 ₂ FCC1 ₂			C=5' R-S-S	(2)
₫: 	CC1F2CC12			<u>6a</u> and <u>b</u>	
thr	oudbout				

By method (A) excess of freshly prepared aqueous sodium trithiocarbonate is added to the sulfenyl chloride in an organic solvent according to Fischer and Gottfried.^{2C,3}

We have examined an alternative method (B) making use of anhydrous barium trithiocarbonate in acetonitrile suspension. The barium salt is easily prepared and has a long shelf life.⁸ The side reactions in acetonitrile of $\underline{4}$ and $\underline{5}$ (eq. (18)) may, if $\underline{5}$ rather than $\underline{29}$ is the desired product, be suppressed by excess barium trithiocarbonate.

The compounds <u>5a-c</u> are orange crystalline solids, stable for years at -25 °C in the dark. Signals of low intensity (δ 218.1, 100.3 (J 30), and 121.8 (J 306) in the ¹³C NMR spectrum of <u>5c</u> can be ascribed to CCl₃CClF-SS-C(=S)- groups originating from CCl₃CClFSCl present as an impurity in <u>4c</u>. The analysis of crude <u>5d</u> (an orange-red liquid), though not quite satisfactory, together with the spectral data leaves no doubt that <u>5d</u> is the main product. No crystallization of <u>5d</u> or purification by chromatography could be achieved.

Oxidation of <u>5b</u> with <u>m</u>-chloroperbenzoic acid gave the expected sulfine <u>6b</u>, cf. the oxidation of <u>5a</u>³ and <u>2</u> (n = 3).⁵

So far we have not been able to isolate pentathiodipercarbonates other than <u>5a-d</u>. The reaction of the sulfenyl chloride <u>7</u> with sodium trithiocarbonate, eq. (3), gave the chlorodithioformate <u>8</u> and a product assigned the structure <u>9</u>. Dechlorination of <u>7</u> by the trithiocarbonate dianion and further reaction of the resulting <u>8</u> with $CS_3^2\Theta$ as a source of $S^2\Theta$ may explain the formation of <u>9</u>.

$$C_{6}C1_{5}-S-CC1_{2}-S-C1 \xrightarrow{CS_{3}^{2} \Theta} C_{6}C1_{5}-S-C-C1 + C_{6}C1_{5}-S-C-S-C_{6}C1_{5} (3)$$

$$CH_{2}C1_{2}/H_{2}O \xrightarrow{B} S \xrightarrow{S} S$$

Pentachlorobenzenesulfenyl chloride <u>10</u> yielded 92 % of the known⁹ trisulfide <u>11</u> in its reaction with sodium trithiocarbonate. A yellow intermediate immediately precipitating and gradually loosing its color might have been $C_6Cl_5SSC(=S)S^{\bigcirc}$ or <u>5</u> (R = C_6Cl_5) decomposing by elimination of carbon disulfide.

$$\frac{2 C_6 C I_5 - S - C I}{10} + \frac{C S_3^2 \Theta}{C S_2} + \frac{-2 C I \Theta}{C S_2} C_6 C I_5 - S - S - C_6 C I_5$$
(4)

<u>p-Toluenesulfenyl chloride treated according to method</u> (A) gave three products. The trisulfide $\underline{12}$ and a low yield of the trithiocarbonate $\underline{14}$ could be isolated by chromatography.

^{* &}quot;Thiosulfenyl chloride", though a misnomer, is a convenient and widely used synonym for chloro (organo)disulfane (organyl-5-5-Cl)

Ar = p-tolyl throughout

A yellow fraction contaminated with <u>12</u> contained a thiocarbonyl compound (different from <u>14</u> according to ILC) which presumably has been the pentathiodipercarbonate <u>13</u>. The yellow compound decomposed upon attempted further chromatographic purification giving <u>12</u>, but no <u>14</u>, suggesting that <u>14</u> was formed during the reaction and not by spontaneous extrusion of sulfur from <u>13</u> during work-up. The loss of sulfur necessarily involved in the formation of <u>14</u> might take place by nucleophilic catalysis as proposed in eqs (6)-(8), where Nu Θ is some unspecified nucleophile and Ar-S-X is <u>e.g.</u> <u>13</u>.

$$Nu^{\Theta} + Ar-S-X \longrightarrow Nu-X + ArS^{\Theta}$$
 (6)

$$\frac{13}{-\operatorname{ArSS}\Theta} \xrightarrow{+\operatorname{ArS}\Theta} \operatorname{Ar-S-S}_{\operatorname{Ar-S}} \xrightarrow{+\operatorname{ArS}\Theta} \frac{14}{-\operatorname{ArSS}\Theta}$$
(7)
$$\frac{15}{-\operatorname{ArSS}\Theta} \xrightarrow{1/8} \operatorname{S}_{8} \xrightarrow{+\operatorname{ArS}\Theta}$$
(8)

The presence of a labile tetrathiopercarbonate $\underline{15}$ mixed with $\underline{13}$ in the impure yellow fraction cannot be ruled out. The phenyl analog of $\underline{15}$ has been reported ^{1d} but following a similar approach, eq. (9), we obtained only bis(p-tolyl) disulfide <u>16</u>.

$$\operatorname{ArSH} \begin{array}{c} \underline{1} \\ \underline{2} \\ CS_2 \end{array} \xrightarrow{+ \operatorname{ArSC1}} [\underline{15}] \xrightarrow{- CS_2} \operatorname{Ar-S-S-Ar}$$
(9)

Whether an intrinsic instability of <u>15</u> (if formed at all) or the reaction conditions applied are responsible for the formation of <u>16</u> rather than <u>15</u> is unknown. Alkylation of metal tetrathioper-carbonates at elevated temperatures has been reported to give disulfides.¹⁰

A stable tetrathiopercarbonate 17 was prepared according to eq. (10).

$$(\bigcirc -CH_2SH \qquad \frac{1) \text{ NaOH}}{2) \text{ CS}_2} \qquad \underbrace{CC1_3SC1}_{\text{ IS}} \qquad (10)$$

Cyclic tetrathiopercarbonates are unknown. Intending to study reactions of the thiocarbonyl functionality and prospective elimination of carbon disulfide we tried to synthesize 1,2,4-tri-thiolane-3-thione <u>18</u> from methylene halides and metal tetrathiopercarbonates,¹¹ but obtained instead varying amounts of 1,2,3,5,6-pentathiepane <u>19</u> (lenthionine, a naturally occurring compound)¹² and unidentified polymers.

$$\begin{bmatrix} H_2C \\ S-S \end{bmatrix} \leftarrow H_2I_2 + \Theta_{S-C-S-S}\Theta \longrightarrow H_2C \\ H_2C \\ S-S \end{bmatrix} (11)$$

