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 1† INTRODUCTION

Oligoribonucleotides containing residues of 2'�O�
modified nucleotides are widely used at present in
molecular biology for the regulation of gene expres�
sion. In particular, they are employed in the synthesis
of small interfering RNAs (siRNAs) [1, 2] and anti�
sense oligonucleotides [3, 4], the preparation of con�
jugates stabilizing the structure of NA, and for the
covalent linking of reporter groups, e.g., fluorescent
and spin labels, as well as labels for the electrochemi�
cal detection of NAs [5]. In addition, of great interest
are conjugates of NA with compounds facilitating
their entry into the cell, e.g., cholesterol or polyca�
tionic molecules [6], and with biopolymers accom�
plishing their targeted delivery, e.g., peptides and car�
bohydrates [7].

In the literature, conjugates of NAs with peptides
coupled to the terminal 3'� and 5'�OH functions or the
heterocyclic bases of nucleotides have been described
[8]. In the first case, the number of peptides attached
to NA and their position are restricted; in the second
case, the thermal stability of duplexes formed by the
modified chain with a complementary target some�
times decreases, due to the adverse effect of substitu�
ents on the hydrogen bonding between nitrogenous

 Abbreviations: DBU, diazabicyclo[5.4.0]undec�7�ene; DMTr,
4,4'�dimethoxytrityl; NIS, N�iodosuccinimide; TEA, triethyl�
amine; TBAF, tetra�n�butylammonium fluoride; TfOH, trifluo�
romethanesulfoacid; TPS, 2,4,6�triisopropylbenzenesulfonyl
chloride.

1 Corresponding author: phone: (495) 336�59�11; fax: (495) 330�
67�38; e�mail: eva@mx.ibch.ru.

† Recently deceased.

bases. Therefore, the use of 2'�modifying groups for
this purpose seems to be a more promising trend.

One of the first known examples of this approach
involved the formation of conjugates between peptides
and oligonucleotides containing a 2'�amino group [9,
10]. However, this reaction proceeded ineffectively,
and the resulting amide bond led to a destabilization of
the duplex of the oligonucleotide with the comple�
mentary target [11]. Later, an approach was developed
in which a group containing the aldehyde function was
introduced into ribonucleotides, which enabled one to
perform a highly effective conjugation with various
organic molecules with the formation of the imino
group, thiazolidine, oxime or hydrazine bonds [12, 13].
Besides, the oxo group can be converted into a reactive
hydrazine group [14].

The introduction of the acetylene function into the
2'�O�modifying group made it possible to perform the
[3 + 2]�dipolar cycloaddition reaction catalyzed by
Cu(I) [15]. In recent years, attention of many investi�
gators has also been given to the development of
chemical methods of synthesis of cyclic [16–18] and
cross�linked oligonucleotides [19–24], in particular,
for studying the mechanism of DNA repair [21, 25]
and the preparation of nanostructures [26].

The goal of this study was to develop methods for
the synthesis of monomers containing an O�nucleo�
philic catalytic 4�methoxy�1�oxido�2�picolyl phos�
phate�protecting group and 2'�O�alkoxymethyl modi�
fying groups for their introduction into the oligonucle�
otide chain by the phosphotriester method.
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RESULTS AND DISCUSSION

Unfortunately, attempts of targeted introduction
into the oligonucleotide chain of 3'�O�phosphoroami�
dites of nucleosides [27] bearing azido�containing
groups at the 2'�position failed [15] since the azide
group adversely affects the efficiency of internucle�
otide condensation due to the formation of imino�
phosphorane by the reaction of Staudinger [28]. An
alternative approach, which enables the targeted
introduction of azido�containing modifying and pro�
tective groups into oligonucleotides during the chain
elongation is the phosphotriester method, that is based
on the O�nucleophilic intramolecular catalysis at the
stage of the internucleotide link formation [29–31].
We have earlier demonstrated this in the synthesis of
2'�O�azidomethyl� and 2'�O�(2�azidomethyl)ben�
zoyl�containing oligonucleotides [29, 30].

