Organic Chemistry |Hot Paper|

Direct Synthesis of Chiral 3-Arylsuccinimides by Rhodium-Catalyzed Enantioselective Conjugate Addition of Arylboronic Acids to Maleimides

Balraj Gopula,^[a] Shu-Han Yang,^[a] Ting-Shen Kuo,^[a] Jen-Chieh Hsieh,^{*[b]} Ping-Yu Wu,^[c] Julian P. Henschke,^{*[c]} and Hsyueh-Liang Wu^{*[a]}

Abstract: Chiral rhodium catalysts comprising 2,5-diarylsubstituted bicyclo[2.2.1]diene ligands **L1–L10** were utilized in the enantioselective 1,4-addition reaction of arylboronic acids to *N*-substituted maleimides. In the presence of 2.5 mol% of Rh^I/**L2**, enantioenriched conjugate addition adducts were isolated in 72–99% yields with 86–98% *ee*. This protocol offers a convenient method to access a variety

Introduction

Optically active 3-substituted succinimide^[1] and pyrrolidine^[2] moieties can be found in biologically active molecules making their synthetic accessibility of relevance to both discovery and development chemists in the pharmaceutical industry. These compounds are commonly prepared from 2-substituted succinic acid derivatives which are themselves accessible from the diastereoselective alkylation of enolates, generated from chiral *N*-acyloxazolidinone imides, with *tert*-butyl bromoacetate,^[3] and from the diastereoselective conjugate addition of alkyl radicals to fumarates controlled by a chiral 4-diphenylmethyl-2-oxazolidinone.^[4] Additionally, chiral 2-substituted succinic acids can be obtained from a Rh-catalyzed enantioselective hydrogenation of 3-substituted itaconic acid derivatives^[5] whilst 2-substituted succinic esters can similarly be obtained from maleate or fumarate esters.^[6] More conveniently, however, the

_	
[a]	Dr. B. Gopula, SH. Yang, TS. Kuo, Prof. Dr. HL. Wu Department of Chemistry National Taiwan Normal University No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan (RoC) E-mail: hlw@ntnu.edu.tw
[b]	Prof. Dr. JC. Hsieh Department of Chemistry Tamkang University New Taipei City, 25137, Taiwan (RoC) E-mail: jchsieh@mail.tku.edu.tw
[c]	Dr. PY. Wu, Dr. J. P. Henschke ScinoPharm Taiwan, No. 1, Nan-Ke Eighth Road, Tainan Science-Based Industrial Park Shan-Hua, Tainan County 74144, Taiwan (RoC) E-mail: Julian.Henschke@scinopharm.com
	Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201501059.

of 3-arylsuccinimides in a highly enantioselective manner. Maleimides with readily cleavable *N*-protecting groups were tolerated enabling the synthesis of useful synthetic intermediates. Pyrrolidine **4**, a biologically active compound, and pyrrolidine **5**, an *ent*-precursor to an HSD-1 inhibitor, were synthesized to demonstrate the utility of this method.

transition-metal-catalyzed conjugate addition of nucleophiles to N-substituted maleimides 1 offers a more direct and practical approach to chiral 3-substituted succinimides, which can then be converted into the corresponding 3-substituted pyrrolidine derivatives where required. In fact, asymmetric Rh-catalyzed conjugate addition reactions, that typically utilize organoboron reagents, have already been reported.[6a,7] Although axial chiral phosphorus-based ligands, such as BINAP,^[8] P-PHOS,^[9] and phosphoramidites^[10] have been shown to promote high catalytic activity and enantioselectivity in the rhodium-catalyzed 1,4-addition of organoboronic acids to α , β unsaturated carbonyl compounds, they performed relatively unselectively in the 1,4-addition of phenylboronic acid (2a) to N-methylmaleimide (28–51% ee).^[6a] Similarly, only moderate to good ee values were witnessed when using rhodium catalysts comprising BINAP or phosphoramidite ligands in the 1,4-addition of boronic acid **2a** to 1-(2-*tert*-butylphenyl)maleimide.^[7e] While the use of electron-deficient phosphorous-containing ligands provided improvements,[7h-i,k,11] giving optically active 3-substituted succinimides in 37-99% ee, the degree of selectivity was dependent on the N-substituent of the maleimide substrate.^[7h]

The past decade has seen a significant increase in the number of chiral diene ligands as viable alternatives to traditional phosphine ligands due to their high activity and enantioinducing character in Rh-catalyzed C–C bond-forming processes. These ligands are often based on rigid, carbon-based bicyclic backbones.^[12] While the asymmetric addition of a number of arylboronic acids to *N*-methyl, *N*-benzyl, and *N*-cyclohexylmaleimides in the presence of rhodium catalysts comprising chiral bicyclo[2.2.1]diene ligands gave the corresponding *N*-substituted 3-arylsuccinimides in up to 92% *ee*,^[6a] excellent selectivity was observed when employing chiral

Chem. Eur. J. 2015, 21, 11050 - 11055

Wiley Online Library

bicyclo[2.2.2]dienes instead.^[7f] Despite these two reports, only a somewhat limited maleimide and boronic acid substrate scope has been reported to date using diene ligands, although chiral phosphine–olefin^[7a-b] and sulfoxide–olefin^[7g] hybrid ligands have also been reported as effective ligands in the preparation of optically active 3-substituted succinimides.

