Article

One- and Two-Photon Activated Cysteine Persulfide Donors for Biological Targeting

Amrita Chaudhuri, Yarra Venkatesh, Joyjyoti Das, Moumita Gangopadhyay, Tapas K Maiti, and N. D. Pradeep Singh

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b01224 • Publication Date (Web): 21 Aug 2019 Downloaded from pubs.acs.org on August 24, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

One- and Two-Photon Activated Cysteine Persulfide Donors for Biological Targeting

Amrita Chaudhuri,^{†§} Yarra Venkatesh,^{†§} Joyjyoti Das,[‡] Moumita Gangopadhyay,[†] Tapas K. Maiti[‡] and N. D. Pradeep Singh^{*†}

[†]Department of Chemistry, [‡]Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302, West Bengal, India.

ABSTRACT: Persulfides (RSSH) have been considered as potential signaling compounds similar to the H_2S in "S-persulfidation", a sulfur-mediated redox cycle. The research of this sulfur-mediated species is hindered due to the lack of efficient persulfide donors. In this current study, we have developed a one- and two-photon activated persulfide donors based on *o*nitrobenzyl (ONB) phototrigger, which releases the biologically active persulfide (*N*-acetyl *L*cysteine persulfide, NAC–SSH) in a spatiotemporal manner. Next, we have demonstrated the detection of persulfide release both qualitatively and quantitatively using the well-known "turn on" fluorescence probe i.e., monobromobimane and the trapping agent i.e., 2,4dinitrofluorobenzene, respectively. Furthermore, we examined the cytotoxicity of synthesized persulfide donors on HeLa cells and the cytoprotective ability in the highly oxidizing cellular environment.

INTRODUCTION:

Hydrogen sulfide (H₂S) is an important small gaseous signaling molecule that has been recently explored as a novel therapeutic agent for the treatment of cancer, inflammation, metabolic syndrome, obesity, cardiovascular disease, and neurodegenerative disorders.¹ Looking into the therapeutic prospect and potential of H₂S, several research groups started understanding mechanisms of action that underlie the effects of H₂S.² Since H₂S is endogenously produced by various mammalian tissues at nanomolar concentrations, it is difficult to fully elucidate the sulfide-based signaling mechanism.³ In order to advance the field of sulfur biology, it is important to devise chemical tools that facilitate precise exogenous production of various specific sulfur species to understand the role of these sulfur species at the molecular level.

To enable the exogenous production of various specific sulfur species, several research groups developed different types of H₂S-releasing compounds based on different triggering mechanisms (e.g., water, pH, thiols, enzymes, and light).⁴⁻¹³ There are three main ways in which H₂S exerts its biological effects: (i) metal center interactions, (ii) reactive oxygen and nitrogen species, and (iii) persulfidation. Among these, persulfidation has been shown to be an important signaling pathway involving H₂S.¹⁴ Protein persulfidation (sometimes referred to as S-sulfhydration) is an oxidative process, which involves the post-translational modification of cysteine to cysteine persulfide (thiol -SH is converted to a perthiol -SSH). Recent investigation has shown that much of the biological activity associated with H₂S can be attributed to persulfides and the closely related polysulfides.¹⁵ It has even been suggested that H₂S could only be a degradation product

of persulfides.^{16,17} Furthermore, persulfidation modulates the biological activity of proteins due to the decrease in pKa and increase in nucleophilicity of perthiols relative to thiols. In addition, other findings also support that reactive sulfur species (RSS) such as sulfane sulfurs or polysulfides are more effective in S-sulfhydration than H₂S.¹⁸ Hence, there is a clear need for the investigation of persulfide chemistry in the sulfide-based signaling mechanisms. A major obstacle in the study of the biological roles of persulfides is a lack of chemical tools capable of generating well-defined persulfide species in response to specific biologically relevant triggers.

a) An Esterase-Sensitive Persulfide Donor (Previous work)

b) Reactive Oxygen Species Responsive Persulfide Donor (Previous work)

Figure 1. (a) An esterase-sensitive persulfide donor (b) H₂O₂ responsive persulfide donor and
(c) Designed light activated persulfide donor based on *o*-nitrobenzyl phototrigger.

