

Available online at www.sciencedirect.com

Carbohydrate Research 341 (2006) 1697-1701

Carbohydrate RESEARCH

Note

Convergent synthesis of a trisaccharide as its 2-(trimethylsilyl)ethyl glycoside related to the flavonoid triglycoside from *Gymnema sylvestre*

Balaram Mukhopadhyay*,[†] and Robert A. Field*

Centre for Carbohydrate Chemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK

Received 20 February 2006; received in revised form 7 March 2006; accepted 14 March 2006

Available online 5 April 2006

Abstract—The glycone part of the flavonoid triglycoside, kaempferol 3-*O*- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-galactopyranoside, has been synthesized in good yield and stereoselectivity using *N*-iodosuccinimide and HClO₄-silica promoted glycosylations of thioglycoside donors. © 2006 Elsevier Ltd. All rights reserved.

e 2000 Elsevier Eta. Thi fights feservea.

Keywords: Flavonoids; Antidiabetic; HClO₄-silica

Flavonoid glycosides constitute an important class of biomolecules and are isolated from fruits, vegetables and traditional medicinal plants.¹ They posses important biological activities in the growth and development of plants. Moreover, they are potent drug candidates having antimicrobial, anticancer or antioxidant properties.² The plant, Gymnema sylvestre (Retz.) Schult. (Asclepiadaceae), is widespread in India, China and Vietnam. It is well known for its leaves, called 'Gur-mar' in India, for the sweet taste suppressing activity³ and is used as a folk medicine for the treatment of diabetes mellitus and in food additives against obesity.⁴ Exploring the abundant resources of G. sylvestre in China, Yu et al.⁵ recently reported the isolation and structural characterization of a new flavonol triglycoside, kaempferol 3-O-β-D-glucopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 6)$ - β -D-galactopyranoside (Fig. 1), which is an important biomolecule as a potential antidiabetic drug lead. Herein, we report a simple and high yielding stereoselective synthesis of the trisaccharide portion of this natural product as its

2-(trimethylsilyl)ethyl glycoside (1). The 2-(trimethylsilyl)ethyl glycoside of the target trisaccharide was particularly attractive because it can be converted to other glycosides via coupling to the aglycon moiety.

The synthesis was started from the known⁶ 2-(trimethvlsilvl)ethvl B-D-galactopyranoside (2). Selective protection of the primary hydroxyl group with tertbutyldiphenylsilyl group followed by acetylation of the other hydroxyl groups afforded the completely protected galactoside 3 in 85% yield over two steps (Scheme 1). Deprotection of the *tert*-butyldiphenylsilyl group using 1 M tetrabutylammonium fluoride⁷ in THF at 60 °C furnished the required acceptor 4 in 78% yield. For the L-rhamnose moiety, the known p-tolyl 2,3,4-tri-O-acetyl- α -L-rhamnopyranoside (5)⁸ was de-O-acetylated using sodium methoxide in methanol and converted to its 2,3-isopropylidene derivative 6 in 87% yield using 2,2-dimethoxypropane in the presence of HClO₄-silica. Finally, the rhamnosyl donor 7 was generated by protecting the 4-hydroxyl group of 6 as a *p*-methoxybenzyl ether in 86% yield (Scheme 1).

N-Iodosuccinimide promoted glycosylation of acceptor **4** with donor **7** in the presence of $HClO_4$ -silica¹⁰ afforded the disaccharide **8** in 82% yield (Scheme 1). No degraded product due to the cleavage of the acid labile isopropylidene ketal or *p*-methoxybenzyl ether

^{*} Corresponding authors. E-mail addresses: sugarnet73@hotmail.com; r.a.field@uea.ac.uk

[†]Present address: Medicinal and Process Chemistry Division, Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow 226 001, India.

^{0008-6215/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.carres.2006.03.019

Figure 1. Structure of the flavonoid triglycoside from Gymnema sylvestre.