Previously we reported the design and synthesis of a novel family of chiral 2,5-diarylbicyclo[2.2.1]diene ligands, prepared from inexpensive (–)-bornyl acetate,^[13a,b] that proved effective in a range of rhodium-catalyzed enantioselective addition reactions useful for the preparation of the synthetic intermediates of biologically active compounds.^[13] These dienes exhibited not only a greater stability than their analogues derived from norbornadiene,^[14] but also induced high enantioselectivity and catalytic activity in the presence of low loadings of Rh^I (TON up to 2000)^[13b] in the 1,4-addition of organoboronic acids to linear^[6b, 13b, g] and cyclic^[13c] α , β -unsaturated carbonyl compounds, and nitroolefins.^[13d] We have also shown these ligands to be effective in Rh^I-catalyzed 1,2-addition reactions.^[13e,f] In view of the utility of 3-substituted succinimides as synthetic building blocks, and given that examples of the use of chiral diene ligands in asymmetric 1,4-addition reactions of N-substituted maleimides are limited, we herein report the results of a thorough investigation of the use of Rh^I/2,5-diaryl bicyclo[2.2.1]diene catalysts in the enantioselective 1,4-addition of a variety of arylboronic acids to variously N-substituted maleimides.

Results and Discussion

The 2,5-substituent effect of the chiral bicyclo[2.2.1]dienes L1-L10 in the Rh^I-catalyzed enantioselective addition of phenylboronic acid (2 a) to N-benzylmaleimide (1 a) was investigated first (Table 1). Reactions were conducted for 3 h at 50 $^\circ$ C, the product mixtures were chromatographically purified and the yields of the isolated 1,4-addition product 3aa were used as a comparative measure of the activity between the catalysts. The desired succinimide product 3aa was isolated in 86% yield and with 93% ee when the addition reaction was carried out using KOH (10 mol%) as the base in the presence of 5 mol% of the catalyst generated in situ from $[RhCl(C_2H_4)_2]_2$ and the phenyl-substituted ligand L1 (Table 1, entry 1). Employment of the para-methylphenyl-substituted (tolyl) ligand L2 or the para-biphenyl substituted ligand L3 offered 3aa in 94 and 87% yields and 96 and 95% ee, respectively (entries 2 and 3). However, carrying out the asymmetric reaction using the bulky para-(tert-butyl) substituted ligand L4 (entry 4) or the 1-naphthyl substituted ligand L5 (entry 5) resulted in diminished selectivity. By contrast, the 2-naphthyl-substituted chiral diene ligand L6 provided a comparatively similar level of selectivity to the parent ligand L1 (entry 6 vs. entry 1) although the yield was lower. Enantioinduction was slightly increased (94-95% ee) as compared to L1 when the addition reaction was performed in the presence of ligands (L7-L10) containing electron-withdrawing substituents (entries 7-10), but yields were equal or reduced. When the asymmetric reaction was tested with commercially available chiral dienes with bicy-

clo[2.2.2] (L11) or bicyclo[3.3.0] (L12) frameworks, **3 aa** was obtained in a trace amount or no product was detected at all, respectively (entries 11–12). From these investigations, the best catalytic activity and enantioselectivity was observed when employing 2,5-ditolyl-substituted ligand L2, and therefore subsequent reaction optimization was conducted using this ligand.

column. [d] Not determined. [e] No reaction.

While comparable results were observed when carrying out the reaction at 50 °C for 3 h in THF, toluene (PhMe), or isopropanol (IPA) (Table 2, entries 1-3), giving rise to adduct 3 aa in 90-94% ee, and good yields (61-70%), and less pleasing results in EtOH, MeOH, or CH₂Cl₂ (entries 4–6), the reaction gave a significantly increased yield and ee when performed in dioxane (entry 7). For N-cyclohexylmaleimide (1 b), the corresponding 3-phenylsuccinimide (3ba) was isolated in 99% yield and in 98% ee (entry 8), whereas the reactions of N-phenyl and Nbenzhydrylmaleimides (1 c and 1 d) proceeded less stereoselectively and less efficiently (entries 9 and 10). The asymmetric reaction of N-methylmaleimides (1 e) provided addition product 3 ea in 74% yield and in 95% ee after 8 h (entry 11). Poignantly, but consistent with that witnessed previously,^[7h] the conjugate addition of boronic acid 2a to the unsubstituted substrate, maleimide 1 f, produced 3 fa in only 43% with 6% ee (entry 12) showing that the N-substituent plays a critical role in this reaction. This phenomenon may be due to N-deprotonation of maleimide resulting in its diminished electrophilicity, and perhaps coordination of the resultant anion to Rh^I leading to poisoning of the chiral catalyst. Inspection of entries 7-12 indicated that the N-substituent influenced stereoselectivity

	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} B(OH)_2 \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\$								
Entry	1	<i>x</i> [mol%]	Solvent	Base	<i>t</i> [h]	Yield [%] ^[b]	<i>ee</i> [%] ^[c]		
1	1a	5.0	THF	КОН	3	63 (3 aa)	90		
2	1a	5.0	PhMe	KOH	3	61 (3 aa)	94		
3	1a	5.0	IPA	KOH	3	70 (3 aa)	92		
4	1a	5.0	EtOH	KOH	3	83 (3 aa)	75		
5	1a	5.0	MeOH	KOH	3	52 (3 aa)	74		
6	1a	5.0	CH ₂ Cl ₂	KOH	3	30 (3 aa)	97		
7	1a	5.0	dioxane	KOH	3	94 (3 aa)	96		
8	1 b	5.0	dioxane	KOH	3	99 (3 ba)	98		
9	1 c	5.0	dioxane	KOH	2	91 (3 ca)	86		
10	1 d	5.0	dioxane	KOH	6	84 (3 da)	85		
11	1e	5.0	dioxane	KOH	8	74 (3 ea)	95		
12	1 f	5.0	dioxane	KOH	6	43 (3 fa)	6		
13	1 b	5.0	dioxane	NaOH	3	98 (3 ba)	97		
14	1 b	5.0	dioxane	K ₂ CO ₃	3	98 (3 ba)	96		
15	1 b	5.0	dioxane	Et₃N	24	N.R. ^[d]	N.D. ^[e]		
16 ^[f]	1 b	5.0	dioxane	КОН	3	55 (3 ba)	80		
17 ^[g]	1 b	5.0	dioxane	KOH	3	< 20 (3 ba)	N.D. ^[e]		
18	1 b	2.5	dioxane	KOH	6	97 (3 ba)	98		
19	1 b	2.0	dioxane	KOH	15	85 (3 ba)	96		
20	1 b	1.0	dioxane	KOH	99	23 (3 ba)	95		

