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Abstract—Starting with D- and L-serines, an expedient method for the preparation of oxazolidinyl piperidines, azepenes and
azacyclooctenes was illustrated as a route to various deoxy-azasugars and hydroxypyrrolizidines. The ring-closing olefin
metathesis of oxazolidinyl di-olefins was used as a key-step to construct the azacycles. Consecutive epoxidation, hydrolysis and
transannulation of oxazolidinyl azacyclooctene led to hydroxypyrrolizidines. © 2001 Elsevier Science Ltd. All rights reserved.

Many (deoxy-)azasugars and hydroxypyrrolizidine
alkaloids have been shown to selectively inhibit
oligosaccharide processing enzymes.1 These properties
make them potentially chemotherapeutic agents for
treating diabetes, cancer, and viral (e.g. HIV and influ-
enza) infections.1,2 The therapeutic importance of these
compounds has stimulated much synthetic effort
toward their preparation.1a,3 Oxazolidinyl piperidine 1a
has recently been reported to serve as an important
intermediate for the synthesis of 1-deoxymanno-
jirimycin (2) and 1-deoxyaltromycin (3) as well as 1b
for 1-deoxygalactostatin (4).4 In addition, compounds
1a/1b can also be used in the synthesis of hydroxy-
lated 2-oxaindolizidines, which are inhibitors of glycosi-
dases5 (Fig. 1).

However, the literature methods for the synthesis of
1a/1b and their analogs require several steps and
resulted in low overall yields.4,6,7a As a continuation of
our efforts to develop glycosidase inhibitors, we report
herein, an efficient and practical synthesis of oxazo-
lidinylpiperidine 1a/1b and their analogs from D- and
L-serines. The ring-closing olefin metathesis (RCM) of

di-olefin oxazolidinones serves as a key-step in our
synthetic schemes. Our method provides diversified
stereoisomers that are useful in the SAR study of
glycosidase inhibition.

Scheme 1. (a) SOCl2, MeOH, reflux, overnight; (b) K2CO3,
triphosgene, H2O/toluene, rt (86% in two steps); (c) NaH,
allyl bromide, DMF, 65%; (d) NaBH4, MeOH, 74%; (e) (i)
DMSO, (COCl)2, CH2Cl2, EtN(i-Pr)2; (ii) vinylmagnesium
bromide, CH2Cl2 (53% in two steps); (f) Grubb’s catalyst (10
mol%), CH2Cl2, rt, 96% (1a:1b=1:1.3)

Figure 1.
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As shown in Scheme 1, D-serine 5 was esterified with
thionyl chloride in methanol and then converted into
the more stable chiral oxazolidinone 68 by the treat-
ment with triphosgene in the presence of K2CO3 (86%
in two steps). N-Allylation of 6 using allylbromide
yielded 7 (65%), in which the ester group was subse-
quently reduced by NaBH4 to give alcohol 8 (84%).
Swern oxidation of 8, followed by addition of vinyl-
magnesium bromide in a one-pot procedure gave the
desired di-olefin compounds 9a/9b as an inseparable
mixture (53% in two steps). RCM of 9a/9b using
Grubbs’ catalyst,9 Cl2(PCy3)2Ru=CHPh, (10 mol%) in

CH2Cl2 at room temperature for 2 h afforded quantita-
tive yields of oxazolidinyl piperidines 1a/1b (1:1.3),
which were easily separated on a silica gel column.
Thus, the important azasugar precursors 1a/1b were
prepared in 21% total yield by a six-step sequence.

By a procedure similar to that for 1a/1b, L-serine was
converted into di-olefin 10a/10b (Table 1). When allyl-
magnesium bromide was used instead of vinylmagne-
sium bromide, di-olefins 11a/11b were obtained.
Hydroxyl di-olefins 12a/12b and 13a/13b were prepared
by changing the N-alkylating agent to 4-bromo-1-

Table 1. a
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Figure 2. ORTEP diagram of compounds 17b and 22a.

We also had access to hydroxypyrrolizidine alkaloids
by using the eight-membered ring compounds as illus-
trated in Scheme 2. The compound 20a was treated
with m-chloroperoxybenzoic acid to give epoxides 22a
and 22b (1:1). Compound 22a was shown by single
crystal diffraction to contain the epoxy group on the
exo face. Treatment of 22a with LiOH thus provided
the desired hydroxypyrrolizidine 23a11 in 73% yield as a
consequence of oxazolidinone hydrolysis and trans-
annular cyclization.12 Similarly compound 22b was con-
verted into hydroxypyrrolizidine 23b.

In summary, we have successfully converted D- and
L-serines to a variety of azacyclic compounds by using
ring-closing olefin metathesis as a key-step. This
method provides a structural diversity for the synthesis
of many stereoisomers of deoxy-azasugars and hydroxy-
pyrrolizidines, suitable for further studies of their glyco-
sidase inhibition.
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