Scheme 1. Reagents and conditions: (a) (i) TBDPSCl, pyridine, rt, 6 h; (ii) Ac₂O, pyridine, rt, 3 h, 85% over two steps; (b) *n*-Bu₄NFTHF, 60 °C, 1 h, 78%; (c) 2,2-dimethoxypropane, acetone, HClO₄-silica, rt, 2 h, 87%; (d) *p*-methoxybenzyl chloride, NaH, DMF, rt, 2 h, 86%; (e) NIS, HClO₄-silica, CH₂Cl₂, rt, 45 min, 82%; (f) CAN, CH₃CN/H₂O (9:1), rt, 30 min, 87%; (g) HClO₄-silica, CH₃OH, 2 h, 91%; (h) NaOCH₃, CH₃OH, rt, 2 h, 95%.

was observed during glycosylation, which confirmed the applicability of the HClO₄-silica activation method to glycosylations with acid labile protecting groups.

Oxidative deprotection of the *p*-methoxybenzyl group using ceric ammonium nitrate¹¹ furnished the disaccharide acceptor **9** in 87% yield. This alcohol was then glycosylated with known donor, *p*-tolyl 2,3,4,6-tetra-*O*-acetyl-1-thio- β -D-glucopyranoside (**10**)⁸ in the presence of *N*iodosuccinimide and HClO₄–silica to give the blocked trisaccharide **11** in 87% yield. Deprotection of the isopropylidene ketal using HClO₄–silica in methanol¹² afforded the trisaccharide **12** in 91% yield. Finally Zémplen de-O-acetylation by catalytic sodium methoxide¹³ in methanol furnished the target trisaccharide, 2-(trimethylsilyl)ethyl β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-galactopyranoside (13) in 95% yield.

1. Experimental

1.1. General methods

All reagents and solvents were dried prior to use according to standard methods.¹⁴ Commercial reagents were used without further purification unless otherwise stated. Analytical TLC was performed on Silica Gel 60F254 (Merck or Whatman) with detection by fluorescence and/or by charring following immersion in a 10% ethanolic solution of sulfuric acid. An orcinol dip, prepared by the careful addition of concentrated sulfuric acid (20 mL) to an ice-cold solution of 3,5-dihydroxytoluene (360 mg) in EtOH (150 mL) and H₂O (10 mL), was used to detect deprotected compounds by charring. Flash chromatography was performed with Silica Gel 60 (Fluka). Optical rotations were measured at the sodium D-line at ambient temperature, with a Perkin Elmer 141 polarimeter. ¹H NMR and ¹³C NMR spectra were recorded on either a Varian Unity plus spectrometer at 300 and 75 MHz or 400 and 100 MHz, respectively.

1.2. 2-(Trimethylsilyl)ethyl 2,3,4-tri-*O*-acetyl-6-*O*-(*tert*-butyldiphenylsilyl)-β-D-galactopyranoside (3)

To a solution of 2 (2 g, 7.1 mmol) in dry pyridine (20 mL) was added tert-butyldiphenylsilyl chloride (2.2 mL, 8.5 mmol) and the mixture was stirred at rt for 6 h. When TLC (1:1, *n*-hexane/EtOAc) showed complete conversion of the starting material, Ac₂O (15 mL) was added and stirring was continued for 3 h. After complete conversion (TLC), the solvent was evaporated under reduced pressure and co-evaporated with toluene. The crude product thus obtained was purified by column chromatography (3:1, *n*-hexane/EtOAc) to afford compound **3** (3.8 g, 85%) as a glass. $[\alpha]_{D}^{25}$ +16.0 (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 7.63–7.34 (m, 10H, ArH), 5.56 (d, 1H, $J_{3,4} = 3.0$ Hz, H-4), 5.17 (dd, 1H, $J_{1,2} = 7.8$ Hz, $J_{2,3} = 10.5$ Hz, H-2), 5.03 (dd, 1H, $J_{2,3} = 10.5 \text{ Hz}, J_{3,4} = 3.0 \text{ Hz}, \text{H-3}, 4.44 \text{ (d, 1H,}$ $J_{1,2} = 7.8$ Hz, H-1), 3.97 (m, 1H, OC H_2 CH $_2$ Si(CH $_3$)₃), 3.77 (m, 2H, H-6a, H-6b), 3.67 (m, 1H, H-5), 3.51 (m, 1H, OCH₂CH₂Si(CH₃)₃), 2.08, 2.04, 2.00 (3s, 9H, 3COCH₃), 1.06 (s, 9H, t-BuC(Ph)₂Si(CH₃)₃), 1.02 (m, 2H, OCH₂CH₂Si(CH₃)₃), 0.01 (s, 9H, OCH₂CH₂-Si(CH₃)₃); ¹³C NMR (CDCl₃) *δ*: 170.4, 170.3, 169.6 (3COCH₃), 135.7, 135.6, 133.0, 132.9, 129.9, 129.8, 129.1, 128.3, 127.8 (ArC), 100.7 (C-1), 73.3, 71.4, 69.3, 67.4, 67.1, 61.2 (C-6), 26.6, 20.7, 20.5, 18.9, 17.8, -1.6 (OCH₂CH₂Si(CH₃)₃); HRMS calcd for C₃₄H₅₂NO₉Si $[M+NH_4]^+$: m/z 646.3411. Found: m/z 646.3414.