In one case (see Experimental) lenthionine was obtained in a quite good yield compared with the best method in the literature.^{12d}

Trichloromethylthiosulfenyl chloride <u>20a</u> reacts with aqueous sodium trithiocarbonate to give <u>21a</u>. The spectral data of the crude product (pure judging from TLC) are consistent with the structure <u>21a</u>. The orange liquid <u>21a</u> could not be brought to solidify and was not purified. In line with the reported ⁴ stability of <u>3</u> there is no indication that <u>21a</u> should be unstable with respect to loss of carbon disulfide, specifically no decolorization upon standing has been observed.

$$\frac{20a}{21a}$$

$$\frac{CS_3^2 \Theta}{R-S-S-S} C=S (12)$$

Sulfenyl Chlorides from Chlorination of the Thiocarbonyl Compounds 5 and 1713

Chlorination of <u>5b</u> and <u>c</u> can be carried out in the same way as the chlorination of <u>5a</u>,³ i.e. a titration of the orange <u>5</u> with a tetrachloromethane solution of chlorine to give the almost colorless 22. In pure form the sulfenyl chlorides are stable crystalline compounds.

In acetonitrile a decomposition of $\underline{22}$ takes place. Thus, attempts to prepare the tris(disulfides) $\underline{23a}$ and \underline{b} by addition of $\underline{22a}$ and \underline{b} , respectively, to thiophosgene in acetonitrile were unsuccessful, the only isolated products being the dichloro(alkyldithio)(alkyltrithio)methanes $\underline{24a}$ and \underline{b} which are also formed in the absence of thiophosgene when the sulfenyl chlorides are allowed to stand in acetonitrile at ambient temperature for some days, or in chloroform with HgCl₂ as a catalyst.

These are the first reported examples of migration of alkyldithio groups (Scheme 1, Q = RS) in a well precedented rearrangement of sulfenyl chlorides bearing organylthio groups in the α -position.¹³ Elimination-addition mechanisms (X = Y = Q = Cl;¹⁴ X = AlkO, Y = Q = Cl)¹⁵ and transition states with more (X = CF₃S or F, Y = Cl, Q = CF₃)¹⁶ or less (X = AlkO, Y = Cl, Q = Alk)¹⁷ charge separation have been suggested.

In our case a moderate yield of rearrangement product could be isolated and no other product was identified. The residue from the rearrangement of 22a after removal of 24a showed two IR absorptions in the C=S region at 1120 and 1080 cm⁻¹, tentatively ascribed to thiophosgene¹⁸ or

CCl₃SSC(=S)Cl¹⁹ and <u>5a</u>, respectively.

The reaction of $\underline{22a}$ with tetrahydrophthalimide, eq. (15), gave the expected substitution product $\underline{25}$. Compound $\underline{25}$ may be considered as derived from the known fungicide captan 20 by replacement of two chlorine atoms by two trichloromethyldithio groups, but contrary to expectations no fungicidal activity has been found.

In contrast to the pentathiodipercarbonates 5a-d the tetrathiopercarbonate 17 is readily chlorinated with sulfuryl chloride. Pure 26 can be stored at room temperature for days without decomposition, but in chloroform a noticeable decay can be observed within the time it takes to prepare a sample for ¹H NMR and record the spectrum (see Experimental).

$$\frac{17}{26} \qquad \frac{50_2C1_2}{C1_3-S-S} \qquad \begin{array}{c} C_6H_5CH_2-S \\ CC1_3-S-S \\ C1 \end{array} \qquad (16)$$

Reaction of 5 and of 21 with S-C1 bonds

Thione <u>S</u>-sulfenylation of <u>5</u> leads to compounds with the unusual $\alpha_1\alpha_1\alpha_2$ -tris(disulfide) substructure <u>27</u> which until recently ³ had one reported precedent (<u>29</u>, R = CF₃)⁵ only.²¹

Previously³ we have reported the addition reaction of sulfur dichloride with 5a. Similarly, 5b in excess sulfur dichloride at -25 °C in 18 hours gives a quantitative yield of the adduct 28b.

Unlike sulfur dichloride the sulfenyl chloride <u>4a</u> reacts extremely slowly with <u>5a</u>, even when <u>4a</u> is used as solvent.³ Also in contradistinction to this finding is the easy formation of <u>29</u> (R = CF_3) from Tl₂CS₃ and CF₃SCl.⁵ However, if acetonitrile is used as reaction medium the reaction rate is dramatically enhanced.^{3,22} The preliminarily reported ³ yield of <u>29a</u> can be improved by prolonging the reaction time or by heating to reflux. The structure of the first ³ isolated <u>29a</u> has been established by X-ray crystallography (see below) and the identity of the product from the direct synthesis, eq. (18), with the original sample follows from the spectral and analytical data in Tables 1 and 2. The new tris(disulfides) <u>29b</u> and <u>c</u> can be prepared likewise.

$$\frac{4}{4} + \frac{5}{5} \qquad \xrightarrow{R-5-5-C-C1} (18)$$
a, b, and c 29

....

In the reaction of an unsymmetrical disulfide with a sulfenyl chloride the new S-S bond is preferentially formed between the sulfenyl sulfur and the disulfide sulfur with the highest electron density.²³⁸ Accordingly, the S-S bond in <u>5</u> and/or <u>29</u> may react with <u>4</u>.^{23b} This was demonstrated in an attempt to synthesize an unsymmetrically substituted tris(disulfide) from the reaction of <u>4b</u> and <u>5b</u> in acetonitrile. After several days at room temperature a small amount of the symmetrically substituted tris(disulfide) <u>19b</u> precipitated, indicating that a series of exchange reactions, eq. (19), had occurred.

It is likely that all four possible tris(disulfides) have been present in the mixture and that <u>29b</u> precipitated simply because of a relatively low solubility.

The components of the mixture from the reaction of <u>5b</u> with pentachloroethylthiosulfenyl chloride <u>20b</u> proved difficult to separate, but a minute amount of analytically pure adduct <u>30b</u> could be obtained.

$$\frac{5b}{20b} + CC1_3CC1_2-S-S-C1 \xrightarrow{R-S-S} C1 \xrightarrow{C+3CN} C+3CN \xrightarrow{R-S-S} C1 \xrightarrow{C} C$$

If the reaction of the thiosulfenyl chloride <u>20a</u> with trithiocarbonate dianions is carried out according to method (B) the orange color of initially formed <u>21a</u> gradually fades away and only colorless crystals can be isolated. Ambiguous analytical and spectroscopic data of this dimorphous substance called in question its identity until X-ray crystallography finally established the α, α, α -tris(trisulfide) structure <u>31a</u>.

$$\frac{21a + 20a}{CH_{3}CN} \xrightarrow{R-S-S-S-C-C1} (21)$$

Authentic <u>21a</u> prepared according to eq. (12) also gives a low yield of <u>31a</u> in reaction with <u>20a</u> in acetonitrile.