To date, very few donors have been developed for the release of persulfide.¹⁹ Galardon and co-workers developed a pH-triggered persulfide analog of the nitrosothiol (SNAP).²⁰ Of late, Wang and co-workers developed esterase-triggered persulfide prodrugs capable of releasing either a persulfide or hydrogen persulfide (H_2S_2) (**Figure 1a**).²¹⁻²³ Recently, Xian group also reported a class of pH- and fluoride-dependent persulfide donors.²⁴ In addition, Matson and co-workers also developed ROS-responsive (ROS: reactive oxygen species), self-immolative persulfide donor (**Figure 1b**).²⁵ The main limitation of the abovementioned persulfide donors is their inability to provide temporal control over the persulfide release.

Light-triggered persulfide generation from a photochemically active chromophore will be a suitable activation strategy because it will provide precise spatial and temporal control over the persulfide release. However, to the best of our knowledge, there is no report in the literature for the release of persulfide using an external stimulus light. Herein, we designed for the first time one- and two-photon activated persulfide donors based on *o*-nitrobenzyl (ONB) phototrigger. To design photochemically active persulfide donor, *o*-nitrobenzyl (ONB) phototrigger was chosen for the following reasons (i) ONB is more widely reported as a phototrigger for caging several biologically active compounds for its fast and clean photorelease ability. (ii) It can be photolyzed upon both one- and two-photon excitation (1PE and 2PE) (**Figure 1c**).^{26,27} Two-photon uncaging provides finer spatial resolution and less photo-toxicity with a deeper tissue penetration.²⁸

RESULTS AND DISCUSSION:

Here, we have synthesized two persulfide donors based on *o*-nitrobenzyl phototrigger, namely (i) N-acetyl-S-((4,5-dimethoxy-2-nitrobenzyl)thio)cysteine (**5a**) and (ii) N-acetyl-S-((1-(4,5-dimethoxy-2-nitrophenyl)ethyl)thio)cysteine (**5b**). Next, we also synthesized N-acetyl-L-

(benzylthio)cysteine (7) lacking the ONB group (Scheme 1). The compound 5a is well known for its two-photon uncaging efficiency and the significance of developing 5b is that it undergoes rapid and clean photolysis with high quantum efficiency, which will be suitable for the biomedical applications, compared to 5a under one photon excitation.²⁶ In the present study, we choose *N*-acetyl *L*-cysteine (NAC) due to its biocompatibility and antioxidant properties to protect cells in highly oxidative environments.²⁵

Scheme 1. Synthesis of persulfide donors 5a-b and 7

In order to synthesize light activated persulfide donors **5a-b**, first, compounds **1a-b** were prepared according to literature procedures.^{27,29} Then, compounds **1a-b** were treated with PBr₃, followed by reaction with potassium thioacetate afforded thioacetates **2a-b**. Deprotection of acetyl group was then carried out by refluxing compounds **2a-b** in the presence of 2N HCl to give thiols **3a-b**. Next, the treatment of **3a-b** with *N*-Acetylcysteine pyridine disulfide (NAC-**pyDS, 4**) gave our target persulfide donors **5a-b**. Finally, the compound **7** was obtained by the

treatment of benzyl mercaptan (6) with NAC-pyDS (4). The product obtained in each step of the synthesis was characterized by ¹H NMR, ¹³C NMR, and mass spectrometry (Fig. S1–S17 in the Supporting Information (SI)) and we also provided the purity information of final compounds (5a, 5b and 7) by RP-HPLC (Fig. S18–S20).

The photophysical properties of persulfide donors **5a-b** (10 μ M) were investigated in ACN/PBS buffer (3:7 v/v) (**Figure 2**). The absorption spectrum of **5a-b** showed a broad absorption band in the wavelength range of 300-430 nm.

Figure 2. The absorption spectrum of (a) 5a and (b) 5b in ACN/PBS buffer (3:7 v/v) system. Next, the hydrolytic stability of 5a-b and 7 (100 μM) were tested in ACN/PBS (3:7 v/v, pH = 7.4) containing 10% fetal bovine serum and also in the presence of cellular thiols (1 mM) (e.g; NAC and GSH) separately for 10 days under dark conditions. The aliquots collected after 10 days were analyzed by HPLC and the results showed that the decomposition of the donors was less than 20% (average of three runs) (Figure S21 in SI). Therefore, our designed persulfide donors are sufficiently stable and suitable for biological applications.