[a] The reaction was carried out in dioxane (2.0 mL) at 50 °C by using maleimides 1 (0.2 mmol) and boronic acid **2a** (0.6 mmol, 3.0 equiv based on **1**) in the presence of the rhodium catalyst generated in situ from $[RhCl(C_2H_4)_2]_2$ (5.0 µmol, 5 mol% of Rh) and chiral diene **L2** (11 µmol, 5.5 mol%). [b] Yield of isolated product. [c] Determined by HPLC analysis using a chiral OD-H column. [d] No reaction. [e] Not determined. [f] 2.0 equiv of **2a** was used.

and reactivity, and that the best results were obtained for the N-benzyl, N-cyclohexyl, and N-methyl substituted maleimides 1a, 1b, and 1e. Whilst the use of NaOH or K₂CO₃ as a base (entries 13 and 14) in place of KOH resulted in negligible impact on the yield and stereoselectivity, the use of Et₃N resulted in no 3ba being formed within 24 h (entry 15). Although succinimide 3 ba was obtained in excellent yield and ee employing 3.0 equivalents of phenylboronic acid (2 a) (entry 8), reducing this to 2.0 and 1.5 equivalents led to diminished chemical yields and ee values of 3ba (entries 16 and 17). Reducing the amount of catalyst from 5 (entry 8) down to 2.5 mol% (entry 18) and 2.0 mol% (entry 19), on the other hand, provided a much smaller impact on catalytic activity and asymmetric induction. The impact on rate and ee was acceptable at 2.0 mol% (entry 19) but was exacerbated at 1.0 mol% of catalyst resulting in a disappointing 23% yield of addition adduct 3 ba being achieved in 99 h (entry 20), albeit with only a small reduction in enantioinduction (95% ee).

The asymmetric 1,4-addition of various arylboronic acids to *N*-cyclohexylmaleimide (**1b**) was explored using 2.5 mol% of catalyst under the optimum reaction conditions identified in Table 2, entry 18, to demonstrate the scope of the reaction (Table 3). High chemical yields (90–98%) and enantioselectivities (92–98% *ee*) were observed for all alkyl and electron-

donating substituted arylboronic acids regardless of their substitution patterns (entries 1-9). While the asymmetric addition of 1naphthylboronic acid (2j) gave the corresponding product 3bj in 98% yield and in 90% ee after 19 h (entry 10), addition product 3 bk was isolated in 98% yield with 97% ee after 4 h of reaction of 1b with 2-naphthylboronic acid (2k) (entry 11). Arylboronic acids bearing electron-withdrawing groups underwent addition in a high to highly enantioselective manner to give products 3 bl-3 bq in 88-98 % ee with good to excellent yields (72-96%, entries 8, 12-17). The absolute configuration of the newly formed stereogenic center was unambiguously determined to be R by single-crystal X-ray crystallography of succinimide 3bg (Figure 1).

After having shown that electron-rich and -deficient arylboronic acids were tolerated in the 1,4-addition to *N*-cyclohexylmaleimide **1 b**, attention was turned to maleimides bearing *N*-

Figure 1. ORTEP plot of maleimide $3\,bq$ with thermal ellipsoids drawn at the 30 % level.

substituted protecting groups (Table 4). The conjugate addition of a diverse range of arylboronic acids to *N*-benzyl-protected maleimide **1**a, already proven to be a good electrophile in Table 2, and the addition product of which can be deprotected by hydrogenolysis,^[6b] furnished the corresponding 1,4-addition adducts in good yields with good to high asymmetric induction (86–96% *ee*) (Table 4, entries 1–7). While a slightly lower selectivity was observed for 2-methyl-, 4-methyl-, and 4-fluorophenylboronic acids, the enantioselectivity was improved when conducting the reactions in the presence of 5 mol% of the Rh¹/L2 catalyst (entries 2, 3, and 6). Variously substituted arylboronic acids underwent the addition reaction to *N*-(4-*m*e-