As an extension of studies devoted to the develop�
ment of the phosphotriester method for the synthesis
of modified RNA fragments, we obtained monomers
with 2'�O�alkoxymethyl groups containing a catalytic
4�methoxy�1�oxido�2�picolyl phosphate�protecting
group (Scheme 1). Methylthiomethyl derivatives
(IIa)–(IIc) were obtained by treating the alcohols
(Ia)–(Ic) with a mixture of DMSO, acetic anhydride,
and acetic acid, as described in [32]. 2'�O�Alkoxyme�
thyl modifying groups were introduced by treating the
3',5'�O�protected derivative (III) with the appropriate
O,S�acetal (IIa)–(IIc) in the presence of TfOH and
NIS in dry THF. It should be noted that the synthesis
of compound (IVa) was earlier described by Bobkov et
al.; however, the method of its synthesis involved three
stages with a total yield of as little as 50–55% [33],
whereas our method made it possible to obtain this
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compound in one stage with a yield of 78%. Subse�
quent removal of the silyl protecting group from com�
pounds of the type (IV) by TBAF and the introduction
of the 5'�O�dimethoxytrityl group led to 5'�O�DMTr�
2'�O�modified derivatives (VIa)–(VIc).

In the case of compounds (VIa) and (VIb), the
introduction of a phosphate residue containing a
4�methoxy�1�oxido�2�picolyl group and the selective
splitting of 2�chlorophenyl phosphoester was success�
fully carried out as described previously (treatment
with DBU) [30]. However, the treatment of (VIc) in
this way led to a quantitative removal of its 2'�O�cyclo�
carbonate group. We found that this group remains
resistant to TEA in aqueous organic medium at least
within 24 h. Therefore, phosphate group was intro�
duced into the compound (VIc) using phosphodiester

(X) obtained by the condensation of bis(4�nitrophe�
nyl)phosphate (VIII) with 1�oxido�4�methoxy�2�
pyridinemethanol in the presence of TPS�Cl followed
by the selective removal of one 4�nitrophenyl group
from the phosphotriester (IX) by TEA in an aqueous
organic medium (Scheme 2). The phosphorylation of
(VIc) by phosphodiester (X) in the presence of a con�
densation reagent followed by treatment with TEA in
an aqueous organic medium gave monomer (VIIc).
The introduction of the monomer (VIIc) into the oligo�
nucleotide structure with the subsequent removal of the
cyclocarbonate protecting group after the termination
of chain elongation by the treatment with a base (in par�
ticular, DBU) followed by the periodate oxidation of
the resulting diol system makes it possible to obtain oli�
gonucleotides containing 2'�O�aldehyde groups.

At present, we use synthons (VIIa)–(VIIc), which
contain a (2�azidoethoxy)methyl, a propargyloxyme�
thyl, or a (3,4�cyclocarbonatebutoxy)methyl group at
the 2'�O�position, in the solid�phase synthesis of mod�
ified oligonucleotides for the introduction of the cor�
responding modified units at different sites of the oligo�
nucleotide chain. In addition, studies are carried out to
determine the conditions for the preparation of conju�
gates of these modified oligonucleotides with other
organic molecules and cross�linked NA fragments.
Thus, by using 2'�O�alkoxymethyl modifying groups:
the 2�azidoethoxymethyl and the propargyloxymethyl
groups, after the introduction of the appropriate mono�
mers into the oligonucleotide chain, it would be possi�
ble to obtain conjugates with other organic molecules,
as well as cyclic single�strand and cross�linked double�
strand NA fragments by the [3 + 2]�dipolar cycloaddi�
tion reaction catalyzed by Cu(I) ions [15, 19, 34, 35]. In
turn, the (3,4�cyclocarbonatebutoxy)methyl group
would enable one to generate a reactive aldehyde func�
tion [12–14], which can be useful in obtaining conju�

gates with organic molecules and cross�links with oli�
gonucleotides containing the amino group.

EXPERIMENTAL

Solvents and reagents were purchased from com�
mercial sources and were used without additional
purification. 2�Azidoethanol (Ia) was obtained from
2�chloroethanol by the method described in [36].
NMR spectra (δ, ppm J, Hz) were recorded in CDCl3
or DMSO�d6 on a Bruker DPX300 device (Germany)
at a working frequency of 300 (1H) and 121.5 MHz
(31P). Chemical shifts are given relative to tetrameth�
ylsilane (1H) and H3PO4 (

31P). Mass spectra were mea�
sured in the linear mode with the registration of posi�
tive and negative ions on an Ultraflex II MALDI�TOF
mass spectrometer (Bruker Daltonics). Column chro�
matography was carried out on Silicagel 60 (Merck).
TLC was performed on Silicagel 60 F254 plates
(Merck) using the following systems: (A) CHCl3–
hexane 1 : 1; (B) CHCl3–CH3OH–H2O, 65 : 25 : 4;
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(C) CHCl3–CH3OH, 9 : 1; and (D) CHCl3–CH3OH,
39 : 1. Derivatives (IIa)–(IIc) were detected on TLC
plates by iodine vapors.