1.3. 2-(Trimethylsilyl)ethyl 2,3,4-tri-*O*-acetyl-β-D-galactopyranoside (4)

To a solution of compound **3** (3 g, 4.8 mmol) in dry THF (20 mL) was added 1 M *n*-Bu₄NF in THF (5 mL) and the solution was stirred at 60 °C for 1 h. When TLC (3:1, *n*-hexane/EtOAc) showed complete conversion of the starting material, the solvent was evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ (30 mL) and washed with H₂O (2×30 mL); the organic layer was collected, dried (Na₂SO₄) and evaporated to a syrup.

Purification of the crude product by column chromatography (2:1, n-hexane/EtOAc) afforded compound 4 (1.5 g, 78%) as a colourless syrup. $[\alpha]_{D}^{25}$ +22.0 (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 5.36 (d, 1H, $J_{3,4}$ = 3.0 Hz, H-4), 5.21 (dd, 1H, $J_{1,2} = 8.1$ Hz, $J_{2,3} = 10.2$ Hz, H-2), 5.02 (dd, 1H, $J_{2,3} = 10.2$ Hz, $J_{3,4} = 3.0$ Hz, H-3), 4.43 (d, 1H, $J_{1,2} = 8.1$ Hz, H-1), 3.97 (m, 1H, OCH₂CH₂-Si(CH₃)₃), 3.77 (m, 2H, H-6a, H-6b), 3.67 (m, 1H, H-5), 3.51 (m, 1H, OCH₂CH₂Si(CH₃)₃), 2.08, 2.04, 1.99 (3s, 9H, 3COCH₃), 0.93 (m, 2H, OCH₂CH₂Si(CH₃)₃), 0.01 (s, 9H, OCH₂CH₂Si(CH₃)₃); 13 C NMR (CDCl₃): δ 171.4, 170.9, 169.9 (3COCH₃), 100.8 (C-1), 73.5, 71.6, 69.5, 67.3, 67.1, 60.2 (C-6), 20.7, 20.6, 20.5 (3COCH₃), 17.8 $(OCH_2CH_2Si(CH_3)_3), -1.6 (OCH_2CH_2Si(CH_3)_3);$ HRMS calcd for $C_{17}H_{34}NO_9Si [M+NH_4]^+$: m/z424.2003. Found: m/z 424.2005.

1.4. *p*-Tolyl **2**,**3**-*O*-isopropylidene-**4**-*O*-(**4**-methoxybenzyl)-1-thio-α-L-rhamnopyranoside (7)