To analyze the photouncaging of persufide from **5a-b**, a solution of **5a** and **5b** (100 μ M in ACN: PBS buffer (3:7 v/v); pH=7.4) was irradiated by one-photon excitation (1PE) at $\lambda \ge 365$

nm, individually. The progress of photodecomposition was monitored by reverse phase (RP)-HPLC (Figure S22 in SI). As a proof of concept, we have represented the photolysis of 5b by 1 H NMR study in CD₃OD/D₂O (1:1 v/v) solvent system (Figure 3). At 0 min, the ¹H NMR spectrum of **5b** showed two characteristic signals of aromatic protons at 7.55 ppm (doublet) and 7.19 ppm (doublet). With the gradual increase in an irradiation time, a decrease in the intensity of the signals at 7.55 and 7.19 ppm was observed, indicating the photodecomposition of **5b**. On the other hand, four new aromatic signals were appeared, corresponding to the photoproduct, 4,5-dimethoxy-2-nitrosoacetophenone (at 7.68 and 7.22 ppm) and might be an adduct, formed between photoproduct (reactive nitroso acetophenone, 13b)³⁰ and released NAC-SSH (at 7.06 and 6.36 ppm). With the progress of irradiation time, a new signal at 2.12 ppm appeared with an increase in the intensity, represents the $-CH_3$ proton of free NAC-SSH or NAC (as persulfide species are not enough stable) (see full ¹H NMR spectra Figure S23 in SI). In addition, the ¹H NMR spectra indicated the formation of few minor by-products, possibly due to the further decomposition of 4,5-dimethoxy-2-nitrosoacetophenone. The major photoproducts obtained (characterized by NMR study) from **5a** and **5b** were also characterized using LC-MS analysis by immediate injection of the photolysis mixture (Figures S24-S27 in SI).

Figure 3. ¹H NMR study of **5b** (CD₃OD/D₂O 1:1 v/v) during photolysis (0-10 min). Irradiation wavelength of $\lambda \ge 365$ nm.

From the HPLC data, the photochemical quantum yields (Φ_p) for the decomposition of **5a** and **5b** (ACN: PBS buffer; 3:7 v/v) were calculated using potassium ferrioxalate as an actinometer³¹ and they found to be 0.07 and 0.36, respectively.

To explore the two-photon uncaging ability of our persulfide donor **5a**, we have measured the two-photon uncaging cross-section (δ_u) of **5a** by comparing the photolysis rate of **5a** with that of **DMNB-OAc** (4,5-dimethoxy-2-nitrobenzyl acetate) as a reference ($\delta_u = 0.035$ GM at 730 nm).³² The individual solutions of **5a** and **DMNB-OAc** (100 µM in ACN/PBS buffer, 3:7 v/v, 100 µL), were irradiated by varying the time (0–30 min) with a 730 nm Ti: sapphire laser (pulse width 100 fs, 80 MHz) emitting at an average of 300 mW. The progress of photolysis was monitored by HPLC and the first-order decay constants were calculated. Then, the value of δ_u (where $\delta_u = \delta_a \times \Phi_u$) was calculated using the formula $\delta_a \Phi_u$ (**5a**) = $\delta_a \Phi_u$ (reference) × k_{obs} (**5a**)/ k_{obs} (reference) and the two-photon uncaging cross-section for **5a** was found to be ~ 0.033 GM (See **Table S1** in **SI**).

Now, our main focus was to detect and quantify the release of NAC-SSH from **5a** and **5b**. For this purpose, we used monobromobimane (**mBB**) and 2, 4-dinitrofluorobenzene (**DNFB**) to detect the released persulfide by qualitative and quantitative fashion, respectively, as shown in **Scheme 2**.

NO₂

ACN/PBS (3:7 v/v)

pH = 7.4

Scheme 2. Quantitative and Qualitative Detection of released NAC-SSH

O₂N

NO₂

соон

Figure 4. (a) Qualitative detection of persulfide release by **mBB**. Emission spectra recorded at a different interval of irradiation time (0-10 min) after incubation of photolysis mixture of **5b** (100 μ M) with mBB and (b) % of fluorescence enhancement for **5a** (blue dots) and **5b** (red dots) by 1PE at different time intervals after incubation with mBB. Excitation wavelength: 380 nm. Values are presented as mean ± standard deviation (SD).