Neither the tetrathiopercarbonate <u>17</u> nor the trithiocarbonate <u>5,5</u>-dioxide ²⁴ 4-CH₃C₆H₄SO₂-C(=5)-SC₆H₅ reacts with trichloromethansulfenyl chloride in acetonitrile.

X-Ray Structure Determinations

The structures of <u>5a</u>, <u>29a</u> and <u>31a</u> were confirmed by X-ray diffraction. Crystals of bis(trichloromethyl) pentathiodipercarbonate <u>5a</u>, $C_3Cl_6S_5$, are monoclinic, $P2_1/a$, with a = 23.054(13), b = 10.468(6), c = 5.895(3) Å, β = 105.29(3)°, Z = 4. Chlorotris(trichloromethyldithio)methane <u>29a</u>, $C_4Cl_{10}S_6$, is monoclinic, $P2_1/n$, a = 19.522(4), b = 5.963(1), c = 17.149(3) Å, β = 103.43(1)°, Z = 4. Crystals of chlorotris(trichloromethyltrithio)methane <u>31a</u>, $C_4Cl_{10}S_9$, are rhombohedral, R3c, a = 18.697(3), c = 11.460(2) Å, Z = 6.

The bond lengths, most angles and torsion angles for all three structures are collected in Table 3. Drawings of the molecular structures are given in Fig.1.

The pentathiodipercarbonate 5a has a localized C-S double bond; all other bonds have the lengths of typical single bonds. The tris(disulfide) 29a shows what influence packing forces can have on the geometry; whereas 31a has crystallographic threefold symmetry, one branch of 29a is twisted differently as seen from the torsion angles. The bond angles of this branch differ from the corresponding ones, and even the C-S and S-S bond lengths seem to differ; these changes are apparently necessary to avoid a too close intrachain S**Cl contact.

5150

Comp.	Mp. °C (solvent), or np	¹³ C NMR (CDCl ₃), * δ(J _C -F in Hz) or ¹ H NMR (CDCl ₃)δ	IR solids: KE liquids: (Br pellets Films betw	een NaCl plates	Yield. Purified (crude)	Procedures
<u>5b</u>	113-114 (CH ₂ Cl ₂)	218.5 104.7 104.0	1080(s) 1040(w) 970(w) 865(vw) 838(m)	815(m) 790(s) 780(s) 743(s) 665(s)	530(vw) 470(w) 460(vw)	20-36 (73)	b)
<u>5c</u>	40-42 (acetone)	217.9 122.4(309) 99.5(30)	1100(s) 1080(s) 998(s) 900(m) 870(m)	855(m) 834(s) 810(s) 775(s) 756(s)	710(s) 530(w) 505(vw) 470(w)	46 (70-80)	Ъ)
<u>5d</u>	nD ²¹ 1.5927	217.2 127.0(302) 93.9(33)	1150(s) 1080(s) 1010(s) 860(s) 850(s)	830(s) 810(s) 770(s) 758(s) 738(s)	620(m)	(67)	Ь)
<u>6b</u>	103-104 (acetone)	187.0 104.8 104.4 104.2	1120(s) 1010(w) 970(w) 915(w) 850(w)	830(w) 785(m) 770(s) 750(s) 740(s)	665(s) 535(vw) 450(vw)	49	Ref.3
<u>9</u>	dec.130 (benzene)	not available	1340(s) 1315(s) 1080(s) 880(w) 810(m)	760(m) 720(m) 690(s) 680(m) 600(w)		17	a) c)
<u>17</u>	67-69 (acetone)	220.1 98.8 133.4 42.7 129.1 128.6 127.9	1500(w) 1460(w) 1070(vs) 1030(m) 855(s)	840(m) 785(s) 760(s) 740(s) 705(s)	690(8) 570(w) 470(m)	53 (87)	c)
<u>21a</u>	n _D ²⁰ 1.6965	217.4 99.4	1100(w) 1080(s) 820(m) 790(vs) 770(vs)	740(vs)		(58)	a)
<u>22b</u>	85-87 (petroleum) ether/CH ₂ Cl ₂ 2:1)	105.3 103.3 95.4	970(w) 840(w) 810(w) 790(m) 775(s)	742(s) 660(m) 510(w)		97 (100)	Ref.3
<u>22c</u>	41-43 (petrolum ether)	122.6(308) 98.7(30) 95.0	1100(s) 1000(s) 902(w) 870(m) 845(m)	830(m) 815(m) 780(s) 760(s) 710(m)	685(m) 510(m) 44D(vw) 425(vw)	(100)	Ref.3
<u>24a</u>	53-54 (acetone)	99.6 99.0 98.1	791(s) 785(s) 778(s) 760(s) 745(s)	730(s) 710(s) 475(w) 443(w) 437(w)		(57)	с)
<u>24b</u>	88-89 (acetone)	105.0 104.5 104.0 102.9 99.9	975(w) 880(w) 830(w) 783(m) 765(s)	750(s) 742(s) 730(m) 665(m) 477(w)	430(w) 420(w)	(54)	c)
<u>25</u>	118-122 (ether)	177.8 23.3 127.2 98.1 94.4 39.2	1740(vs) 1440(w) 1300(s) 1200(m) 1170(s)	980(m) 840(w) 795(s) 765(s) 742(s)	730(s) 700(m) 580(w)	51	c)

TABLE 1

<u>26</u>	49-50	¹ H NMR:	1500(m)	765(s)		(98)	c)
	(petroleum ether)	7.23 (s,5H) 4.13 (s,2H) c)	1480(w) 1440(w) 1100(s)§ 780(s)	745(s) 690(s)			
<u>28b</u>	67-70	105.3	962(w) 840(w)	762(m) 758(m)		54	Ref.3
	(petroleum ether/CH ₂ Cl ₂ 3:1)	97.3	790(m) 770(s) 741(s)	510(w) 475(w) 430(vw)		(83)	
<u>29a</u>	78-79 (acetone)	98.4 93.5	832(m) 795(s) 785(s) 761(s) 758(s)	735(s) 725(s) 443(w)		49	c)
<u>29b</u>	148-149	105.5	960(w)	745(s)		56	c)
	(scetone)	103.5 95.8	835(m) 810(m) 785(s) 770(s)	660(m) 430(w)	·		
<u>29c</u>	77-79 (acetone)	122.7(308) 98.8(29) 95.1	1090(s) 998(s) 899(m) 870(m) 840(m)	825(m) 805(m) 780(s) 755(s) 715(m)	698(m) 682(m) 430(vw)	55	c)
<u>30b</u>	116-118 (acetone)	not available	832(w) 780(s) 741(s) 663(m) 480(vw)	485(vw) 420(vw)		4	c)
<u>31a</u>	81 125 130-140 (ether/CH ₂ Cl ₂)	99.7 98.9 c)	780(s) 750(s) 735(s) 502(vw) 470(w)	443(w)		13	b) c)

_ Table 1 (continued)

* Normalized to $\delta(\text{CDCl}_3)$ at 77.0 ppm § Absent in the spectrum of a freshly prepared solution of <u>26</u> in CH₂Cl₂ a) Prepared by method (A), eq.(1), cf. Ref.3 b) Prepared by method (B), see Experimental

c) See Experimental for more details.