To a mixture of compound 5 (2 g, 7.4 mmol) in dry acetone (30 mL), 2,2-dimethoxypropane (1.4 mL, 11.1 mmol) was added followed by HClO₄-silica¹⁵ (50 mg) and the mixture stirred at rt for 2 h. When TLC (1:1, *n*-hexane/EtOAc) showed complete conversion of the starting material, the solution was neutralized with Et₃N and the solvent was evaporated and the residue was re-dissolved in DMF. NaH (530 mg, 11.1 mmol, 50% in mineral oil) was added followed by p-methoxybenzyl chloride (1.3 mL, 9.6 mmol) and stirring continued at rt for 2 h until the reaction was complete (TLC: 2:1, nhexane/EtOAc). The mixture was then diluted with CH_2Cl_2 (50 mL), washed with H_2O (3 × 50 mL). The organic phase was collected, dried (Na₂SO₄) and evaporated. The crude residue was purified by flash chromatography (2:1, *n*-hexane/EtOAc) to give compound **7** (2.7 g, 86%) as colourless syrup. $[\alpha]_D^{25}$ -133.1 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 7.38–6.86 (m, 8H, ArH), 5.68 (s, 1H, H-1), 4.84, 4.60 (2d, AB system, $J = 11.2 \text{ Hz}, CH_2C_6H_4OCH_3), 4.35 (m, 2H, H-2, H-3),$ 4.16 (m, 1H, H-5), 3.81 (s, 3H, CH₂C₆H₄OCH₃), 3.29 (dd, 1H, $J_{3,4} = 7.2$ Hz, $J_{4,5} = 9.9$ Hz, H-4), 2.33 (s, 3H, SC₆H₄CH₃), 1.53, 1.39 (2s, isopropylidene CH₃), 1.23 (d, 3H, $J_{5.6} = 6.2$ Hz, H-6); ¹³C NMR (CDCl₃): δ 159.3, 137.8, 132.5, 130.5, 129.8, 129.6, 113.7 (ArC), 109.4, 84.1 (C-1), 81.1 (C-4), 78.4 (CH2-C6H4-OCH3), 76.6 (C-2), 72.6 (C-3), 66.1 (C-5), 55.2 (CH₂-C₆H₄-OCH₃), 27.9, 26.3 (isopropylidene CH₃), 20.9 (SC₆H₄CH₃), 17.8 (CCH_3) ; HRMS calcd for $C_{24}H_{34}NO_5S$ $[M+NH_4]^+$: m/z 448.2158. Found: m/z 448.2156.

1.5. 2-(Trimethylsilyl)ethyl 2,3-di-*O*-isopropylidene-4-*O*-(4-methoxybenzyl)- α -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-tri-*O*-acetyl- β -D-galactopyranoside (8)

A solution of compound 4(1.2 g, 2.95 mmol), compound 7 (1.65 g, 3.8 mmol) and activated 4 Å molecular sieves

(2.0 g) in dry CH₂Cl₂ (25 mL) was stirred at rt under a nitrogen atmosphere for 3 h. Then NIS (1.1 g, 4.9 mmol) was added followed by HClO₄-silica (50 mg) and the mixture was allowed to stir at rt for 45 min, until TLC (3:1, *n*-hexane/EtOAc) showed complete disappearance of acceptor. The mixture was diluted with CH₂Cl₂ (25 mL) and filtered through Celite. The filtrate was successively washed with $Na_2S_2O_3$ (3 × 50 mL), NaHCO₃ $(2 \times 50 \text{ mL})$ and brine (50 mL). The organic layer was collected, dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography (3:1, n-hexane/ EtOAc) to give 8 (1.7 g, 82%) as a white foam. $\left[\alpha\right]_{D}^{25}$ +16.0 (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 7.25, 6.83 (2d, 4H, CH₂C₆ H_4 OCH₃), 5.37 (d, 1H, $J_{3,4} = 3.3$ Hz, H-4), 5.15 (dd, 1H, $J_{1,2} = 7.8$ Hz, $J_{2,3} = 10.8$ Hz, H-2), 4.96 (dd, 1H, $J_{2,3} = 10.8$ Hz, $J_{3,4} = 3.3$ Hz, H-3), 4.91 (s, 1H, H-1'), 4.74, 4.51 (2d, AB system, CH₂C₆H₄-OCH₃), 4.43 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 4.15 (dd, 1H, $J_{2',3'} = 5.7$ Hz, $J_{3',4'} = 6.9$ Hz, H-3'), 4.05 (d, 1H, $J_{2',3'} =$ 5.7 Hz, H-2'), 3.98 (m, 1H, O-CH₂CH₂Si(CH₃)₃), 3.79 (m, 1H, H-5), 3.74 (s, 3H, CH₂C₆H₄OCH₃), 3.62–3.43 (m, 4H, H-5', H-6^a, H-6b, O-CH₂CH₂Si(CH₃)₃), 3.11 (dd, 1H, $J_{3',4'} = 7.5$ Hz, $J_{4',5'} = 9.9$ Hz, H-4'), 2.08, 2.00, 1.92 (3s, 9H, 3 × COCH₃), 1.44, 1.30 (2s, 6H, isopropylidene CH₃), 1.17 (d, 3H, $J_{5.6} = 6.2$ Hz, CCH₃), 0.89 (m, 2H, O-CH₂CH₂Si(CH₃)₃), -0.03 (s, 9H, Si(CH₃)₃); ¹³C NMR (CDCl₃): δ 170.2 (2), 169.3 (3 × COCH₃), 159.1, 130.5, 129.5, 113.5 (ArC), 109.0, 100.6 (C-1), 97.4 (C-1'), 80.1, 78.3, 75.6, 72.2, 71.6, 71.1, 68.9, 67.3, 65.0 (OCH₂CH₂Si(CH₃)₃), 64.7 (C-6), 55.0 (CH₂C₆H₄-OCH₃), 27.7, 26.0 (isopropylidene CH₃), 20.5, 20.4, 20.3 $(3 \times COCH_3)$, 17.7 $(O-CH_2CH_2Si(CH_3)_3)$, 17.6 $(C-CH_3)$, -1.7 (Si(CH₃)₃); HRMS calcd for C₃₄H₅₆- $NO_{14}Si [M+NH_4]^+: m/z 730.3470.$ Found: m/z 730.3472.