Next, to detect the persulfide release quantitatively, we carried out the photolysis of **5a** and **5b** (100 μ M, ACN/PBS buffer (3:7 v/v) at pH= 7.4) in the presence of different concentration of **DNFB** [100 μ M, 200 μ M, 500 μ M, 1 mM and 5 mM, ACN/PBS buffer (3:7 v/v, at pH= 7.4)] for 55 min and 20 min, respectively. The photolysis mixture was further incubated for 30 min at 37 °C and it was then analyzed by RP-HPLC to detect NAC-SSH as in the form of DNB-SS-NAC (**Figure S32** in **SI**). To quantify the amount of persulfide release, the modal compound **DNB-SS-NAC** (9) was synthesized by reacting DNFB with NaSH, followed by the treatment of **NAC-pyDS** (4) (Scheme 3, Figure S31 in SI).

Page 11 of 29

From the HPLC data, the generation of DNB-SS-NAC was quantified as $57 \pm 3 \mu M$ and $59 \pm 4 \mu M$ from **5a** and **5b**, respectively at 5 mM DNFB (**Figure 5** and **Figure S33**). The formation of **DNB-SS-NAC** after photolysis was further confirmed by mass spectroscopy (**Figure S34** in **SI**). To confirm the persulfide release was due to photocleavage of the ONB protecting group, control experiments were performed using compound 7. As shown in **Figure 5 & S33c**, the irradiation ($\lambda \ge 365 \text{ nm}$) of compound 7 (100 μ M) in ACN/PBS buffer (3:7 v/v, at pH= 7.4) solution in the presence of DNFB was incapable to generate DNB-SS-NAC. Henceforth, the compound **7**, which lacks the ONB group does not release persulfide upon photolysis, confirmed that the carbon-disulfide linkage is not photodegraded under light irradiation.

Figure 5. Time-dependent quantification of persulfide release from 5a and 5b (100 μ M each) was determined in the form of DNB-SS-NAC. The DNFB concentration is 5 mM. Values are presented as mean \pm SD.

Furthermore, to show the precise control over the persulfide release from **5a** and **5b** (100 μ M) by external stimuli light, we monitored the formation of **DNB-SS-NAC** (in presence of 100 μ M DNFB) under light and dark conditions periodically, respectively. The HPLC data clearly indicated that only external stimulus light induces the release of persulfide (**Figure 6**).

Figure 6: Progress of the formation of DNB-SS-NAC from persulfide donors **5a** and **5b** under light and dark conditions (ON indicates the start of light irradiation and OFF indicates the end of light irradiation).

Based on the literature,²⁶ we proposed a possible photorelease mechanism for NAC-SSH from **5a-b** (Scheme 4) and it is known to proceeds through the Norrish-type II reaction pathway. After absorption of a photon by *o*-nitro benzyl group, it gets excited to singlet state (S₁) and then undergoes rapid intersystem crossing (ISC) to its triplet excited state. In the triplet excited state, the oxygen atom of the nitro group abstracts a proton from the methylene carbon in the γ -H position, resulting in intramolecular electron redistribution and formation of the *aci*-nitro

tautomer **11**. The *aci*-nitro intermediate then cyclises to form benzisoxazoline intermediate **12**. Thereafter, subsequent decomposition of the resonance stabilized five-membered ring **12** rapidly generates NAC-SSH and photoproducts (**13a-b**).

It has been found from the literature studies that in the case of the ONB-type uncaging process, the released photoproduct **13** is known to undergo a "self-interaction" with the released thiol-type species and form a substantial amount of the adduct. This type of undesirable product formed between **13** and released NAC-SSH can reduce the yield of released persulfide, but not the rate of release ^{30c}

Scheme 4. Proposed photorelease mechanism for persulfide from ONB phototrigger

Further, to examine the rate and efficiency of persulfide release under biological environment, we carried out the photolysis experiment in PBS buffer solution containing 5% DMSO and no significant difference in persulfide release profile was observed compared to ACN/PBS buffer (3:7 v/v) solution (**Table S2**).

To investigate the cytotoxicity of persulfide donors **5a**, **5b** and compound **7**, we carried out the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using two set of experiments: i) persulfide donors incubated in HeLa cells without irradiation; ii) persulfide donors incubated in HeLa cells and subjected to the irradiation (**Figure 7**). From the MTT assay, we have found that there is no evidence for inhibition of cell proliferation by **5a**, **5b** and **7** up to a concentration of 200 μ M before and after photolysis. Therefore, *in vitro* cytotoxicity studies showed that persulfide donors **5a-b** did not generate substantial toxicity at concentrations up to 200 uM under the studied experimental conditions.