FIGURE 1. Perspective drawings of the three molecules investigated, showing the numbering used

<u> 31a</u>

<u>5b</u>	C-ClS-		<u> </u>				
<u>5b</u>	C-C1S-		U,	н	C1	N	S
~	05011035	(574.91)	10.66(10.45)		61.39(61.67)		27.39(27.89)
20	C5ClaF2S5	(542.00)	11.26(11.08)		52.08(52.33)		29.32(29.58)
<u>5d</u> **	C5C16F4S5	(509.09)	11.94(11.80)		43.36(41.78)		28.60(31.49)
<u>6b</u>	C ₅ Cl ₁₀ OS ₅	(590.91)	10.64(10.16)		59.37(60.00)		26.85(27.13)
<u>9</u>	C14Cl10S5	(683.01)	25.07(24.62)		51.34(51.91)		22.16(23.47)*
<u>17</u>	C9H7Cl3S4	(349.77)			29.71(30.41)		36.60(36.67)
<u>22b</u>	C5C112S5	(645.81)	9.71(9.30)		65.24(65.88)		24.69(24.82)
<u>22c</u>	C5Cl10F2S5	(612.90)	10.09(9.79)		57.28(57.84)		26.06(26.16)
<u>24a</u>	C3Cl855	(479.98)	7.72(7.51)		59.31(59.09)		32.95(33.40)
<u>24b</u>	C5Cl12S5	(654.81)	9.63(9.30)		64.83(65.88)		23.49(24.82)*
<u>25</u>	C ₁₁ H ₈ C1 ₇ NO ₂ S ₅	(594.69)	22.47(22.22)	1.46(1.36)	41.60(41.73)	2.41(2.36)	26.80(26.96)
<u>26</u>	C₂H7Cl₅S₄	(420.68)	25.95(25.70)	1.72(1.68)	42.19(42.14)		30.37(30.49)
<u>285</u>	C5Cl12S6	(677.88)	9.43(8.86)		63.50(62.76)		26.97(28.38)*
<u>29a</u>	C4Cl10S6	(594.96)	8.24(8.08)		58.94(59.59)		31.93(32.34)
<u>29b</u>	C7Cl1656	(843.71)	10.83(9.97)		66.81(67.23)		22.10(22.80)
<u>29c</u>	C7Cl13F3S6	(794.35)	11.12(10.58)		57.63(58.02)		23.70(24.22)
<u>30b</u>	C7C116S7	(875.78)	10.03(9.60)		64.09(64.77)		25.34(25.63)
<u>31a</u>	C4Cl10S9	(691.15)	7.12(6.95)		50.95(51.29)		41.40(41.75)

TABLE 2. Analytical data, single determinations

* The sulfur determinations marked with an asterisk are too low by more than the accepted 1% deviation. However, the remaining elemental analytical and the spectral data, etc. fully support our structural assignments.

** Crude product.

TABLE 3. Bond lengths, angles and torsion angles (numerical value). Corresponding values for different branches are on the same line. Standard deviations in terms of the last digit are given in parentheses

Bond	<u>5a</u>	<u> </u>	<u>29a</u>			<u>31a</u>
C=5	1.581(12)					
C-C1				1.74(4)		1.763(6)
C-S1	1.780(12)	1.789(10)	1.833(4)	1.826(3)	1.844(4)	1.820(2)
S1-52	2.031(4)	2.023(5)	2.027(1)	2.022(1)	2.001(2)	2.046(1)
S2-51						2.030(1)
S-C	1.815(12)	1.847(12)	1.826(4)	1.827(4)	1.850(4)	1.821(4)
C-C1	1.772(12)	1.736(12)	1.762(4)	1.756(4)	1.748(5)	1.764(4)
	1.746(13)	1.782(12)	1.740(4)	1.751(4)	1.760(4)	1.753(4)
	1.793(12)	1.745(13)	1.760(4)	1.771(4)	1.766(4)	1.759(4)
Angle						
S=C-S	130.0(6)	116.2(7)				
C1-C-S			116.5(2)	116.7(2)	113.6(2)	113.3(2)
S-C-S	113.6(6)		102.5(2)	101(7(2)	103.8(2)	105.4(2)
C-S-S	100.3(4)	109.0(4)	105.0(1)	106.1(1)	108.6(1)	103.7(1)
S-S-S						105.8(1)
S-S-C	100.9(4)	104.3(4)	102.6(1)	101.9(1)	108.7(1)	102.0(1)
5-C-C1	113.1(6)	112.9(6)	110.9(2)	111.5(2)	113.1(2)	103.5(2)
	114.0(7)	110.6(6)	115.2(2)	114.4(2)	111.5(2)	112.9(2)
	102.1(6)	103.2(6)	103.4(2)	102.9(2)	103.2(2)	111.8(2)
Torsion angle						
S=C-S1-S2	11.4(8)	177.8(5)				
C1-C-S1-S2			126.8(2)	128.0(2)	137.5(2)	53.3(1)
C-51-52-X	99.2(5)	97.4(5)	113.3(2)	112.9(2)	91.4(2)	95.4(1)
S1-S2-S1-C						91.6(1)
S-S-C-CI	61.0(7)	63.7(7)	66.3(2)	56.4(2)	26.6(2)	179.3(1)
	64.0(6)	59.1(6)	56.3(2)	67.4(2)	97.4(2)	60.6(2)
	1/7.4(4)	1/5./(4)	1/6./(2)	1/3.2(2)	142.7(2)	02.7(2)

EXPERIMENTAL

Technical grade trichloromethanesulfenyl chloride <u>4a</u> was purified by vacuum distillation. Trichloromethylthiosulfenyl chloride <u>20a</u>,²⁵ aqueous sodium trithiocarbonate (approx. 10 mol 1⁻¹),^{26a} and barium trithiocarbonate ⁸ were prepared by literature methods. Pentachloroethylthiosulfenyl chloride <u>20b</u> was prepared by chlorination of acetyl pentachloroethyl disulfide.^{26b} 1,1,2,2-Tetrachloro-2-fluoroethanesulfenyl chloride <u>4c</u> and 1,1,2-trichloro-2,2-difluoroethanesulfenyl chloride <u>4d</u> were a gift from A/S Cheminova, Lemvig, Denmark.