1,2�O�Cyclocarbonatebutane�1,2,4�triol (Ic). A
mixture of 1,2,4�butanetriol (5.31 g, 50 mmol),
diphenylcarbonate (10.71 g, 50 mmol), and sodium
bicarbonate (1.01 g, 12.0 mmol) in anhydrous DMF
(75 ml) was refluxed for 5 min. After cooling to room
temperature, chloroform (150 ml) was added to the
reaction mixture, and the target product was
extracted with water (3 × 100 ml). Combined water
extracts were evaporated to dryness, and the residue
was dried by evaporation with acetonitrile (2 × 50 ml).
The product was purified by chromatography on a
silica gel column in a gradient of methanol (0–3%) in
chloroform. Fractions containing compound (Ic)
were evaporated to foam and dried in vacuo. Yield:
2.58 g (39%). Rf 0.55 (D); 1H NMR (DMSO�d6):
4.93–4.83 (1 H, m, CHO(CO)CH2O), 4.68 (1 H, t,
J 5.0, OH), 4.57 (1 H, dd, J 8.3, 7.9,
CHO(CO)CHαO), 4.19 (1 H, dd, J 8.3, 7.4,
CHO(CO)CHβO), 3.59–3.43 (2 H, m, OСH2CH2),
1.95–1.76 (2 H, m, OСH2CH2).

A General Method for the Synthesis 
of Methylthiomethyl Derivatives (IIa)–(IIc)

A solution of 1 mmol of the corresponding alcohol
(Ia)–(Ic) in DMSO (2.8 ml) was treated for 48 h with
acetic anhydride (0.57 ml, 6 equivalents) and acetic
acid (0.95 ml, 16.6 equivalents) at room temperature.
Then a saturated aqueous NaHCO3 solution was
added at room temperature under stirring to the reaction
mixture until the gas liberation terminated, and the prod�
uct was extracted with ethyl acetate (2 × 15 ml).
The organic layer was separated, washed with a saturated
aqueous NaCl solution (3 × 30 ml), and dried over
Na2SO4. The solvent was distilled in vacuo, and the
product was purified by chromatography on a silica gel
column in a gradient of chloroform (0–15%) in hex�
ane in the case of derivatives (IIa)–(IIb) and in a gra�
dient of chloroform (0–50%) in hexane in the case of
(IIc). Fractions containing product (II) were evapo�
rated to oil and dried by an oil pump.

Methylthiomethyl ester of 2�azidoethanol (IIa).
Yield: 59%; Rf 0.50 (А). 1H NMR (CDCl3): 4.58
(2 H, s, OCH2S), 3.98–3.91 (1 H, m, OCHαCH2N3),
3.86–3.82 (1 H, m, OCHβCH2N3), 3.51–3.43 (2 H, m,
OCH2CH2N3), 2.09 (3 H, s, SCH3).

Methylthiomethyl ester of 2�propin�1�ol (IIb).
Yield: 61%; Rf 0.50 (А). 1H NMR (CDCl3): 4.52 (2 H,
s, OCH2S), 4.41 (2 H, d, 4J 2.3, OCH2C≡), 2.43 (1 H,
t, 4J 2.3, CH≡), 2.08 (3 H, s, SCH3).

Methylthiomethyl ester of 1,2�O�cyclocarbonate�
butane�1,2,4�triol (IIc). Yield: 64%; Rf 0.20 (А).
1H NMR (CDCl3): 4.92–4.81 (1 H, m,
CHO(CO)CH2O), 4.61 (2 H, d, J 0.9, OCH2S), 4.55

(1 H, dd, J 8.6, 8.0, CHO(CO)CHαO), 4.18 (1 H, dd,
J 8.6, 7.4, CHO(CO)CHβO), 3.74–3.60 (2 H, m,
OСH2CH2), 2.13 (3 H, s, SCH3), 2.13–1.97 (2 H, m,
OСH2CH2).