Figure 7: Cell viability assay of 5a, 5b and 7 on the HeLa cell line: (a) before and (b) after photolysis. Values are presented as mean \pm SD from three independent experiments with triplicates per experiment.

The persulfide was found to be persuasive to exhibit the cytoprotective effects in a highly oxidative cellular environment. In this regard, we used persulfide donors **5a-b** to rescue the cells from the highly oxidizing cellular environment. First, we treated the HeLa cells with 200 μ M of H₂O₂ and found that cell viability was reduced by ~ 50% compared to the cell line without H₂O₂ treatment. Next, the cells were incubated with persulfide donors **5a-b** (200 μ M) in the presence

of 200 μ M of H₂O₂ and then photolysis was carried out. From the MTT assay, we observed that the cell viability increased with increasing irradiation time and ~ 68% and ~ 71% cell viability was found for **5a** and **5b** after photolysis, respectively (**Figure 8**). Thus, we envisioned that the persulfide donors **5a** and **5b** are effective in rescuing cells under oxidative stress.²⁰ In addition, HeLa cells were also treated with different thiols for e.g; GSH, NAC, HCys, and Na₂S prior to the addition of H₂O₂ (**Figure S35**). The cell viability assay demonstrated that NAC-SSH was comparatively effective in defending cells from the highly oxidative environment than the studied thiols and H₂S. On the other hand, we also carried out the cell viability assay of compound **7** under the above experimental conditions, and the results showed that compound **7** was incapable to defend cells from the oxidising environment because compound **7** (lacks the nitro group) does not release NAC-SSH under light irradiation (see **Figure S36** in the **SI**).

Additionally, to validate our results, a DCFDA staining experiment was also performed using HeLa cells to realize intracellular ROS generation (oxidative stress) by H_2O_2 and reduction of ROS by NAC-SSH. Initially, DCFDA is nonfluorescent in nature. Addition of H_2O_2 to the HeLa cells in the presence of DCFDA produces an intense green color fluorescence, which can be attributed to the formation dichloro fluorescein (DCF) due to the ROS generation. On the other hand, irradiation of the persulfide donor **5b** in the presence of H_2O_2 for 10 min and subsequent addition of DCFDA resulted in relatively less intense green color fluorescence, clearly indicating that the cysteine persulfide, released from donor **5b** has the cytoprotective effects in the highly oxidative environment (**Figure S37** in the **SI**).

Figure 8. Cell viability assay of (**a**) **5a** and (**b**) **5b** (200 μ M) before and after irradiation in presence of H₂O₂ (200 μ M; to generate highly oxidative environment on HeLa cell line). Cell viability was evaluated by MTT assay. Data represent the mean (± standard deviation, SD) of three independent experiments; each performed in triplicates, and is presented relative to control. **Error bars** indicate SDs.* significant differences between groups at the level of *p*<0.05.

In summary, we have synthesized photoactivated persulfide donors **5a** and **5b**, which release persulfide NAC-SSH spatiotemporally under one- and two-photon excitation. Next, the photochemical properties of the persulfide donors under physiological conditions were followed by RP-HPLC, ¹H NMR, and MS analysis. Furthermore, we detected the persulfide release both qualitatively and quantitatively using the well-known "turn on" fluorescence probe i.e., monobromobimane and the trapping agent 2,4-dinitrofluorobenzene, respectively. Finally, we demonstrated the cytotoxic effect and the cytoprotective ability of persulfide donors in the highly oxidative cellular environment within the HeLa cells. We intend that the current light-activated

persulfide donors will help to understand the persulfide biology to a greater extent by providing insight into sulfur redox cycles and sulfur-mediated cell signaling.