Infrared spectra were recorded on a Nicolet MX-S FT-IR spectrophotometer; ¹H NMR: Varian EM-360 60 MHz spectrometer, TMS as internal standard; ¹³C NMR: Varian CFT-20 20 MHz spectrometer, the spectra were recorded overnight and chromium(III) tris(acetylacetonate)(50 mg per sample) was added except in cases (22 and 28) where it could be suspected to react.²⁷ Elemental analyses were carried out by Mikroanalytisk Laboratorium, Løvens Kemisk Fabrik, DK-2750 Ballerup, Denmark.

CAUTION: Attention is drawn to the irritant and toxic properties of many of the chemicals employed in this investigation, e.g. of thiophosgene, perhaloalkanesulfenyl chlorides 4 (4a is extremely toxic), carbon disulfide (extremely flammable and very toxic), chlorine, sulfuryl chloride, and sulfur dichloride.^{28,29} The primary hazard is from inhalation of vapor. Avoid any contact with skin and eyes. Glassware contaminated with the sulfenyl chlorides <u>4</u> should be rinsed with a mixture of aqueous ammonia and alcohol.

Bis(perhaloethyl)pentathiodipercarbonates 5

<u>Method B</u>: A mixture of the sulfenyl chloride 4 (typically 0.001-0.01 mol) and barium trithiocarbonate (10% excess) in acetonitrile (approximately 50 ml/mol) is stirred at ambient temperature for 18 h. The solvent is evaporated in vacuo and the residue extracted with water and methylene chloride. The organic layer is dried over CaCl₂ and charcoal and the solvent evaporated in vacuo. If the crude product does not solidify spontaneously crystallization may be induced by addition of acetone and cooling to -25 °C.

Reaction of 7 with Na₂CS₃

Aqueous sodium trithiocarbonate (5.3 mmol) was added with stirring to a solution of dichloro-(pentachlorophenylthio)methanesulfenyl chloride $\frac{7}{30}$ (1.53 g, 3.5 mmol) in 10 ml of methylene chloride. After 30 min a pink precipitate was filtered off. The CH₂Cl₂ phase was washed three times with 30 ml of water, dried over CaCl₂ and evaporated to give 0.58 g of mainly pentachlorophenyl chlorodithioformate $\underline{8}$ ³⁰ (46%, based on $\underline{7}$).

Dissolution of the precipitate in hot chloroform led to decolorization. Recrystallization of part of the pink material (7%) gave 0.014 g of orange crystals of <u>9</u>. At 130 °C a decolorization occurs and the resulting substance melts at 149-160 °C.

Reaction of pentachlorobenzenesulfenyl chloride 10 with Na₂CS₃

A solution of <u>10</u>³¹ (12.3 g, 39 mmol) in 150 ml of methylene chloride was added rapidly to a stirred solution of aqueous sodium trithiocarbonate (19 mmol) at 0-5 °C and the mixture was stirred for 3 h. A precipitate was filtered off and dried to give 8.60 g (76%) of bis(pentachlorophenyl) trisulfide <u>11</u>, mp. 193-196 °C. From the methylene chloride solution was obtained 1.84 g (16%) of <u>11</u>. Recrystallization from tetrachloromethane gave yellowish crystals, mp. 195-197 °C. (lit.⁹ mp. 192.5-194.5 °C). The IR (KBr) and the mass spectra of <u>11</u> are practically identical with those of bis(pentachlorophenyl) disulfide ³² (lit.⁹ mp. 237 °C) except for a weak molecular peak of <u>11</u> at m/e 590.

Reaction of p-toluenesulfenyl chloride with Na₂CS₃

A benzene solution of <u>p</u>-toluenesulfenyl chloride ³³ (43 mmol) and aqueous sodium trithiocarbonate (22 mmol) was mixed rapidly at 0-5 °C and stirred for 30 min. Then the benzene layer was dried over CaCl₂ and evaporated <u>in vacuo</u> to give an orange oil (6.51 g); IR (film): $v_{C=S}$ 1055 (vs) cm⁻¹. A part of the crude product (5.69 g) was subjected to column chromatography on silica gel with a 9:1 mixture of petroleum ether and methylene chloride as eluent. Fraction I: Pale yellow crystals of bis(<u>p</u>-tolyl) trisulfide <u>12</u> (3.73 g, overall yield 71%), mp. 60-75 °C. One recrystallization from benzene gave colorless plates, mp. 79-81 °C (lit.³⁴⁸ 81-82 °C); ¹H NMR (CDCl₃): (A8 approximation) δ_A 7.36, δ_B 7.04 (5H,J_{AB} 8Hz), 2.27 (s,2H). Fraction II: Dark yellow substance (0.39 g); shows two spots (<u>12</u> and a yellow component) on TLC; IR (KBr): $v_{C=S}$ 1060 cm⁻¹; the ¹H NMR

spectrum is practically identical with the spectrum of 12. Fractions III: Pure bis(p-toly1) trithicarbonate (0.14 g, overall yield 2.6%); yellow needles, mp. 113-116 °C (lit.³⁵ mp. 114-116 °C); m/e 290(M⁺), 167(ArSCS⁺), 123(ArS⁺); IR (KBr): $v_{C=S}$ 1090 cm⁻¹.

Attempted synthesis of 15

The reaction eq.(9), was carried out according to Himel and Edmonds.^{1d} Scale 21 mmol. A quantitative yield (4.45 g) of $bis(\underline{p}-tolyl)disulfide \underline{16}$ was obtained, colorless needles, mp. 40-47 °C. One recrystallization from ethanol gave mp. 45-46 °C (lit.^{10b} 47-48 °C), IR ¹⁸ and ¹H NMR ^{3b} data are in agreement with the literature.

S-Phenylmethyl SS-trichloromethyl tetrathiopercarbonate 17

Phenylmethanethiol (24.8 g, 0.20 mol) was added dropwise during 30 min with stirring at 15 °C to potassium hydroxide (11.2 g, 0.20 mol) in 150 ml of ethanel. After stirring for 30 min carbon disulfide (15.2 g, 0.20 mol) was added with stirring at 15 °C during 30 min and the mixture was subsequently stirred at 25 °C for 3 h. The solution thus prepared was added during 1 h at 0-5 °C to a stirred solution of trichloromethanesulfenyl chloride (37.2 g, 0.20 mol) in methylene chloride.