1.6. 2-(Trimethylsilyl)ethyl 2,3-di-O-isopropylidene- α -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-acetyl- β -D-galacto-pyranoside (9)

To a solution of compound 8 (1.5 g, 2.1 mmol) in CH₃CN and H₂O (9:1, 30 mL), was added CAN (2.3 g, 4.2 mmol) and the mixture was stirred at rt for 30 min. When TLC (2:1, n-hexane/EtOAc) showed complete conversion of the starting material to a slower running component, the mixture was diluted with CH₂Cl₂ (50 mL) and washed with satd aq NaHCO₃ (2 \times 50 mL) and brine $(2 \times 50 \text{ mL})$. The organic layer was collected, dried (Na₂SO₄) and evaporated. The syrupy residue was purified by flash chromatography (2:1, *n*-hexane/EtOAc) to afford pure compound 9 (1.1 g, 87%) as a colourless glass. $[\alpha]_D^{25}$ +13.0 (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃): δ 5.38 (d, 1H, $J_{3,4} = 3.3$ Hz, H-4), 5.14 (dd, 1H, $J_{1,2} = 7.8$ Hz, $J_{2,3} = 10.8$ Hz, H-2), 4.98 (dd, 1H, $J_{2,3} = 10.8$ Hz, $J_{3,4} = 3.3$ Hz, H-3), 4.94 (s, 1H, H-1'), 4.45 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 4.04 (d, 1H, H-2'), 3.98 (m, 2H, H-3', O-CH₂CH₂Si(CH₃)₃), 3.82 (m, 1H, H-5), 3.67–3.37 (m, 4H, H-5', H-6a, H-6b, O– $CH_2CH_2Si(CH_3)_3$), 3.31 (m, 1H, H-4'), 2.10, 2.00, 1.92 (3s, 9H, $3 \times COCH_3$), 1.45, 1.28 (2s, 6H, isopropylidene CH₃), 1.20 (d, 3H, $J_{5',6'} = 6.2$ Hz, CCH₃), 0.89 (m, 2H, O– $CH_2CH_2Si(CH_3)_3$), -0.03 (s, 9H, Si(CH₃)₃); ¹³C NMR (CDCl₃): δ 170.4, 170.3, 169.4 ($3 \times COCH_3$), 109.4, 100.7 (C-1), 97.5 (C-1'), 78.2, 75.5, 74.2, 71.5, 71.2, 69.0, 67.4, 65.9 (OCH₂CH₂-Si(CH₃)₃), 64.9 (C-6), 27.8, 26.0 (isopropylidene CH₃), 20.6, 20.5, 20.3 ($3 \times COCH_3$), 17.7 (O–CH₂CH₂-Si(CH₃)₃), 17.1 (C–CH₃), -1.7 (Si(CH₃)₃); HRMS calcd for C₂₆H₄₈NO₁₃Si [M+NH₄]⁺: m/z 610.2895. Found: m/z 610.2897.