A General Method of Introducing 
2'�O�Modifying Groups into Nucleosides

Molecular sieves (4 Å, 0.4 g) and 2.0 mmol of the
corresponding methylthiomethyl ester (IIa)–(IIc)
were added to a solution of 5',3'�O�(tetraisopropyldi�
siloxane�1,3�diyl)nucleoside (III) (1 mmol) in dry
THF (4 ml). Then TfOH (2.0 mmol) and a 1.0 M solu�
tion of NIS (2.0 ml) in dry THF were added under stir�
ring and cooling to –40°С. The mixture was stirred at
–40°С for 30 min, the reaction was terminated by the
addition of TEA (5.0 mmol), and the reaction solution
was filtered, diluted with ethyl acetate (20 ml), and
washed with a saturated aqueous sodium thiosulfate
solution (2 × 10 ml). The organic layer was evaporated
to oil, and the residue was purified by chromatography
on a silica gel column in a gradient of chloroform (50–
100%) in hexane. Fractions containing the target
compound (IV) were evaporated to foam, and the res�
idue was dried in vacuo.

5',3'�O�(Tetraisopropyldisiloxane�1,3�diyl)�2'�O�
[(2�azidoethoxy)methyl]uridine (IVa). Yield: 78%;
Rf 0.75 (D); 1H NMR (CDCl3): 9.11 (1 H, s,
NH Ura), 7.87 (1 H, d, J 8.3, H6 Ura), 5.75 (1 H, s,
H1'), 5.67 (1 H, d, J 8.3, H5 Ura), 5.00 (2 H, dd, J 8.3,
7.2, OCH2O), 4.25 (1 H, d, J 13.8, Hα5'), 4.24–4.19
(2 H, m, H2', H3'), 4.13 (1 H, dd, J 9.3, 2.2, H4'), 3.98
(1 H, dd, J 13.8, 2.2, Hβ5'), 3.93–3.88 (1 H, m,
OCHαCH2N3), 3.81–3.76 (1 H, m, OCHβCH2N3),
3.49–3.40 (2 H, m, OCH2CH2N3), 1.12–0.94 (28 H, m,
H Pri�groups); MS, m/z: 608.38 [M + Na]+, calculated

for C24H43N5NaO8  М 608.25; 624.34 [M + K]+, cal�

culated for C24H43KN5O8  624.23.

5',3'�O�(Tetraisopropyldisiloxane�1,3�diyl)�2'�O�
(propargyloxymethyl)uridine (IVb). Yield: 80%; Rf

0.70 (D); 1H NMR (CDCl3): 8.74 (1 H, s, NH Ura),
7.88 (1 H, d, J 8.3, H6 Ura), 5.75 (1 H, s, H1'), 5.67
(1 H, dd, J 8.3, J 1.9, H5 Ura), 5.10 (1 H, d, J 7.0,
OCHαO), 5.03 (1 H, d, J 7.0, OCHβO), 4.38 (2 H, d,
4J 2.3, OCH2C≡), 4.26 (1 H, d, J 13.7, Hα5'), 4.21
(1 H, dd, J 9.6, J 4.4, H3'), 4.18 (1 H, d, J 4.4, H2'),
4.14 (1 H, dd, J 9.6, 1.7, H4'), 3.98 (1 H, dd, J 13.7,
1.7, Hβ5'), 2.41 (1 H, t, 4J 2.3, CH≡), 1.13–0.93 (28 H,
m, H Pri�groups); MS, m/z: 577.38 [M + Na]+, calcu�

lated for C25H42N2NaO8  577.24.

N4�Benzoyl�5',3'�O�(tetraisopropyldisiloxane�1,3�
diyl)�2'�O�[(3,4�O�cyclocarbonatebutoxy)methyl]cyti�
dine (IVc). Yield: 82%; Rf 0.60 (D); 1H NMR
(CDCl3): 8.73 (1 H, br s, NH Cyt), 8.36 (1 H, d, J 7.6,
H6 Cyt), 7.92–7.48 (6 H, m, H Bz, H5 Cyt), 5.80

Si2
+

Si2
+

Si2
+
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(1 H, d, J 1.6, H1'), 5.05–4.80 (3 H, m, OCH2O,
CHO(CO)CH2O), 4.65–4.62 (1 H, m,
CHO(CO)CHαO), 4.34–4.13 (5 H, m, H2', H3', H4',
Hα5', CHO(CO)CHβO), 4.06–3.89 (1 H, m, Hβ5'),
3.76–3.65 (2 H, m, OСH2CH2), 2.11–1.97 (2 H, m,
OСH2CH2), 1.14–0.94 (28 H, m, H Pri�groups); MS,

m/z: 734.32 [M + H]+, calculated for C34H52N3O11

734.31; 756.30 [M + Na]+, calculated for

C34H51N3NaO11  756.30; 772.28 [M + K]+, calcu�

lated for C34H51KN3O11  772.27.