www.chemeurj.org

N-cyclohe	exylmaleimide (1 b). ^[a]						
$ArB(OH)_{2} + O \bigvee_{N=0}^{N} O \xrightarrow{[RhCl(C_{2}H_{4})_{2}]_{2}} (2.5 \text{ mol}\% \text{ of } Rh)}{KOH (10 \text{ mol}\%), 50 °C, time} O \bigvee_{N=0}^{N} O \xrightarrow{N} $							
Entry	Ar	<i>t</i> [h]	Yield [%] ^[b]	ee [%] ^[c]			
1	Ph (2 a)	6	97 (3 ba)	98			
2	2-Me-C ₆ H ₄ (2 b)	3	95 (3 bb)	93			
3	3-Me-C ₆ H ₄ (2 c)	3	98 (3 bc)	92			
4	4-Me-C ₆ H ₄ (2 d)	3	96 (3 bd)	95			
5	4- <i>t</i> Bu-C ₆ H ₄ (2 e)	3	93 (3 be)	94			
6	4-Ph-C ₆ H ₄ (2 f)	3	90 (3 bf)	92			
7	2,4-(MeO) ₂ -C ₆ H ₃ (2g)	3	92 (3 bg)	94			
8	3-MeO-C ₆ H ₄ (2 h)	4	93 (3 bh)	93			
9	4-MeO-C ₆ H ₄ (2 i)	6	96 (3 bi)	95			
10	1-Naphthyl (2 j)	19	98 (3 bj)	90			
11	2-Naphthyl (2 k)	4	98 (3 bk)	97			
12	4-F-C ₆ H ₄ (21)	3	96 (3 bl)	98			
13	3-Cl-C ₆ H ₄ (2 m)	3	95 (3 bm)	95			
14	4-Cl-C ₆ H ₄ (2 n)	3	93 (3 bn)	96			
15	2-CF ₃ -C ₆ H ₄ (2 o)	3	72 (3 bo)	90			
16	3-CF ₃ -C ₆ H ₄ (2 p)	30	95 (3 bp)	90			
17	4-CF ₃ -C ₆ H ₄ (2 q)	3	89 (3 bq)	88			
[a] The reaction was carried out in dioxane (2.0 mL) at 50 $^\circ\text{C}$ using $\textbf{1b}$							

thoxylbenzyl)maleimide (1 g) in a highly enantiocontrolled manner (89–97% ee) to generate the corresponding N-PMB^[15]protected 3-arylsuccinimides in excellent yields (90-99%, entries 8–14). Maleimide 1 h, harboring an N-phenylethyl substituent, was also compatible in the transformation with variously substituted arylboronic acids, producing the desired products in chemical yields ranging from 90 to 99% and in 90 to 98% ee (entries 15-21).

Finally, to demonstrate the synthetic utility of the asymmetric transformation, two compounds of pharmacological interest were targeted. Enantioselective addition of 2-methoxyphenylboronic acid (2r) to maleimide 1i allowed the isolation of 3ir in quantitative yield with 92% ee (Table 4, entry 22), which upon hydride reduction with LiAlH₄ (LAH) furnished pyrrolidine

4, which is known to have high affinity for α -2 adrenoceptor subtypes, in 63% yield without the loss of selectivity (Scheme 1).^[7a, 16] Similarly, succinimide 3 ao which was prepared in Table 4, entry 7, was further reduced to yield (R)-N-benzyl-3-(2-trifluoromethyl)phenylpyrrolidine (5), which is an intermediate, though with opposite configuration, in the synthesis of HSD-1 inhibitor 6.^[17]

After demonstrating the enantioselective arylation of maleimides, the Rh^I-catalyzed conjugate addition reaction of PhB(OH)₂ (2a) with substituted maleimides was tested (Table 5).^[7c] Under the optimized conditions, the asymmetric addition of 2a to N-

$ArB(OH)_{2} + O \bigvee_{N}^{N} O \xrightarrow{[RhCl(C_{2}H_{4})_{2}]_{2} (2.5 \text{ mol}\% \text{ of } Rh)}_{10\% \text{ aq. dioxane}} O \bigvee_{N}^{N} O \xrightarrow{N} O$				Ar ² B(2 (3.0	OH) ₂ equiv)	+ O N O $KOH(C_2$ + O N O $KOH(C_1$ 1a, $Ar^1 = Ph$ 1g, $Ar^1 = 4$ -MeO- C_6H_4	H₄) ₂]₂ (2. L 2 (2.75 r 10 mol%) I0% aq. d	5 mol% of Rh) nol%) , 50 °C, time ➤ O ioxane		
Entry	Ar	<i>t</i> [h]	Yield [%] ^[b]	ee [%] ^[c]			1h , Ar ¹ = 3,4-(MeO) ₂ -C ₆ 1i , Ar ¹ = 3,4-(CH ₂ O) ₂ -C ₆	H ₃ CH ₂ ₅ H ₃		
1	Ph (2 a)	6	97 (3 ba)	98	Entry	1	Ar ²	<i>t</i> [h]	Yield [%] ^[b]	ee [%
2	2-Me-C ₆ H ₄ (2 b)	3	95 (3 bb)	93						
3	3-Me-C ₆ H ₄ (2 c)	3	98 (3 bc)	92	1 - [d]	1a	Ph (2 a)	3	94 (3 aa)	96
4	4-Me-C ₆ H ₄ (2d)	3	96 (3 bd)	95	2 rd	1a	2-Me- C_6H_4 (2 b)	4 (3)	91 (99) (3 ab)	89 (9
5	4- <i>t</i> Bu-C ₆ H ₄ (2 e)	3	93 (3 be)	94	3.01	1a	4-Me- C_6H_4 (2 d)	5 (3)	91 (92) (3 ad)	88 (9
5	4-Ph-C ₆ H ₄ (2 f)	3	90 (3 bf)	92	4	1a	3-MeO-C ₆ H ₄ (2 h)	5	90 (3 ah)	91
7	2_{4} -(MeO) ₂ -C ₆ H ₃ (2 g)	3	92 (3 bg)	94	5	1a	$4-\text{MeO-C}_6\text{H}_4$ (2 i)	5	90 (3 ai)	96
3	3-MeO-C ₆ H ₄ (2 h)	4	93 (3 bh)	93	6 ^(a)	1a	4-F-C ₆ H ₄ (2 I)	5 (2)	91 (98) (3 al)	86 (9
)	4-MeO-C ₆ H ₄ (2 i)	6	96 (3 bi)	95	7	1a	2-CF ₃ -C ₆ H ₄ (2 o)	4	97 (3 ao)	96
0	1-Naphthyl (2 i)	19	98 (3 bi)	90	8	1 g	Ph (2 a)	6	98 (3 ga)	93
11	2-Naphthyl (2 k)	4	98 (3 bk)	97	9	1 g	2-Me-C ₆ H ₄ (2 b)	4	93 (3 gb)	97
12	4-F-C₄H₄ (2 I)	3	96 (3 bl)	98	10	1 g	4-Me-C ₆ H ₄ (2 d)	4	98 (3 gd)	89
13	3-CI-C-H, (2 m)	3	95 (3 bm)	95	11	1 g	2,4-(MeO) ₂ -C ₆ H ₃ (2g)	4	96 (3 gg)	92
14	$4-Cl-C_{2}H_{4}(2n)$	3	93 (3 bn)	96	12	1 g	3-MeO-C ₆ H ₄ (2 h)	4	90 (3 gh)	96
15	2-CE ₂ -C ₂ H ₄ (2 0)	3	72 (3 bo)	90	13	1 g	4-MeO-C ₆ H ₄ (2 i)	4	99 (3 gi)	89
16	3-CFC-H, (2 n)	30	95 (3 bb)	90	14	1 g	4-F-C ₆ H ₄ (21)	4	97 (3 gl)	91
17	$4-CF_{3}-C_{2}H_{4}(2 \mathbf{n})$	3	89 (3 ba)	88	15	1 h	Ph (2 a)	6	96 (3 ha)	94
	· Cr 3 C6· ·4 (~ Y)		(3 64)		16	1 h	2-Me-C ₆ H ₄ (2 b)	4	90 (3 hb)	98
[a] The	reaction was carried out	in dioxar	ne (2.0 mL) at 5	0°C using 1b	17	1 h	4-Me-C ₆ H ₄ (2 d)	4	92 (3 hd)	96
(0.2 mm	ol) and arylboronic acid 2	2 (0.6 mm	ol, 3.0 equiv ba	sed on 1b) in	18	1 h	2,4-(MeO) ₂ -C ₆ H ₃ (2g)	4	90 (3 hg)	91
the pres	ence of the rhodium cata	lyst gener	ated in situ fron	n [RhCl(C_2H_4) ₂],	19	1 h	3-MeO-C ₆ H ₄ (2 h)	4	94 (3 hh)	92
(2.5 μmol, 2.5 mol% of Rh) and chiral diene L2 (5.5 μmol, 2.75 mol%).				ol, 2.75 mol%).	20	1 h	4-MeO-C ₆ H ₄ (2 i)	4	99 (3 hi)	94
[b] Yield of isolated product. [c] Determined by HPLC analysis using chiral				21	1h	4-F-C ₆ H ₄ (2 I)	4	99 (3 hl)	90	
columns.				22	1i	2-MeO-C ₆ H ₄ (2 r)	4	99 (3 ir)	92	