The solvent was evaporated in vacuo and the residue dissolved in methylene chloride/water. The organic layer was dried over MgSO, and evaporated in vacuo to give 61 g (81%) of crude $\frac{17}{17}$. Recrystallization from acetone gave 41.2 g (59%) of $\frac{17}{17}$. ^TH NMR (CDCl₃): δ 7.18 (s,5H) and 4.43 (s,2H).

1,2,3,5,6-Pentathiepane (lenthionine) 19

The unknown <u>18</u> was the desired product from the reaction eq.(11) and the yield of the actual product 19 was not optimized. A good yield was obtained as follows: Sodium tetrathiopercarbonate (0.10 mol) in 40 ml of ethanol was treated with ether (350 ml all together) in order to precipi-tate the salt in crystalline form.³⁷ No crystallization occurred and so the mixture was used as such. Methylene iodide (27.3 g, 0.10 mol) in 100 ml of ethanol was added with stirring and when all of the precipitate had dissolved 750 ml of water was added. The ether layer was separated and washed three times with water, dried over CaCl2 and evaporated in vacuo to give 13.7 g of an odorous yellow oil.

Column chromatography (silica gel/petroleum ether) of 4.10 g of the product yielded 2.13 g of CH_2I_2 and 1.52 g of lenthionine (overall yield 53% based on the total amount of CH_2I_2) mp. 52-54 °C.

Lenthionine (0.94 g, overall yield 25%) precipitated at -25 °C from 5.3 g of the crude product dissolved in 15 ml of acetone. One recrystallization from methylene chloride yielded 0.62 g, mp. 58-61 °C (lit.¹²⁸ 60-61 °C). IR,¹²⁸ ¹H NMR,^{12b} and mass spectral data ¹²⁸ are in agreement with the literature. ¹³C NMR (CDCl₃): § 52.1.

Rearrangement of the sulfenyl chlorides 22

<u>In acetonitrile</u>: A suspension of $\underline{22a}$ (1.03 g) in 20 ml of acetonitrile was stirred at room temperature for 7 days. The mixture was cooled to -25 °C and the precipitate filtered off and dried to give 0.58 g of almost pure dichloro(trichloromethyldithio)(trichloromethyltrithio)methane <u>24a</u>, mp. 45-49 °C.

In chloroform: To a solution of 22b (0.37 g, pure judging from the ¹³C NMR spectrum recorded overnight) in 2 ml of CDCl₃ a few crystals of HgCl₂ were dissolved at room temperature. After three days the solvent was evaporated in vacuo and the residue crystallized from acetone yielding 0.20 g of dichloro(pentachloroethyldithio)(pentachloroethyltrithio)methane 24b, mp. 83-86 °C.

Reaction of 22a with Δ⁴-tetrahydrophthalimide³⁸

The sulfenyl chloride 23a (4.80 g, 10 mmol) and a few mg of tetrabutylammonium tetrafluoroborate in 20 ml of methylene chloride were added with stirring during 30 min to a solution of Δ^* -tetrahydrophthalimide (1.51 g, 10 mmol) and sodium hydroxide (0.4 g) in 20 ml of water at 0-5 °C. The mixture was stirred for 30 min, the organic layer separated, washed three times with water, dried over CaCl₂, and evaporated <u>in vacuo</u>. Recrystallization of the residue from ether gave 3.0 g (5 mmol) of N-[chlorobis(trichloromethyldithio)methylthio]-4-cyclohexene-1,2-dicarboximide <u>25</u>, mp. 110-115 °C. Two more recrystallizations gave an analytically pure sample.

Chlorination of 17

Excess sulfuryl chloride (1 ml) was added to a solution of the tetrathiopercarbonate $\frac{17}{17}$ (0.37 g, l.1 mmol) in 10 ml of methylene chloride at room temperature. As soon as the yellow color of $\frac{17}{2}$ had disappeared the mixture was evaporated to give 0.44 g (98%) of slowly crystallizing 27, mp. 43-45 °C. Two recrystallizations from petroleum ether gave analytically pure chloro(phenylmethylthio)(trichloromethyldithio)methanesulfenyl chloride 27.

A freshly prepared CDCl₃ solution of 27 is almost colorless. Besides the two singlets in the ¹H NMR spectrum listed in Table 1 a weak singlet at 4.33 ppm is seen. After a few minutes the solution becomes yellow. After three hours the ratio $I_2:I_1$ of the integrals of the signals δ_2 4.33 and δ_1 4.13 is approximately 3:1. After one day a third singlet δ_3 4.50 appears and after several days δ_3 becomes dominant.

S-Sulfenylation of thiocarbonyl compounds

<u>Tris(disulfides), example</u>: A suspension of the pentathiodipercarbonate 5b (1.64 g, 2.9 mmol) and the sulfenyl chloride 4b (0.77 g, 2.9 mmol) in 10 ml of acetonitrile was stirred and heated to reflux for 17 h. The mixture was then cooled to room temperature and crude 29b was filtered off and dried (1.96 g, 81%). One recrystallization from methylene chloride gave 1.35 g (56%) of chlorotri(pentachloroethyldithio)methane 29b, mp. 142-146 °C.

Alternatively the reaction may be carried out at room temperature by stirring the reactants in acetonitrile for about 7 days.

Iris(trisulfide) 31a: Trichloromethylthiosulfenyl chloride 20a (1.15 g, 5.3 mmol) and barium trithiocarbonate (0.65 g, 2.6 mmol) in 20 ml of acetonitrile was stirred at room temperature over-night. Methylene chloride (75 ml) and water (100 ml) was added, the organic layer was separated and washed with water, dried over CaCl₂, and evaporated <u>in vacuo</u>. Recrystallization from ether/ Based on the relatively high intensity of the 13 C MMR (CDCl₃) signal at δ 99.7 (Table 1) it is assigned the <u>Cl₃</u> group of <u>31a</u>. Signals each of approx. one fourth of the intensity of δ (CCl₃) appear at δ 99.4 and 98.9. The latter is tentatively asigned the central carbon of <u>31a</u> and the former might be due to a decomposition product, e.g. 21a. Either of two modifications I and II of <u>31a</u> may be isolated by recrystallization and distin-

guished by their thermal behaviour.

Modification I: A transition in the solid state from relatively long to much smaller needles at 79-81 °C is visible in a melting point apparatus with a microscope (starting temperature 40 °C, heating rate 3 °C min⁻¹). The resulting crystals melt at 129-140 °C. Starting at 110 °C the needles (I) immediately melt and subsequently crystallize, mp. 125-135 °C. Modification II: The needles become opaque at 125 °C and melt at 130-140 °C.

