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Introduction

The 1,2-diol structures are important skeletons, 
ubiquitously found in pharmaceuticals and their 
intermediates, such as the glycoprotein processing inhibitor 
swainsonine,1 the anticancer agent anisomycin,2 the 
immunomodulator cytoxazone,3 and other bioactive molecules4 
(Figure. 1). Since the pioneering work reported by Sharpless,5 a 
number of useful strategies for alkene dioxygenation have 
been developed for the preparation of such compounds, the 
majority of these methods are based on catalysis by 
transition metals, such as osmium,6 iron,7 palladium,8 
rhodium,9 and others10 (Scheme 1, a). Despite the synthetic 
utility, the toxicity and high cost of transition metals limit its 
application. Therefore, the developing of new processes in 
metal-free manner for dioxygenation of alkenes has become 
a hot issue for chemists.
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Figure. 1 Biologically active compounds containing 1,2-diols 
structures.

For example, aryliodine compounds have been shown to 
catalysis the diacetylation of alkenes,11 and when an 
appropriate chiral hypervalent iodine catalyst was used, an 
asymmetric reaction could also be achieved (Scheme 1, a).12 
In another example, Moriyama13 has described a catalysis 
diacetylation by organic selenium compounds, in which in 
situ-generated peroxyseleninic acid oxidized C=C double 
bonds to epoxides (Scheme 1, b). In addition, Tomkinson has 
reported that malonoyl peroxides can mediate alkene 
dihydroxylation via a dioxonium or oxiranium ion 
intermediate (Scheme 1, c).14 Finally, in the presence of an 
O-centered radical reagent, alkene dihydroxylation can also 
proceed in a radical reaction pathway (Scheme 1, d).15 Among 
the various metal-free methods for dioxygenation of alkenes 
mentioned above, substrate adaptability and atomic economy 
problems are still exists.
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Scheme. 1 Metal-free strategies used for dioxygenation of alkenes.
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A mCPBA-mediated, metal-free, intramolecular dioxygenation reaction of unactivated 
alkenes is reported. In the presence of m-chlorobenzoic peracid, different unsaturated 
amide substrates could be cyclized via epoxide intermediates, producing the 
corresponding 5-imino-2-tetrahydrofuranyl methanol products in up to 94% yield at 
room temperature.

2009 Elsevier Ltd. All rights reserved.



2

1a 2a

O

N

OH

Z

NHZ

O Conditions

MeMe

Me
Me

Results and discussion

Inspired by the works aboat mCPBA-mediated alkene 
aminohydroxylation reactions.16-17 We reasoned that the 
cyclohydroxylation may be generated through a tandem 
epoxidation and epoxide ring-opening sequence. Compared 
with aryliodine or selenium catalyzed methods, the 
mCPBA-mediated process is more simple and effective. In 
the initial investigation, 
N-phenyl-2,2-dimethyl-4-pentenamide 1a was chosen as a 
model substrate. The reaction parameters including the 
oxidants, additives, and solvents, were examined to 
determine the optimal reaction conditions, and the results 
are summarized in Table 1. The reaction could be carried 
out at room temperature in hexafluoroisopropanol (HFIP), 
and HNTs2 was essential for the transformation, as a low 
yield was obtained in the absence of HNTs2 (entry 2). Then, 
several acid additives were tested, which resulted in reduced 
isolated yields (entries 3-6). The solvent screening 
determined that hexafluoroisopropanol remarkably 
promoted the transformation, while the use of DCM, 
CH3CN, THF or iPrOH as the solvent led to a low reactivity 
or not achieving the conversion (entries 7-10). Increasing 
the amount of mCPBA to 2.0 equivalents further increased 
the yield of 2a to 83% (entry 11). Among the different 
oxidants tested, DDQ, AcOOH, and H2O2 were ineffective 
for the transformation (entries 12–14). These results clearly 

showed that the mCPBA/HNTs2/HFIP system was optimal 
for 1a dioxygenation. 

Table 1 Optimization of reaction conditions.a 

Entry Solvent
Oxidant 
(equiv.)

Additive (equiv.)
2a 

Yield%
1 HFIP mCPBA (1.5) HNTs2 (1.5) 78
2 HFIP mCPBA (1.5) - 8
3 HFIP mCPBA (1.5) TFA (1.0) 60
4 HFIP mCPBA (1.5) TfOH (1.0) 65
5 HFIP mCPBA (1.5) BF3OEt2 (1.0) 60
6 HFIP mCPBA (1.5) PhCOOH (1.0) 16
7 DCM mCPBA (1.5) HNTs2 (1.0) 15
8 CH3CN mCPBA (1.5) HNTs2 (1.0) 10
9 THF mCPBA (1.5) HNTs2 (1.0) -
10 iPrOH mCPBA (1.5) HNTs2 (1.0 ) -
11 HFIP mCPBA (2.0) HNTs2 (1.0) 83
12 HFIP DDQ (2.0) HNTs2 (1.0) -
13 HFIP AcOOH (5.0) HNTs2 (1.0) -
14 HFIP H2O2 (5.0) HNTs2 (1.0) -
aThe reactions were conducted on 0.2 mmol 1a as substrates for 15 h, and 
isolated yields are given.
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3