 $[RhCl(C_2H_4)_2]_2$ (2.5 µmol, 2.5 mol% of Rh) and chiral diene L2 (5.5 µmol, 2.75 mol%). [b] Yield of isolated product. [c] Determined by HPLC analysis using chiral columns. [d] The results shown in the parentheses were obtained by carrying out the reaction in the presence of 5 mol% of the Rh¹ catalyst.

benzyl-3-methylmaleimide (7) was complete in 4 h providing the addition products in a combined 97% yield. The addition occurred regioselectively to the less-hindered β -position giving compound 9 as the favored product (8/9 = 19:81) with a 1:1.6 ratio of the cis/trans isomers. The addition products were generated with high enantioenrichment; compound 8, the minor component with a quaternary stereogenic center was obtained

Scheme 1. Syntheses of known chiral 3-arylpyrrolidines.

www.chemeurj.org

boronic acids **2a** (0.6 mmol, 3.0 equiv based on 1) in the presence of the rhodium catalyst generated in situ from [RhCl(C_2H_4)₂]₂ (2.5 µmol, 2.5 mol% of Rh) and chiral diene **L2** (5.5 µmol, 2.75 mol%). [b] Yield of isolated product. [c] Determined by ¹H NMR spectroscopic analysis of the crude mixture. [d] Determined by HPLC analysis using a chiral column (Chiralpak OJ).

with 96% *ee* whereas *trans*- and *cis*-**9** were produced with 92 and 96% *ee*, respectively.

Conclusion

In summary, the highly enantioselective 1,4-addition of a diverse range of arylboronic acids to N-substituted maleimides has been achieved using rhodium catalysts generated in situ from a family of novel 2,5-diaryl substituted bicyclo[2.2.1] chiral diene ligands. The reaction is generally rapid (2-6 h) and can be conducted under mild conditions (50°C) in a range of solvents, preferably dioxane for synthetic or discovery chemistry applications, in the presence of carbonate or hydroxide bases and, preferably, ligand L2. For the scale-up of intermediates for pharmaceutical purposes in which dioxane should be avoided, it has been shown that other, less toxic, solvents can be used in its place. The asymmetric reaction is equally efficient for maleimides 1a, 1g, and 1i bearing N-protecting groups, thereby representing a general method for the preparation of medicinally and synthetically useful 3-substituted succinimides with high optical purity (up to 98% ee). The synthetic method was applied to the concise preparation of chiral 3-arylpyrrolidines 4, a biologically active compound, and 5, the enantiomer of an intermediate in the synthesis of the HSD-1 inhibitor, compound 6. The enantioselective conjugate addition of phenylboronic acid (2a) to the 3-methyl-substituted maleimide 7 gave addition products with moderate regioselectivity (8/9=19:81) but with high enantioselectivity.