X-Ray work

Preliminary cell dimensions and symmetry were determined from precession- and Weissenberg photographs. Cell dimensions were determined from the setting angles of 24 (5a), 29 (23a), and 18 (31a) reflexions, respectively. The data were collected on an automatic Picker FACSI diffractometer with Zr-filtered MoK α radiation. Step scans were collected and integrated according to the minimum $\delta(I)/I$ criterion,³⁹ the data were corrected for Lorentz- and polarization effects but not for absorption. Averaging produced 2237, 3445, and 2782 reflexions out of 7093, 3815, and 8037 measured; of these 1266, 2640, and 971 had I > 3 $\delta(I)$ and were used in the refinements. The atomic positions were found by means of MULTAN ⁴⁰ and refined by full matrix least squares ⁴¹ together with anisotropic thermal parameters. The crystals of 5a were twinned such that hkl of one twin co-incided with -h-2k, k, of the other twin. This was included in the refinement and the relative amount of the twins was included as a parameter, converging at 1:0.224. The poor crystal quality limits the accuracy of this structure. The final R-values are 0.075, 0.035 and 0.025, respective-ly. Final coordinates and equivalent isotropic thermal parameters are given in Table 4. Lists of

TABLE 4. Coordinates $(*10^5)$ and equivalent isotropic temperature factor $(*10^4)$

Bis(trichloromethyl) pentathiodipercarbonate 5a

Chlorotris(trichloromethyldithio)methane 29a

	x	У	z	u iso
S	74586(16)	15294(29)	84(63)	615(20)
S1	82762(14)	21379(24)	48558(51)	503(18)
S2	83778(14)	36946(25)	29406(57)	524(19)
S3	76749(15)	-3881(27)	35944(65)	627(21)
S4	81431(15)	-5940(28)	69971(58)	591(21)
C11	91329(15)	19460(31)	8873(62)	689(22)
C12	96970(16)	33591(35)	50397(66)	795(24)
C13	92000(19)	47008(36)	6534(76)	930(29)
C14	92776(15)	-5539(32)	54576(64)	729(24)
C15	86579(18)	-29359(29)	53911(69)	800(25)
C16	92016(20)	-17103(37)	98012(59)	901(28)
C	78087(48)	11752(94)	26164(198)	458(67)
C1	91108(53)	33784(111)	24639(219)	577(78)
C2	88354(54)	-14392(101)	68507(208)	548(73)

	x	У	Z	^u iso
S1	34720(5)	12628(17)	66166(5)	419(5)
S2	42964(5)	27179(20)	73895(6)	481(6)
S3	27096(5)	11587(16)	49817(5)	388(5)
S4	18198(5)	24565(19)	52106(6)	462(6)
S5	42282(5)	14382(19)	53813(6)	460(6)
S6	44120(6)	31537(21)	44482(6)	528(6)
C11	34750(8)	24032(23)	86324(7)	733(8)
C12	32267(8)	61640(24)	76023(7)	767(9)
C13	45710(7)	56648(30)	87068(9)	939(10)
C14	13128(6)	20985(20)	34484(6)	578(6)
C15	19214(7)	62456(20)	40851(8)	736(8)
C16	6056(7)	47869(30)	44106(8)	855(9)
C17	38296(7)	-11259(20)	36356(7)	673(8)
C18	31362(6)	30186(26)	30955(7)	722(8)
C19	45227(6)	21921(24)	28639(7)	683(8)
C1	34126(6)	55321(16)	56338(6)	475(6)
С	34395(18)	26135(59)	56484(20)	351(19)
C1	38680(20)	42570(70)	80648(21)	456(23)
C2	14377(21)	39186(72)	42747(23)	471(22)
C3	39524(21)	17436(73)	35114(23)	477(23)

Chlorotris(trichloromethyltrithio)methane 31a

	x	У	z	^u iso
S1	4215(6)	-6059(6)	6256(14)	422(5)
S2	15509(6)	-1393(6)	-1596(17)	512(5)
S2	13741(6)	-8906(6)	-15406(15)	473(5)
C1	0(0)	0(0)	-15400(0)	681(4)
C11	14637(9)	-23123(8)	-20884(18)	729(7)
C12	26102(7)	-12111(10)	-3728(19)	807(9)
C13	9006(7)	-22193(7)	2121(16)	585(6)
С	0(0)	0(0)	-15(49)	437(19)
C1	15985(21)	-16507(23)	-9079(34)	456(19)

REFERENCES

- 1. Survey of references mentioning compounds with a -SS-C(=S)-S- substructure (H₂CS, and its salts, derivatives of HS-C(=S)-SS-C(=S)-SH, and polymeric species not included) in part based on a CAS Online substructure search carried out in March, 1983.
 - a) W.A.Schultze, G.H.Short, and W.W.Crouch, Ind.Eng.Chem. 42, 916 (1950).
 - b) R.S.Hawley and A.R.Kittelson (to Standard Oil Development Co.), U.S. 2,553,777 (1951); Chem.Abstr. 45, 7742h (1951). c) P.M.Arnold (to Phillips Petroleum Co.), U.S. 2,574,457 (1951); <u>Chem.Abstr. 46, 4027f (1952)</u>. d) C.M.Himel and L.O.Edmonds (to Phillips Petroleum Co.), <u>U.S</u>. 2,574,829 (1951); <u>Chem.Abstr</u>.

 - <u>46</u>, 4565c (1952).
 - e) L.D.Goodhue and C.E.Tissol (to Phillips Petroleum Co.), U.S. 2,607,673 (1952); Chem.Abstr. 47, 7728 (1953).
 - f) P.M.Arnold (to Phillips Petroleum Co.), U.S. 2,634,291 (1953); Chem.Abstr. 48, 2768g (1954). g) L.D.Goodhue, R.P.Louthan, and K.E.Cantrel (to Phillips Petroleum Co.), U.S. 3,023,142
 - (1962); Chem.Abstr. 56, 15880e (1962).
 - h) L.D.Goodhue (to Phillips Petroleum Co.), <u>U.S</u>. 3,180,790 (1965); <u>Chem.Abstr. 63</u>, 3566c (1965). See also Refs 2-7.
- 2. a) F.Fischer and R.Gottfried, <u>J.Prakt.Chem</u>. <u>30</u>, 230 (1965)