1.7. 2-(Trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl-(1 \rightarrow 4)-2,3-di-O-isopropylidene- α -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-acetyl- β -D-galactopyranoside (11)

To a solution of disaccharide acceptor 9 (1.0 g, 1.7 mmol) and ethyl 2,3,4,6-tetra-O-acetyl-1-thio-β-Dglucopyranoside 10 (1.0 g, 2.2 mmol) in dry CH₂Cl₂ (20 mL) was added activated powdered 4 Å molecular sieves (2.0 g) and the mixture was stirred under nitrogen for 2 h. NIS (640 mg, 2.9 mmol) was added, followed by HClO₄-silica (50 mg) and stirring was continued for 30 min until TLC (1:1, n-hexane/EtOAc) showed complete disappearance of the acceptor. The mixture was diluted with CH₂Cl₂ (20 mL) and filtered through a Celite pad. The filtrate was washed successively with aq $Na_2S_2O_3$ (2 × 50 mL), satd aq NaHCO₃ (2 × 50 mL) and brine (50 mL). The organic layer was separated, dried (Na₂SO₄) and evaporated to a syrup. The crude product was purified by column chromatography (1:1, n-hexane/EtOAc) to afford pure 11 (1.4 g, 89%) as a white foam. $[\alpha]_{D}^{25}$ +21.0 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 5.36 (d, 1H, $J_{3,4} = 3.6$ Hz, H-4), 5.15 (t, 1H, $J_{2'',3''} = J_{3'',4''} = 9.3$ Hz, H-3"), 5.12 (dd, 1H, $J_{1,2} =$ 8.1 Hz, $J_{2,3} = 10.5$ Hz, H-2), 4.96 (dd, 1H, $J_{1'',2''} =$ 7.8 Hz, $J_{2'',3''} = 9.3$ Hz, H-2"), 4.93 (d, 1H, $J_{1'',2''} =$ 7.8 Hz, H-1"), 4.92 (dd, 1H, $J_{2,3} = 10.5$ Hz, $J_{3,4} =$ 3.6 Hz, H-3), 4.91 (s, 1H, H-1'), 4.85 (dd, 1H, $J_{3'',4''} = J_{4'',5''} = 9.3$ Hz, H-4''), 4.42 (d, 1H, $J_{1,2} = 8.1$ Hz, H-1), 4.12 (dd, 1H, $J_{5'',6a''} = 5.4$ Hz, $J_{6a'',6b''} = 12.3$ Hz, H-6a"), 4.05 (dd, 1H, $J_{5",6b''} = 2.4$ Hz, $J_{6a'',6b''} = 12.3$ Hz, H-6b"), 3.98-3.87 (m, 3H, H-2', H-3', O-CH₂CH₂- $Si(CH_3)_3$, 3.80 (m, 1H, H-5), 3.63–3.43 (m, 5H, H-5', H-5", H-6a, H-6b, O-CH₂CH₂Si(CH₃)₃), 3.31 (m, 1H, H-4'), 2.04, 2.03, 2.02, 2.01, 2.00, 1.98, 1.96 (7s, 21H, $7 \times COCH_3$), 1.43, 1.25 (2s, 6H, isopropylidene CH₃), 1.14 (d, 3H, $J_{5',6'} = 6.2$ Hz, CCH₃), 0.86 (m, 2H, O- $CH_2CH_2Si(CH_3)_3$, -0.06 (s, 9H, $Si(CH_3)_3$); ¹³C NMR (CDCl₃): 170.5, 170.2 (2), 169.6, 169.4 (2), 169.3 (7COCH₃), 109.3, 100.6 (C-1), 98.9 (C-1"), 96.9 (C-1'), 78.6, 77.6, 75.5, 72.8, 71.6, 71.1, 68.9, 68.7, 67.3, 66.9, 64.2, 63.9 (C-6), 62.1 (C-6"), 27.7, 26.1 (isopropylidene CH₃), 20.4 (2), 20.3 (2), 20.2, 20.1, 20.0 (7COCH₃), 17.7 (O-CH₂CH₂Si(CH₃)₃), 17.1 (C-CH₃), -1.7 (Si(CH₃)₃); HRMS calcd for C₄₀H₆₆NO₂₂Si $[M+NH_4]^+$: m/z 940.3846. Found: m/z 940.3845.