A General Method of Desilylation of Nucleosides

A 1 M TBAF solution (2.2 ml, 2.2 mmol) in dry THF
was added to a solution of 1 mmol 2'�O�protected
5',3'�O�(tetraisopropyldisiloxane�1,3�diyl)nucleoside
derivative of type (IV) in dry THF (5 ml). After 2 h, the
solution was evaporated to oil, and the product was puri�
fied by chromatography on a silica gel column in a gra�
dient of methanol (0–7%) in chloroform. Fractions
containing the target compound (V) were combined
and evaporated to dryness, and the residue was dried
in vacuo.

2'�O�[(2�Azidoethoxy)methyl]uridine (Va). Yield:
88%; Rf 0.30 (C). 1H NMR (DMSO�d6): 11.28 (1 H,
s, NH Ura), 7.92 (1 H, d, J 8.3, H6 Ura), 5.90 (1 H, d,
J 5.2, H1'), 5.64 (1 H, d, J 8.3, H5 Ura), 5.18 (1 H, d,
J 5.5, OH3'), 5.10 (1 H, t, J 5.1, OH5'), 4.76 (2 H, s,
OCH2O), 4.17 (1 H, t, J 5.0, H2'), 4.13 (1 H, dd, J 5.0,
9.9, H3'), 3.90–3.87 (1 H, m, H4'), 3.69–3.55 (4 H,
m, H5', OCH2CH2N3), 3.46–3.35 (2 H, m,
OCH2CH2N3); MS, m/z: 366.26 [M + Na]+, calcu�

lated for C12H17N5Na  366.10; 382.23 [M + K]+,

calculated for C12H17KN5  382.08.

2'�O�(Propargyloxymethyl)uridine (Vb). Yield:
74%; Rf 0.25 (C); 1H NMR (DMSO�d6): 11.28 (1 H,
s, NH Ura), 7.92 (1 H, d, J 8.3, H6 Ura), 5.88 (1 H, d,
J 5.0, H1'), 5.64 (1 H, dd, J 8.3, 2.2, H5 Ura), 5.20
(1 H, d, J 5.5, OH3'), 5.11 (1 H, t, J 5.0, OH5'), 4.80
(1 H, d, J 6.9, OCHαO), 4.77 (1 H, d, J 6.9, OCHβO),
4.20 (2 H, d, 4J 2.5, OCH2C≡), 4.14 (1 H, t, J 5.0,
H2'), 4.11 (1 H, dd, J 5.0, 9.9, H3'), 3.90–3.87 (1 H,
m, H4'), 3.68–3.64 (1 H, m, Hα5'), 3.59–3.55 (1 H, m,
Hβ5'), 3.35 (1 H, t, 4J 2.5, CH≡); MS, m/z: 335.24 [M +

Na]+, calculated for C13H16N2Na  335.09; 351.21

[M + K]+, calculated for C13H16KN2  351.06.

N4�Benzoyl�2'�O�[(3,4�O�cyclocarbonatebutoxy)
methyl]cytidine (Vc). Yield: 85%; Rf 0.20 (C);
1H NMR (DMSO�d6): 11.28 (1 H, br s, NH Cyt), 8.54
(1 H, dd, J 7.6, 3.0, H6 Cyt), 8.03–7.48 (5 H, m,
H Bz), 7.34 (1 H, br d, J 7.6, H5 Cyt), 5.87 (1 H, br s,
H1'), 5.28–5.20 (2 H, m, OH3', OH5'), 4.92–4.77

Si2
+

Si2
+

Si2
+

O7
+

O7
+

O7
+

O7
+

(3 H, m, OCH2O, CHO(CO)CH2O), 4.62–4.54 (1 H,
m, CHO(CO)CHαO), 4.21–4.09 (3 H, m, H2', H3',
CHO(CO)CHβO), 3.97–3.92 (1 H, m, H4'), 3.85–
3.77 (1 H, m, Hα5'), 3.70–3.58 (3 H, m, OСH2CH2,
Hβ5'), 2.02–1.93 (2 H, m, OСH2CH2); MS, m/z:

492.20 [M + H]+, calculated for C22H26N3  492.16;

514.19 [M + Na]+, calculated for C22H25N3Na

514.14; 530.16 [M + K]+, calculated for

C22H25KN3  530.12.