Experimental Section

General

All commercial chemicals and solvents were reagent grade and were used without further treatment unless otherwise noted. All reactions were carried out under an argon atmosphere. Reactions were monitored by TLC analysis using silica gel plates; zones were detected visually under ultraviolet irradiation (254 nm) or by spraying with 2,4-dinitrophenylhydrazine solutionfollowed by heating. Flash column chromatography was conducted using silica gel. ¹H NMR spectra were obtained on a 400 or a 500 MHz spectrometer. ¹³C NMR spectra were obtained on a 100 or a 125 MHz spec-

trometer. Chemical shifts were recorded in parts per million (ppm, δ) and were reported relative to the solvent peak. HRMS were obtained using EI, ESI, or FAB ionization methods. Optical purities of the final compounds were determined using chiral HPLC. Optical rotations were measured on a polarimeter. Melting points were measured on a melting points apparatus. Arylboronic acids and chiral dienes L11 and L12 are purchased from commercial sources and are used as received. Chiral bicyclo[2.2.1]diene ligands (L1-L10)^[13b] and imides^[18] were prepared according to the reported procedures.

General procedure for rhodium-catalyzed conjugate addition reactions

A solution of $[RhCl(C_2H_4)_2]_2$ (2.5 µmol, 2.5 mol% of Rh) and the selected chiral diene (5.5 µmol, 2.75 mol%) in 1,4-dioxane (1.0 mL) was stirred for 10 min at room temperature before adding KOH (0.1 μ , 0.2 mL, 20 µmol) and the resulting solution was stirred for an additional 10 min at room temperature. After addition of PhB(OH)₂ (2a; 0.6 mmol) and stirring for 5 min, the mixture was transferred to a solution of maleimide 1a (0.2 mmol) in 1,4-dioxane (1.0 mL). After having been stirred for 3 h at 50 °C, the mixture was filtered through a pad of silica gel and washed with Et₂O (10 mL \times 3), and the volatiles were removed under reduced pressure to give the crude product, which was then purified by column chromatography using EtOAc/hexane (1:9) as eluent to afford the desired product 3 aa.

(R)-1-Benzyl-3-phenylpyrrolidine-2,5-dione (3aa)

Yield: 49.9 mg, 94%; M.p. 61–62 °C; *ee* was determined on a Daicel Chiralpak OD-H column eluting with hexane/isopropanol = 90:10, flow = 1 mL min⁻¹; retention times: 27.63 ((*S*)-enantiomer), 34.48 min ((*R*)-enantiomer). 96% *ee*; $[\alpha]_{D}^{22}$: -64.0 (*c* = 1.00 in CHCl₃). FTIR (KBr neat): $\tilde{\nu}$ = 3031, 1702, 1395, 1343, 1164, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.45–7.37 (m, 2 H), 7.37–7.22 (m, 6 H), 7.21–7.09 (m, 2 H), 4.75 (d, *J* = 14.4 Hz, 1 H), 4.69 (d, *J* = 14.4 Hz, 1 H), 4.00 (dd, *J* = 9.2, 4.4 Hz, 1 H), 3.18 (dd, *J* = 18.4, 9.2 Hz, 1 H), 2.81 ppm (dd, *J* = 18.4, 4.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ = 177.3, 175.7, 137.1, 135.7, 129.1, 128.8, 128.6, 128.0, 127.9, 127.3, 45.8, 42.7, 37.1 ppm. HRMS (EI): *m/z* calcd for [C₁₇H₁₅NO₂]⁺ 265.1103; found: 265.1098 [*M*]⁺.

General procedure for the syntheses of chiral 3-arylpyrrolidines

A mixture of compound **3 ir** (50 mg, 0.14 mmol, 92% *ee*) and LiAlH₄ (29 mg, 0.76 mmol) in THF (2.5 mL) was stirred for 24 h at room temperature. The reaction was quenched with aqueous NaOH solution (10%, 0.15 mL) and H₂O, and the precipitate was filtered off through Celite and washed with EtOAc (10 mL×3). The solvent was removed under reduced pressure, and the residue was purified on a silica gel column eluting with EtOAc/hexane = 1:1 to afford pyrrolidine **4** as a colorless oil.

Chem. Eur. J. 2015, 21, 11050 - 11055

www.chemeuri.org

(*R*)-1-[(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-yl)methyl]-3-(2methoxyphenyl)pyrrolidine (4)

Yield: 28.7 mg, 63 %; $[\alpha]_0^{27} = -16.05$ (c = 1.19 in CHCl₃); FTIR (KBr neat): $\tilde{\nu} = 3029$, 1590, 1507, 1461, 1432, 1289, 1241, 1068, 919, 887, 815, 754 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (dd, J = 7.6, 1.6 Hz, 1 H), 7.20–7.13 (m, 1 H), 6.96–6.87 (m, 2 H), 6.86–6.77 (m, 3 H), 4.24 (s, 4 H), 3.80 (s, 3 H), 3.76–3.71 (m, 1 H), 3.58 (s, 2 H), 2.99 (t, J = 8.8 Hz, 1 H), 2.83–2.76 (m, 1 H), 2.73–2.63 (m, 1 H), 2.55–2.46 (m, 1 H), 2.34–2.22 (m, 1 H), 1.92–1.80 ppm (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 157.1$, 143.2, 142.4, 133.5, 132.7, 127.4, 126.9, 121.8, 120.6, 117.6, 116.8, 110.4, 64.3, 60.5, 60.0, 55.3, 54.4, 36.4, 31.8 ppm; HRMS (FAB): m/z calcd for $[C_{20}H_{23}NO_3 + H]^+$ 326.1756; found: 326.1757 $[M+H]^+$.