EXPERIMENTAL SECTION:

1. General Information: All commercially available anhydrous solvents dimethylformamide (DMF), dichloromethane (DCM), petroleum ether (PE) and ethyl acetate (EtOAc) and other chemicals were used without further purification. Acetonitrile and dichloromethane were distilled from CaH₂ before use. NMR spectra were recorded on a 600 and 400 MHz instrument. ¹H NMR chemical shifts were referenced to the tetramethylsilane signal (0 ppm), ¹³C NMR chemical shifts were referenced to the solvent resonance (77.23 ppm, Chloroform-d (CDCl₃) and 39.97 ppm, DMSO-d₆). Chemical shifts (δ) are reported in ppm, and spin-spin coupling constants (J) are given in Hz. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet. UV/vis absorption spectra were recorded on a Shimadzu UV-2450 UV/vis spectrophotometer and fluorescence spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer. High-resolution mass spectra (HRMS) were recorded on ESI-TOF (electrospray ionization-time-of-flight). Photolysis was carried out using a 125 W medium pressure mercury lamp. RP-HPLC was taken using mobile phase acetonitrile/water (1:1), at a flow rate of 1 mL /min (detection: UV 310 nm). Chromatographic purification was done with 60–120 mesh silica gel. For reaction monitoring, precoated silica gel 60 F254 TLC sheets were used. HRMS spectra were recorded by electron spray ionization (ESI) method on a Q-TOF Micro with lock spray source (High Resolution Q-Tof Mass).

EXPERIMENTAL PROCEDURE AND SPECTROSCOPIC DATA:

(4,5-dimethoxy-2-nitrophenyl)methanol (1a)²⁷: Light yellow solid (0.28 g, 93%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (s, 1H), 7.18 (s, 1H), 4.96 (d, *J* = 5.3 Hz, 2H), 4.01 (s, 3H), 3.96 (s, 3H), 2.63 (t, *J* = 6.0 Hz, 1H). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 153.9, 147.9, 139.7, 132.3, 111.0, 108.1, 62.8, 56.5 (purity > 98% from HPLC).

1-(4,5-dimethoxy-2-nitrophenyl)ethan-1-ol (1b) ²⁹: Yellow solid (0.23 g, 94%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 2.1 Hz, 1H), 7.33 – 7.31 (m, 1H), 5.58 (qd, *J* = 6.2, 1.9 Hz, 1H), 4.02 (d, *J* = 1.6 Hz, 3H), 3.96 (d, *J* = 1.6 Hz, 3H), 1.57 (dd, *J* = 6.3, 2.0 Hz, 3H). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 153.7, 147.7, 139.6, 136.8, 108.5, 107.6, 65.7, 56.4, 24.3 (purity > 98% from HPLC).

S-4,5-dimethoxy-2-nitrobenzyl ethanethioate (2a): PBr₃ (1.39 g, 0.48 mL 5.15 mmol) in DCM was added dropwise to the solution of compound **1a** (1 g, 4.7 mmol) in DCM (30 mL) under an N₂ atmosphere with external cooling. After stirring 1 h at room temperature the reaction mixture was poured into H₂O (50 mL) and was neutralized with a 2 N aqueous NaOH solution (100 mL). The organic phase was then separated, and the aqueous phase was rinsed twice with DCM (50 mL). The solution was then dried over Na₂SO₄ and the solvent was removed under vacuum. The residue was purified over silica gel column (10% EtOAc: hexane) (1.03 g, 80%) as a yellow solid. To the solution of brominated compound (1 g, 3.62 mmol) in ACN (40 mL), was added potassium thioacetate (0.496 g, 4.34 mmol) and the reaction mixture was concentrated by removing the ACN under reduced pressure. The residue was purified over silica gel column (10% EtOAc: hexane) to afford compound **2a** (0.90 g, 92%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (s, 1H), 7.09 (s, 1H), 4.44 (s, 18

2H), 4.01 (s, 3H), 3.96 (s, 3H), 2.35 (s, 2H). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 195.9, 153.3, 148.2, 140.1, 128.9, 114.0, 108.24, 56.5, 56.4, 31.8, 30.2. HRMS (ESI⁺) calcd for C₁₁H₁₃NO₅S [M + H]⁺, 272.0587; found: 272.0594.