A General Method of the Tritylation of Nucleosides

A 2'�O�protected derivative of type (V) (1 mmol)
was dried by evaporation with pyridine after which dry
pyridine (5 ml) and DMTr�Cl (0.41 g; 1.2 equivalent)
were added. The reaction mixture was allowed to stand
for 2 h at room temperature, the reaction was termi�
nated by adding 1 M TEAB (5 ml), and the product
was extracted with chloroform (2 × 20 ml). Combined
organic fractions were evaporated to oil and evapo�
rated again with toluene to remove pyridine traces.
The product was separated by chromatography on a
silica gel column in a gradient of methanol (0–2%) in
chloroform containing 0.1% TEA. Fractions contain�
ing the product (VI) were combined, evaporated to
dryness, and dried in vacuo.

5'�O�(4,4'�Dimethoxytrityl)�2'�O�[(2�azidoethoxy)
methyl]uridine (VIa). Yield: 84%; Rf 0.65 (D);
1H NMR (DMSO�d6): 11.34 (1 H, s, NH Ura), 7.72
(1 H, d, J 8.1, H6 Ura), 7.41–7.23 (9 H, m, Ar DMTr),
6.92–6.89 (4 H, m, Ar DMTr), 5.87 (1 H, d, J 3.2,
H1'), 5.33 (1 H, d, J 8.1, Ura H5), 5.29 (1 H, d, J 5.8,
OH3'), 4.82 (2 H, s, OCH2O), 4.28–4.24 (2 H, m, H2',
H3'), 4.01–3.98 (1 H, m, H4'), 3.75 (6 H, s, OCH3

DMTr), 3.73–3.65 (2 H, m, OCH2CH2N3), 3.46–3.37
(2 H, m, OCH2CH2N3), 3.31 (1 H, dd, J 10.7, 4.4,
Hα5'), 3.26 (1 H, dd, J 10.7, 2.6, Hβ5'); MS, m/z: 668.27

[M + Na]+, calculated for C33H35N5Na  668.23;

684.25 [M + K]+, calculated for C33H35KN5  684.21.

5'�O�(4,4'�Dimethoxytrityl)�2'�O�(propargyloxy�
methyl)uridine (VIb). Yield: 88%; Rf 0.60 (D);
1H NMR (DMSO�d6): 11.38 (1 H, d, J 2.0, NH Ura),
7.72 (1 H, d, J 8.1, H6 Ura), 7.41–7.21 (9 H, m,
Ar DMTr), 6.94–6.87 (4 H, m, Ar DMTr), 5.83 (1 H,
d, J 3.4, H1'), 5.36 (1 H, d, J 6.0, OH3'), 5.28 (1 H, dd,
J 8.1, 2.2, H5 Ura), 4.86 (1 H, d, J 7.0, OCHαO), 4.82
(1 H, d, J 7.0, OCHβO), 4.30–4.19 (4 H, m, H2', H3',
OCH2C≡), 4.02–3.96 (1 H, m, H4'), 3.74 (6 H, s,
OCH3 DMTr), 3.42 (1 H, t, 4J 2.5, CH≡), 3.34–3.16
(2 H, m, H5'); MS, m/z: 637.18 [M + Na]+, calculated

for C34H34N2Na  637.22; 653.16 [M + K]+, calcu�

lated for C34H34KN2  653.19.

O10
+

O10
+

O10
+

O9
+

O9
+

O9
+

O9
+
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N 4�Benzoyl�5'�O�(4,4'�dimethoxytrityl)�2'�O�[(3,4�
O�cyclocarbonatebutoxy)methyl]cytidine (VIc). Yield:
93%; Rf 0.50 (D); 1H NMR (DMSO�d6): 11.30 (1 H,
br s, NH Cyt), 8.39 (1 H, dd, J 7.6, 1.5, H6 Cyt), 8.03–
7.49 (5 H, m, H Bz), 7.45–7.24 (9 H, m, Ar DMTr),
7.14 (1 H, d, J 7.6, H5 Cyt), 6.96–6.89 (4 H, m,
Ar DMTr), 5.85 (1 H, br s, H1'), 5.34 (1 H, dd, J 7.2, 3.2,
OH3'), 4.99–4.81 (3 H, m, OCH2O, CHO(CO)CH2O),
4.63–4.56 (1 H, m, CHO(CO)CHαO), 4.41–4.32 (1 H,
m, H3'), 4.22–4.15 (2 H, m, H2', CHO(CO)CHβO),
4.11–4.05 (1 H, m, H4'), 3.76 (6 H, s, OCH3 DMTr),
3.73–3.64 (2 H, m, OСH2CH2), 3.43–3.33 (2 H, m,
H5'), 2.05–1.96 (2 H, m, OСH2CH2); MS, m/z:

816.27 [M + Na]+, calculated for C43H43N3Na

816.27; 832.22 [M + K]+, calculated for

C43H43KN3  832.25.