1.8. 2-(Trimethylsilyl)ethyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 6)-2,3,4-tri-O-acetyl- β -D-galactopyranoside (12)

Compound 11 (1.1 g, 1.2 mmol) was dissolved in CH₃OH (20 mL), HClO₄-silica (200 mg) was added and the mixture was stirred at rt for 2 h until TLC (1:1, n-hexane/EtOAc) showed complete conversion of the starting material to a slower running component. The mixture was filtered through Celite and the solvent was evaporated to give compound 12 (950 mg, 91%) as a white foam. $[\alpha]_{D}^{25} + 27.0$ (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃): δ 5.46 (d, 1H, $J_{3,4} = 2.4$ Hz, H-4), 5.32 (t, 1H, $J_{2'',3''} = J_{3'',4''} = 9.2$ Hz, H-3"), 5.19 (dd, 1H, $J_{1,2} =$ 8.0 Hz, $J_{2.3} = 10.4$ Hz, H-2), 5.07 (dd, 1H, $J_{1'',2''} =$ $J_{2'',3''} = 9.2$ Hz, H-2"), 4.97 (dd, 1H, $J_{2,3} = 10.4$ Hz, $J_{3,4} = 2.4$ Hz, H-3), 4.95 (d, 1H, $J_{1'',2''} = 9.2$ Hz, H-1''), 4.90 (dd, 1H, $J_{3'',4''} = J_{4'',5''} = 9.2$ Hz, H-4"), 4.76 (s, 1H, H-1'), 4.48 (d, 1H, $J_{1,2} = 8.0$ Hz, H-1), 4.25 (dd, 1H, $J_{5''.6a''} = 2.4$ Hz, $J_{6a''.6b''} = 12.3$ Hz, H-6a''), 4.15 (dd, 1H, $J_{5'',6b''} = 5.4$ Hz, $J_{6a'',6b''} = 12.3$ Hz, H-6b''), 4.01-3.79 (m, 5H, H-2', H-3', H-6a, H-6b, O-CH₂CH₂-Si(CH₃)₃), 3.70 (m, 1H, H-5), 3.61–3.51 (m, 3H, H-5', H-5", O-CH₂CH₂Si(CH₃)₃), 3.43 (m, 1H, H-4'), 3.17 (br d, 1H, OH), 2.76 (br s, 1H, OH), 2.16, 2.08, 2.06, 2.05, 2.02, 1.98, 1.96 (7s, 21H, $7 \times COCH_3$), 1.23 (d, 3H, $J_{5',6'} = 6.2$ Hz, CCH₃), 0.93 (m, 2H, O-CH₂CH₂- $Si(CH_3)_3$, -0.02 (s, 9H, $Si(CH_3)_3$); ¹³C NMR (CDCl₃): δ 170.9, 170.8 (2), 170.5, 170.3, 169.5, 169.4 (7COCH₃), 100.9 (C-1), 99.4 (C-1"), 98.4 (C-1'), 80.4, 72.8, 71.6, 71.5, 71.4, 70.9, 69.4, 68.9, 68.5, 67.5, 67.0, 65.6, 64.2 (C-6), 61.8 (C-6"), 20.4 (2), 20.3 (2), 20.2, 20.1, 20.0 (7COCH₃), 17.8 (O-CH₂CH₂Si(CH₃)₃), 17.1 (C-CH₃), -1.6 (Si(CH₃)₃); HRMS calcd for C₃₇H₆₂NO₂₂Si $[M+NH_4]^+$: m/z 900.3533. Found: m/z 900.3535.

1.9. 2-(Trimethylsilyl)ethyl β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-galactopyranoside (1)