(R)-1-Benzyl-3-[2-(trifluoromethyl)phenyl]pyrrolidine (5)

Yield: 27.5 mg, 60%; *ee* was determined on a Daicel Chiralpak AD-H column eluting with hexane/isopropanol=99:1, flow= 0.1 mL min⁻¹; retention times: 64.05 ((*R*)-enantiomer), 69.84 min ((S)-enantiomer); 96.5% *ee*; $[\alpha]_D^{23} = +18.79$ (*c*=1.00 in CHCl₃); FTIR (KBr neat): $\tilde{\nu}$ = 2960, 2790, 1491, 1452, 1381, 1343, 1118, 1024, 756, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.66 (d, *J*=8.0 Hz, 1 H), 7.53–7.39 (m, 2 H), 7.32–7.21 (m, 4 H), 7.20–7.12 (m, 2 H), 3.73–3.65 (m, 1 H), 3.64 (d, *J*=12.8 Hz, 1 H), 3.56 (d, *J*=12.8 Hz, 1 H), 2.87–2.75 (m, 2 H), 2.64–2.49 (m, 2 H), 2.36–2.24 (m, 1 H), 1.82–1.78 ppm (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ =146.2, 139.3, 132.2, 128.75, 128.74, 128.3, 128.0 (q, *J*=29.0 Hz), 127.0, 125.7, 125.12 (q, *J*=6.0 Hz), 124.6 (q, *J*=272.0 Hz), 62.9, 60.4, 54.9, 38.2, 35.0 ppm; HRMS (FAB⁺): *m/z*: calcd for [C₁₈H₁₈F₃N+Na]⁺ 328.1289; found: 328.1289 [*M*+Na]⁺.

Acknowledgements

Financial support from the Ministry of Science and Technology of Republic of China (100-2113-003-009-MY2, 102-2113-003-006-MY2) and the National Taiwan Normal University is gratefully acknowledged.

Keywords: chiral ligands · conjugate addition · enantioselectivity · pyrrolidine · rhodium

- a) W. C. Groutas, M. J. Brubaker, L. S. Chong, R. Venkataraman, H. Huang, J. B. Epp, R. Kuang, J. R. Hoidal, *Bioorg. Med. Chem.* **1995**, *3*, 375–381; b) M. L. Curtin, R. B. Garland, H. R. Heyman, R. R. Frey, M. R. Michaelides, J. Li, K. Glaser, P. Marcotte, S. K. Davidsen, *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2919–2923; c) J. Obniska, A. Zagórska, *II Farmaco* **2003**, *58*, 1227– 1234; d) J. Uddin, K. Ueda, E. R. Siwu, M. Kita, D. Uemura, *Bioorg. Med. Chem.* **2006**, *14*, 6954–6961; e) J. Obniska, M. Kopytko, A. Zagórska, I. Chlebek, K. Kamiński, *Arch. Pharm. Chem. Life Sci.* **2010**, *343*, 333–341; f) J. Obniska, S. Rzepka, K. Kamiński, *Bioorg. Med. Chem.* **2012**, *20*, 4872– 4880; g) P. Chauhan, K. Jasneet, S. Chimni, *Chem. Asian J.* **2013**, *8*, 328– 346; h) M. Sortino, A. Postigo, S. Zacchino, *Molecules* **2013**, *18*, 5669– 5683; i) K. Kamiński, *J.* Obniska, I. Chlebek, B. Wiklik, S. Rzepka, *Bioorg. Med. Chem.* **2013**, *21*, 6821–6830.
- [2] a) I. Ibnusaud, G. Thomas, *Tetrahedron Lett.* 2003, 44, 1247–1249; b) W. Yao, J. Zhuo, D. M. Burns, M. Xu, C. Zhang, Y.-L. Li, D.-Q. Qian, C. He, L. Weng, E. Shi, Q. Lin, C. Agrios, T. C. Burn, E. Caulder, M. B. Covington, J. S. Fridman, S. Friedman, K. Katiyar, G. Hollis, Y. Li, C. Liu, X. Liu, A. Marando, R. Newton, M. Pan, P. Scherle, N. Taylor, K. Vaddi, Z. R. Wasserman, R. Wynn, S. Yeleswaram, R. Jalluri, M. Bower, B.-B. Zhou, B. Metcalf, J. Med. Chem. 2007, 50, 603–606; c) J. Zhuo, D. M. Burns, C. Zhang, M. Xu,