Triethylammonium salt of (4�nitrophenyl)�(1�
oxido�4�methoxy�2�picolyl)phosphate (X). A mixture
of 1�oxido�4�methoxy�2�pyridinemethanol monohy�
drate (0.52 g, 3.0 mmol) and pyridinium bis(4�nitro�
phenyl)phosphate (VIII) (1.12 g, 3.3 mmol) was evap�
orated with pyridine to remove moisture traces, the
residue was dissolved in dry pyridine (15 ml), and
TPS�Cl (1.51 g, 5 mmol) was added. The reaction
mixture was allowed to stand at room temperature for
15 min, diluted with CHCl3 (30 ml), and washed with
water (2 × 20 ml). The organic layer was evaporated to
oil, dissolved in 20 ml of an acetonitrile–water mix�
ture (9 : 1, v/v), and TEA was added (2.8 ml,
20 mmol). The reaction mixture was held for 2 h at
room temperature and evaporated to oil. The target
product was purified by chromatography on a silica gel
column in a gradient of methanol (5–20%) in chloro�
form. Fractions containing the substance were com�
bined, evaporated to dryness, and dried in vacuo.
Yield: 0.87 g (81%); Rf 0.30 (B); 1H NMR (CDCl3):
8.14–8.08 (2 H, m, H Ar), 8.07 (1 H, d, J 7.2, H6 pic�
olyl), 7.43–7.37 (2 H, m, H Ar), 7.09 (1 H, d, J 3.4, H3
picolyl), 6.71 (1 H, dd, J 7.2, 3.4, H5 picolyl), 5.22
(2 H, d, J 7.2, P�OCH2), 3.77 (3 H, s, OCH3 picolyl),
3.07 (6 H, q, J 7.3, +HNEt3�CH2), 1.32 (9 H, t, J 7.3,
+HNEt3–CH3). 31P NMR (CDCl3): �5.32. MS, m/z:
354.92 [M – TEA�H+]–, calculated for C13H12N2O8P

–

355.03.

A General Method of the Synthesis 
of Monomers (VIIa)–(VIIc)

Nucleosides (VIa)–(VIc) were phosphorylated as
described previously [32], except that, in the case of
derivative (VIc), triethylammonium (4�nitrophenyl)�
(1�oxido�4�methoxy�2�picolyl)phosphate (X) was
used as a phosphorylation agent. The p�chlorophenyl
group was removed from the phosphate group by treat�
ment with DBU in an aqueous organic solvent, and in
the case of the phosphotriester containing a 4�nitro�
phenyl phosphate�protecting group, by treatment

O12
+

O12
+

with 20 equivalents of TEA in an acetonitrile–water
mixture 10 : 1. The product was purified by chroma�
tography on a silica gel column in a gradient of meth�
anol (0–15%) in chloroform containing 0.1% TEA.
Fractions containing the target compound were com�
bined, evaporated to dryness, and the residue was
dried in vacuo.

Triethylammonium salt of 5'�O�(4,4'�dimethoxytri�
tyl)�2'�O�[(2�azidoethoxy)methyl]uridine 3'�O�(1�
oxido�4�methoxy�2�picolyl)phosphate (VIIa). Yield:
79%; Rf 0.45 (B); 1H NMR (CDCl3): 9.35 (1 H, br s,
NH Ura), 8.08 (1 H, d, J 7.2, H6 picolyl), 7.73 (1 H,
d, J 8.2, H6 Ura), 7.37–7.19 (10 H, m, Ar DMTr,
H3 picolyl), 6.84–6.77 (4 H, m, Ar DMTr), 6.71 (1 H,
dd, J 7.2, 3.4, H5 picolyl), 6.11 (1 H, d, J 5.6, H1'),
5.21–5.07 (3 H, m, P�OCH2, H5 Ura), 5.05–4.94
(2 H, m, OCHαO, H3'), 4.77 (1 H, d, J 7.0, OCHβO),
4.58–4.53 (1 H, m, H2'), 4.43–4.39 (1 H, m, H4'),
3.79 (3 H, s, OCH3 picolyl), 3.77 (6 H, d, J 1.4, OCH3
DMTr), 3.72–3.67 (2 H, m, OCH2CH2N3), 3.57–
3.47 (2 H, m, OCH2CH2N3), 3.37–3.32 (2 H, m,
H5'), 3.03 (6 H, q, J 7.3, CH2 