To a methanolic solution of **12** (900 mg, 1.0 mmol), methanolic NaOCH₃ (0.5M, 0.5 mL) was added and the solution was stirred at rt for 2 h. The solution was neutralized with DOWEX 50W H⁺ resin and filtered through cotton. The solvent was evaporated under reduced pressure to afford the target trisaccharide **1** (570 mg, 95%) as a white amorphous powder. $[\alpha]_D^{25}$ +12.0 (*c* 1.0, CH₃OH); ¹H NMR (CD₃OD): δ 4.73 (s, 1H, H-1'), 4.56 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 4.22 (d, 1H, $J_{1'',2''} = 6.3$ Hz, H-1''), 3.96 (m, 1H, O–CH₂CH₂-Si(CH₃)₃), 3.86–3.17 (m, 17H, H-2, H-2', H-2'', H-3, H-3', H-3'', H-4, H-4', H-4'', H-5, H-5', H-5'', H-5'', H-6a, H-6b, H-6a', H-6b", O–C H_2 CH₂Si(CH₃)₃), 1.33 (d, 3H, $J_{5',6'} = 6.2$ Hz, CC H_3), 0.96 (m, 2H, O–CH₂C H_2 -Si(CH₃)₃), 0.02 (s, 9H, Si(C H_3)₃); ¹³C NMR (CD₃OD): δ 105.8 (C-1), 104.4 (C-1"), 102.1 (C-1'), 83.7, 78.2, 78.0, 76.1, 75.0, 74.9, 72.5, 72.4, 72.1, 71.6, 70.4, 68.5, 68.0, 67.9, 62.8, 19.1 (O–CH₂CH₂Si(CH₃)₃), 18.2 (C– CH₃), -1.4 (Si(CH₃)₃); HRMS calcd for C₂₃H₄₈NO₁₅Si [M+NH₄]⁺: m/z 606.2793. Found: m/z 606.2794.

Acknowledgements

We thank Dr. Alan Haines for valuable discussions during the course of this work. We gratefully acknowledge the EPSRC Mass Spectrometry Service Centre, University of Wales, Swansea, for invaluable support.

Supplementary data

¹H and ¹³C NMR spectra of compounds **1**, **3**, **4**, **6**, **7**, **8**, **9**, **11** and **12**. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.carres.2006.03.019.

References

- Bohm, B. A. Introduction to Flavonoids; Harwood Academic Press: Amsterdam, 1998.
- Harborne, J. B.; Baxter, H. In *The Handbook of Natural Flavonoids*; John Wiley & Sons: Chichester, 1999; Vol. 1.
- Kapoor, L. D. CRC Handbook of Ayurvedic Medicinal Plants; CRC: Boca Raton, FL, 1990; pp 200–201.
- 4. Porchezhian, E.; Dobriyal, R. M. *Pharmazie* **2003**, *58*, 5–9. 5. Liu, X.; Ye, W.; Yu, B.; Zhao, S.; Wu, H.; Che, C.
- Carbohydr. Res. 2004, 339, 891–895.
- Jansson, K.; Ahlfors, S.; Frejd, T.; Kihlberg, J.; Magnusson, G. J. Org. Chem. 1988, 53, 5629–5647.
- Limberg, G.; Thiem, J. Carbohydr. Res. 1995, 275, 107– 115.
- Mukhopadhyay, B.; Kartha, K. P. R.; Russell, D. A.; Field, R. A. J. Org. Chem. 2004, 69, 7758–7760.
- Mukhopadhyay, B.; Russell, D. A.; Field, R. A. Carbohydr. Res. 2005, 340, 1075–1080.
- Mukhopadhyay, B.; Collet, B.; Field, R. A. Tetrahedron Lett. 2005, 46, 5923–5925.
- (a) Johansson, R.; Samuelson, B. J. Chem. Soc., Perkin Trans. 1 1984, 2371; (b) Classon, B.; Garegg, P. J.; Samuelsson, B. Acta. Chem. Scand., Ser. B 1984, 38, 419.
- 12. Agarwal, A.; Vankar, Y. D. Carbohydr. Res. 2005, 340, 1661–1667.
- 13. Zemplén, G. Ber. Dtsch. Chem. Ges. 1926, 59, 1254-1259.
- 14. Perrin, D. D.; Amarego, W. L.; Perrin, D. R. Purification of Laboratory Chemicals; Pergamon: London, 1996.
- 15. Preparation of $HClO_4$ -silica: Immobilized perchloric acid on silica was prepared by adding commercially available $HClO_4$ (0.3 mmol, as a 70% aqueous solution) to a slurry of silica gel (5 g, 200 mesh) in Et₂O (15 mL) and the solvents were removed under reduced pressure. The resulting free flowing powder was kept at 110 °C for 2 h and used directly in reactions.