L. Weng, D.-Q. Qian, C. He, Q. Lin, Y.-L. Li, E. Shi, C. Agrios, B. Metcalf, W. Yao, *Synlett* **2007**, 460–464.

- [3] D. A. Evans, L. D. Wu, J. J. M. Wiener, J. S. Johnson, D. H. B. Ripin, J. S. Tedrow, J. Org. Chem. 1999, 64, 6411–6417.
- [4] M. P. Sibi, P. Liu, J. Ji, S. Hajra, J.-X. Chen, J. Org. Chem. 2002, 67, 1738– 1745 and reference cited therein.
- [5] W. Tang, D. Liu, X. Zhang, Org. Lett. 2003, 5, 205-207.
- [6] a) R. Shintani, K. Ueyama, I. Yamada, T. Hayashi, Org. Lett. 2004, 6, 3425– 3427; b) Y.-C. Chung, D. Janmanchi, H.-L. Wu, Org. Lett. 2012, 14, 2766– 2769.
- [7] a) R. Shintani, W.-L. Duan, T. Nagano, A. Okada, T. Hayashi, Angew. Chem. Int. Ed. 2005, 44, 4611-4614; Angew. Chem. 2005, 117, 4687-4690; b) E. Piras, F. Läng, H. Rüegger, D. Stein, M. Wörle, H. Grützmacher, Chem. Eur. J. 2006, 12, 5849-5858; c) R. Shintani, W. L. Duan, T. Hayashi, J. Am. Chem. Soc. 2006, 128, 5628-5629; d) W.-L. Duan, H. Iwamura, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2007, 129, 2130-2138; e) W.-L. Duan, R. Shintani, T. Hayashi, Tetrahedron 2007, 63, 8529-8536; f) Y. Luo, A. J. Carnell, Angew. Chem. Int. Ed. 2010, 49, 2750-2754; Angew. Chem. 2010, 122, 2810-2814; g) T. Thaler, L.-N. Guo, A. K. Steib, M. Raducan, K. Karaghiosoff, P. Mayer, P. Knochel, Org. Lett. 2011, 13, 3182-3185; h) F. Berhal, Z. Wu, J.-P. Genet, T. Ayad, V. Ratovelomanana-Vidal, J. Org. Chem. 2011, 76, 6320-6326; i) F. Le Boucher d'Herouville, A. Millet, M. Scalone, V. Michelet, J. Org. Chem. 2011, 76, 6925-6930; j) J. Csizmadiová, M. Meciarova, E. Rakovsky, B. Horvath, R. Sebesta, Eur. J. Org. Chem. 2011, 6110-6116; k) T. Korenaga, A. Ko, K. Shimada, J. Org. Chem. 2013, 78, 9975-9980.
- [8] a) Y. Takaya, M. Ogasawara, T. Hayashi, M. Sakai, N. Miyaura, J. Am. Chem. Soc. 1998, 120, 5579–5580; b) T. Hayashi, M. Takahashi, Y. Takaya, M. Ogasawara, J. Am. Chem. Soc. 2002, 124, 5052–5058.
- [9] Q. Shi, L. Xu, X. Li, X. Jia, R. Wang, T. T.-L. Au-Yeung, A. S. C. Chan, T. Hayashi, R. Cao, M. Hong, *Tetrahedron Lett.* **2003**, *44*, 6505 – 6508.
- [10] J. G. Boiteau, R. Imbos, A. J. Minnaard, B. L. Feringa, Org. Lett. 2003, 5, 681–684.
- [11] For a review on the impact of electron-deficient atropisomeric phosphine ligands in the asymmetric transformations, see: J.-P. Genet, T. Ayad, V. Ratovelomanana-Vidal, *Chem. Rev.* 2014, 114, 2824–2880.
- [12] For seminal reviews, see: a) F. Glorius, Angew. Chem. Int. Ed. 2004, 43, 3364–3366; Angew. Chem. 2004, 116, 3444–3446; b) J. B. Johnson, T. Rovis, Angew. Chem. Int. Ed. 2008, 47, 840–871; Angew. Chem. 2008, 120, 852–884; c) C. Defieber, H. Grützmacher, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 4482–4502; Angew. Chem. 2008, 120, 4558–4579; d) R. Shintani, T. Hayashi, Aldrichimica Acta 2009, 42, 31–38; e) C.-G. Feng, M.-H. Xu, G.-Q. Lin, Synlett 2011, 1345–1356; f) P. Tian, H.-Q. Dong, G.-Q. Lin, ACS Catal. 2012, 2, 95–119; g) X. Feng, H. Du, Asian J. Org. Chem. 2012, 1, 204–213.
- [13] a) H.-L. Wu, C.-C. Chen, C.-C. Liu, W.-T. Wei, J.-H. Fang, U. S. Pat. Appl. 2013/0096348, 2013; b) W.-T. Wei, J.-Y. Yeh, T.-S. Kuo, H.-L. Wu, *Chem. Eur. J.* 2011, *17*, 11405 11409; c) C.-C. Liu, D. Janmanchi, C.-C. Chen, H.-L. Wu, *Eur. J. Org. Chem.* 2012, 2503 2507; d) K.-C. Huang, B. Gopula, T.-S. Kuo, C.-W. Chiang, P.-Y. Wu, J. P. Henschke, H.-L. Wu, *Org. Lett.* 2013, *15*, 5730 5733; e) B. Gopula, C.-W. Chiang, W.-Z. Lee, T.-S. Kuo, P.-Y. Wu, J. P. Henschke, H.-L. Wu, *Org. Lett.* 2014, *16*, 632 635; f) C.-C. Chen, B. Gopula, J.-F. Syu, J.-H. Pan, T.-S. Kuo, P.-Y. Wu, J. P. Henschke, H.-L. Wu, *J. Org. Chem.* 2014, *79*, 8077 8085; g) B. Gopula, Y.-F. Tsai, T.-S. Kuo, P.-Y. Wu, J. P. Henschke, H.-L. Wu, *Org. Lett.* 2015, *17*, 1142 1145.
- [14] T. Hayashi, K. Ueyama, N. Tokunaga, K. Yoshida, J. Am. Chem. Soc. 2003, 125, 11508–11509.
- [15] The N-4-methoxybenzyl group can be removed under hydrogenolytic reaction conditions, see: B. Alonso, M. Ocejo, L. Carrillo, J. L. Vicario, E. Reyes, U. Uria, J. Org. Chem. 2003, 68, 614–627.
- [16] M. P. Seiler, J. Nozulak WO 2001/055132, 2001.
- [17] a) M. J. Packer, J. S. Scott, A. Stocker, P. R. O. Whittamore WO 2008/ 099145, 2008; b) K. Harada, T. Ito WO 2008/069313, 2008.
- [18] L. Manteca, B. Etxarri, A. Ardeo, S. Arrasate, I. Osante, N. Sotomayor, E. Lete, *Tetrahedron* 1998, 54, 12361–12378.

Received: March 18, 2015 Published online on June 3, 2015

Chem. Eur. J. 2015, 21, 11050 - 11055

www.chemeurj.org

11055