+HNEt3), 1.29 (9 H, t,
J 7.3, CH3 

+HNEt3); 31P NMR (CDCl3): �0.14. MS,
m/z: 861.12 [M – TEA�H+]–, calculated for
C40H42N6O14P

– 861.25.

Triethylammonium salt of 5'�O�(4,4'�dimethoxytri�
tyl)�2'�O�(propargyloxymethyl)uridine 3'�O�(1�oxido�
4�methoxy�2�picolyl)phosphate (VIIb). Yield: 80%;
Rf 0.45 (B); 1H NMR (CDCl3): 9.30 (1 H, br s, NH
Ura), 8.08 (1 H, d, J 7.2, H6 picolyl), 7.70 (1 H, d,
J 8.3, H6 Ura), 7.36–7.17 (10 H, m, Ar DMTr, H3 pic�
olyl), 6.84–6.77 (4 H, m, Ar DMTr), 6.71 (1 H, dd,
J 7.2, 3.4, H5 picolyl), 6.13 (1 H, d, J 6.1, H1'), 5.22–
5.07 (3 H, m, P�OCH2, H5 Ura), 5.04–4.94 (2 H, m,
OCHαO, H3'), 4.85 (1 H, d, J 7.2, OCHβO), 4.63–4.55
(1 H, m, H2'), 4.45–4.39 (1 H, m, H4'), 4.20 (2 H,
ddd, J 24.8, 16.0, 4J 2.1, OCH2C≡), 3.79 (3 H, s,
OCH3 picolyl), 3.77 (6 H, br s, OCH3 DMTr), 3.57–
3.43 (2 H, m, H5'), 3.04 (6 H, q, J 7.3, CH2 

+HNEt3),
2.35 (1 H, t, 4J 2.1, CH≡), 1.30 (9 H, t, J 7.3, CH3
+HNEt3); 31P NMR (CDCl3): �0.21. MS, m/z: 830.08
[M – TEA�H+]–, calculated for C41H41N3O14P

–

830.23.

Triethylammonium salt of N4�benzoyl�5'�O�(4,4'�
dimethoxytrityl)�2'�O�[(3,4�O�cyclocarbonatebutoxy)
methyl]cytidine 3'�O�(1�oxido�4�methoxy�2�picolyl)
phosphate (VIIc). Yield: 83%; Rf 0.40 (B); 1H NMR
(CDCl3): 8.36 (1 H, d, J 7.4, H6 Cyt), 8.04 (1 H, d,
J 7.2, H6 picolyl), 7.92–7.46 (5 H,m, H Bz), 7.43–
7.19 (9 H, m, Ar DMTr), 7.16 (1 H, d, J 3.2, H3 pico�
lyl), 7.02 (1 H, br s, H5 Cyt), 6.86–6.79 (4 H, m,
Ar DMTr), 6.70 (1 H, dd, J 7.2, 3.2, H5 picolyl), 6.05
(1 H, d, J 1.6, H1'), 5.18–4.84 (6 H, m, H3', P�OCH2,
OCH2O, CHO(CO)CH2O), 4.63–4.47 (2 H, m, H2',
CHO(CO)CHαO), 4.44–4.36 (1 H, m, H4'), 4.23–
4.11 (1 H, m, CHO(CO)CHβO), 3.92–3.67 (2 H, m,
OСH2CH2), 3.79 (6 H, s, OCH3 DMTr), 3.76 (3 H, s,
OCH3 picolyl), 3.77–3.50 (2 H, m, H5'), 3.03 (6 H, q,
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J 7.3, CH2 
+HNEt3), 2.13–1.98 (2 H, m, OСH2CH2),

1.28 (9 H, t, J 7.3, CH3 
+HNEt3); 31P NMR (CDCl3):

�0.14, �0.18. MS, m/z: 1009.47 [M – TEA�H+]–, cal�
culated for C50H50N4O17P

– 1009.29.
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