With the optimized conditions in hand, various substituted 
pentenamides were examined. The effects of substituents on the 
N-phenyl group of 2,2-dimethylpentenamide were initially 
tested. The results showed that both electron-rich and 
electron-deficient substrates were suitable for the 
transiformation, affording the desired five-membered ring 
dioxygenation products (2a-g) in good yields (65%–84%). 
Interestingly, compared with the 2,2-dimethyl substituted 
pentenamides, the more highly sterically hindered 2,2-diphenyl 
substrates, giving the corresponding tetrahydrofuranyl 
methanamine derivatives 2h-m in slightly lower yields (51%– 
77%). These results indicated that the Thorpe-Ingold effect had 
less impact on this transformation, even though the 
Thorpe-Ingold effect has been observed in a number of catalytic 
difunctionalizations of alkenes.18 The 2,2-diphenylpentenamides 
with N-methoxyl and N-benzyl protecting groups were found to 
function as suitable substrates for the reaction, giving 2n and 2o 
in 57% and 75% yields, respectively. Furthermore, substrates 
with different alkyl ring sizes could also be applied to the 
reaction under the standard conditions, giving the corresponding 
spiro-tetrahydrofuranyl methanamine products (2p–r) in 64%–
84% yields. It is noteworthy that a substrate bearing a 
heterocycle was also suitable, affording the corresponding 
oxybicyclo 2s in good yield. To further investigate the substrate 
scope, various unsaturated amides with more complex 
substitutions were examined. In these trials, the 2,2,3-trimethyl 
pentenamide 1t and 2,2-diphenyl-3-methyl pentenamides 1u 
were also tolerated, giving 2t and 2u in good yields with 
moderate diastereoselectivity. Furthermore, a substrate bearing a 
quaternary carbon center also worked well under the standard 
conditions, giving the dioxygenation product 2v in 85% yield 
with 1:1.2 diastereoselectivity. Moreover, 
N-phenyl-2,2-disubstituted-4-methyl pentenamides 1w and 1x 

were also compatible with the reaction, generating the 
corresponding tetrahydrofuranyl methanol products 2w and 2x 
with quaternary carbon centers in 87% and 83% yields, 
respectively. Furthermore, the 2,2,4-triphenyl pentenamide was 
also applicable to this transiformation, giving 2y in 85% yield, 
and gram-level reaction got a slightly lower yield. Notably, the 
internal olefin substrate of 2,2-diphenyl-5-methylpentenamide 1z 
exhibited better reactivity than the other substrates, giving 2z in 
up to 94% yield with 5:1 diastereoselectivity. This result further 
indicated that the substituent on the double bond promoted the 
reaction. This promotion is possibly because the methyl 
substituent stabilized the ethylene oxide intermediate. In 
addition, the substituted vinylbenzamide substrates were also 
suitable for the dioxygenation (1aa–1ac), and the gram-level 
reaction for the synthesis of 2aa was tested, giving 2aa in 85% 
yield. The electron-withdrawing effect of a chlorine atom 
substituent was beneficial to obtain a higher yield (2ab, 89%), 
while the methyl-substituted product gave a slightly lower yield 
(2ac, 78%). This result was possible because the strong 
electron-withdrawing chlorine atom substitution on the benzene 
ring increased the nucleophilicity of the carbonyl oxygen.

On the basis of these data, a possible reaction mechanism 
was developed (Scheme 2). This transformation proceeds via 
oxidation of the unsatured amide, which transform into an in 
situ-generated epoxide intermediate (Int. 1). Then, the epoxide 
intermediate subsequently attacked by the oxygen through TsA, 
while the TsB transition state involving an attack by a nitrogen is 
unfavorable, because the nitrogen atom in an amide moiety is 
usually less nucleophilic than a carbonyl oxygen atom.19 In the 
presence of an excess of HNTs2, the cyclization product remains 
protonated. Finally, a proton can be abstracted from Int. 2 by 
treatment with NaOH to give the neutral product 2z.
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Scheme 2 Plausible reaction mechanism. 

In conclusion, we have demonstrated a simple and 
effective mCPBA-mediated dioxygenation of unactivated 
alkenes to afford various 5-imino-2-tetrahydrofuranyl 
methanol derivatives, which are important motifs in 
compounds for drug development and biological studies. 
Notably, the present reaction was conducted at room 
temperature with inexpensive materials, and was tolerated 
by a broad range of substrates with good regioselectivity.
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1. mCPBA-mediated Dioxygenation of unactivated 
alkenes

2. High selectivity for 5-imino-2-tetrahydrofuranyl 
methanol skeletons

3. Mild reaction conditions and broad substrate 
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