 - b) R.Gottfried, <u>Angew.Chem. 78</u>, 985 (1966).
 c) F.Fischer and R.Gottfried, <u>Ger.(East)</u> 57,122 (1967); <u>Chem.Abstr. 68</u>, 114090 (1968). d) See the patents cited in Ref.3.
- H.C.Hansen and A.Senning, <u>Sulfur Lett</u>. 2, 85 (1984). F.Bur-Bur, Dissertation, Univ.Bochum (FRG) (1973). 3.
- 4.
- G.Diderrich and A.Haas, Chem.Ber. 109, 3432 (1976). 5.
- 6.
- W.Gombler, <u>Z.Naturforsch.</u> <u>36B</u>, 1561 (1981). H.C.Hansen, presented at the Eleventh International Symposium on the Organic Chemistry of Sul-7. phur, Lindau (FRG), September 10-15, 1984. Book of Abstracts, B1.26.
- E.W.Yeoman, <u>J.Chem.Soc</u>. <u>119</u>, 38 (1921). 8. F.Lober, O.Bayer, and M.Bögemann (to Farbenfabriken Bayer A.-G.), <u>U.S</u> 2,695,898 (1954); <u>Chem</u> <u>Abstr</u>. 49, 3572a (1955). 9.
- 10. R.W.Liggett (to Allied Chemical Corp.), <u>U.S</u>. 3,367,975 (1968); <u>Chem.Abstr. 68</u>, 68471p (1968).
- Cf. the synthesis of 1,3-dithietane-2-thione, J.Wortmann and G.Gattow, Z.Anorg.Allg.Chem. 376, 11. 73 (1970).
- a) K.Morita and S.Kobayashi, <u>Tetrahedron Lett</u>. <u>1966</u>, 573.
 b) <u>Idem</u>, <u>Chem.Pharm.Bull</u>. <u>15</u>, 988 (1967).
 c) R.Gmelín, R.Susilo, and G.R.Fenwick, <u>Phytochemistry</u>, <u>20</u>
 d) I.W.J.Still and G.Kutney, <u>Tetrahedron Lett</u>. <u>1981</u>, 1939.
 Car a review of reactions. <u>Detrahedron Lett</u>. <u>1981</u>, 1939. 12. <u>20</u>, 2521 (1981)
- 13. of thiocarbonyl compounds with chlorine and with sulfur dichlo-For a review of reactions rides, see: H.C.Hansen and A.Senning, Org.Prep.Proced.Int. accepted for publication.
- F.Wolf, H.-J.Dietz, and D.Nusch, J.Prakt.Chem. 35, 177 (1967). 14.
- 15. H.Böhme, M.Brinkmann, and H.-P.Steudel, Liebigs Ann.Chem. 1981, 1244.
- 16. G.Dahms, G.Diderrich, A.Haas, and M.Yazdanbakhsch, Chem.-Ztg. 98, 109 (1974).
- G.Barany, <u>Tetrahedron Lett</u>. 24, 5683 (1983). 17.
- 18. C.J.Pouchert, "The Aldrich Library of Infrared Spectra" Ed.3, Aldrich Chemical Company, Wisconsin 1981.
- 19. E.K.Moltzen, presented at the symposium mentioned in Ref.7. Book of Abstracts, Bl.13.
- H.Schlör, "Chemie der Fungicide" in R.Wegler (Ed.), "Chemie der Pflanzenschutz und Schädlings-20. bekämpfungsmittel," Vol.2, Springer-Verlag Berlin 1970, p.108.
- Based on a CAS Online substructure search carried out in March, 21. 1984.
- Cf. the addition of sulfenyl chlorides to a) thiophosgene: H.C.Hansen, B.Jensen, and A.Senning, 22. <u>Sulfur Lett</u>. <u>3</u>, 000 (1985). b) 4,4-Dichloro-1,3-dithietane-2-thione: H.C.Hansen and A.Senning, <u>ibid</u>.
- 23. a) C.G.Moore and M.Porter, <u>J.Chem.Soc</u>. <u>1958</u>, 2890. b) A similar exchange/addition reaction has been reported. PhNHC(=S)SSAr + 4a \rightarrow PhNHC(=S)SSCCl₃ + PhN=C(SSCCl₃): G.Stéjer, D.Korbonits, A.E.Szabó, F.Klivényi, and E.Vink-ler, <u>Acta Chim.Acad.Sci.Hung</u>. <u>93</u>, 67 (1977).
- N.H.Nilsson and A.Senning, Chem.Ber. 107, 2345 (1974). 24.
- 25.
- S.Kaae and A.Senning, <u>Acta Chem.Scand. 22</u>, 159 (1968). a) D.J.Martin and C.C.Greco, <u>J.Org.Chem</u>. <u>33</u>, 1275 (1968). 26.
- 27.
- b) A.Senning, M.-A.Chevallier, and B.Jensen, <u>Sulfur Lett</u>., accepted for publication.
 J.P.Collman, R.L.Marshall, W.L.Young, and C.T.Sears, Jr., <u>J.Org.Chem.</u> 28, 1449 (1963).
 L.Bretherick (Ed.) "Hazards in the Chemical Laboratory," The Royal Society of Chemistry, 28. London 1981.
- E.D.Weil, "Sulfur Compounds", in Kirk Othmer: Encyclopedia of Chemical Technology, Vol.22, Third Edition, John Wiley & Sons Inc., 1983, pp.107-167. 29.
- 30.
- H.C.Hansen, B.Jensen, and A.Senning, <u>Sulfur Lett.</u> 3, 61 (1985). R.E.Putnam and W.H.Sharkey, <u>J.Am.Chem.Soc.</u> 79, 6526 (1957). C.R.Lukas and M.E.Peach, <u>Can.J.Chem.</u> 48, 1869 (1970). 31.
- 32.
- 33. H.Emde, <u>Ger</u>. 804,572 (1951); <u>Chem.Abstr</u>. <u>46</u>, 529i (1952).
- Beilsteins Handbuch der Organischen Chemie, Vol.6, Springer Verlag, Berlin; a) 1st Supple-34. ment (1931), p.212; b) 3rd Supplement (1966) p.1432.
- 35.
- H.G.Heine and W.Metzner, <u>Liebigs Ann.Chem. 724</u>, 223 (1969). C.J.Pouchert and J.R.Campbell, "The Aldrich Libary of NMR Spectra", Vol.5, Aldrich Chemical 36. Company, Wisconsin 1974.
- 37.
- G.Gattow and J.Wortmann, <u>Z.Anorg.Allg.Chem</u>. <u>345</u>, 137 (1966). Cf. F.Wolf, H.J.Dietz, H.J.Haase and D.Nusch, <u>J.Prakt.Chem</u>. <u>35</u>, 186 (1967). 38.
- 39. M.S.Lehmann and F.K.Larsen, Acta Cryst. A30, 580 (1974).

- G.Germain, P.Main, and M.M.Woolfson, <u>Acta Cryst</u>. <u>A27</u>, 368 (1971).
 W.R.Busing, K.O.Martin, and H.A.Levy, <u>ORFLS</u>, Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee, 1962. Local modifications, Aarhus, 1982.