S-(1-(4,5-dimethoxy-2-nitrophenyl)ethyl) ethanethioate (2b): PBr₃ (1.31 g, 0.45 mL, 5.15 mmol) in DCM was added dropwise to the solution of compound 1b (1 g, 4.4 mmol) in DCM (30 mL) under a N₂ atmosphere with external cooling. After stirring 1 h at room temperature the reaction mixture was poured into H_2O (50 mL) and was neutralized with a 2 N aqueous NaOH solution (100 mL). The organic phase was then separated, and the aqueous phase was rinsed twice with DCM (50 mL). The solution was then dried over Na₂SO₄ and the solvent was removed under vacuum. The residue was purified over silica gel column (5% EtOAc: hexane) to afford compound (0.99 g, 78%) as a dirty yellow solid. To this solution of brominated compound (0.9 g, 3.44 mmol) in ACN (40 mL), was added potassium thioacetate (0.43 g, 4.12 mmol) and the reaction mixture was stirred for 3 h. White solid formed during the reaction was filtered away and the filtrate was concentrated by removing the ACN under reduced pressure. The residue was purified over silica gel column (10 % EtOAc: hexane) to afford compound **3b** (0.81 g, 92%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 6.95 (s, 1H), 5.35 (q, J = 6.8 Hz, 1H), 3.96 (s, 3H), 3.91 (s, 3H), 2.25 (s, 2H), 1.68 (d, J = 8Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.4, 152.9, 147.7, 141.3, 132.7, 110.8, 107.62, 56.4, 56.3, 38.8, 30.3, 21.7. HRMS (ESI⁺) calcd for $C_{12}H_{19}N_2O_5S$ [M + NH₄]⁺, 303.1009; found:303.1009.

(4,5-dimethoxy-2-nitrophenyl)methanethiol (3a): The methanolic solution of compound 3a (0.9 g, 3.32 mmol) was refluxed in presence of 2 N HCl. After 3 h the

solvent was evaporated under reduced pressure and neutralized by NaHCO₃. Then the aqueous layer was extracted by EtOAc (3 × 15 mL). The combined organic layer was then dried over Na₂SO₄ and the solvent was removed under vacuum. The residue was purified over silica gel column (10% EtOAc: hexane) to afford compound **5a** as a yellow solid (0.67 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 6.86 (s, 1H), 4.02 (d, *J* = 8.5 Hz, 2H), 3.99 (s, 3H), 3.94 (s, 3H), 2.21 (t, *J* = 8.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 153.5, 148.1, 140.1, 131.9, 112.8, 108.6, 56.4, 26.9. HRMS (ESI⁺) calcd for C₉H₁₅N₂O₄S [M + NH₄]⁺, 247.0747; found: 247.0741.

1-(4,5-dimethoxy-2-nitrophenyl)ethanethiol (3b): The methanolic solution of compound **3b** (0.8 g, 2.80 mmol) was refluxed in presence of 2 N HCl. After 3 h the solvent was evaporated under reduced pressure and neutralized by NaHCO₃. Then the aqueous layer was extracted by EtOAc (3×15 mL). The combined organic layer was then dried over Na₂SO₄ and the solvent was removed under vacuum. The residue was purified over silica gel column (10% EtOAc: hexane) to afford compound **5b** as a yellow solid (0.60 g, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.18 (s, 1H), 5.02 (p, *J* = 6.4 Hz, 1H), 3.98 (s, 3H), 3.91 (s, 3H), 2.23 (d, *J* = 5.1 Hz, 1H), 1.66 (d, *J* = 6.9 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 153.3, 147.6, 140.1, 135.7, 109.5, 107.5, 56.4, 32.9, 25.4. HRMS (ESI⁺) calcd for C₁₀H₁₇N₂O₄S [M + NH₄]⁺, 261.0904; found: 261.0902.

2-acetamido-3-(pyridin-2-yldisulfanyl)propanoic acid (4): According to a previously reported procedure,²⁵ a round bottom flask was charged with *N*-acetyl-*L*-cysteine (2.0 g, 12.3 mmol), H_2O (17 mL), and a stirbar to give a clear solution. A solution of 2,2'-dipyridyl disulfide (5.40 g, 24.5 mmol) in MeOH (17 mL) was added in one portion resulting in a clear, yellow solution. The

reaction mixture was stirred at rt (16 h). Reaction progress was monitored by TLC (EtOAc), showing complete consumption of starting material. The resulting yellow solution was concentrated via rotary evaporation. The crude product, obtained as a yellow solid, was then purified by silica gel chromatography eluting with 5 % to 15 % MeOH in DCM, yielding a light yellow powder (2.30 g, 69% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 8.41 (dd, J = 22.5, 5.9 Hz, 2H), 7.83 – 7.72 (m, 2H), 7.26 – 7.21 (m, 1H), 4.46 (d, J = 8.7 Hz, 1H), 3.19 (dd, J = 13.7, 3.9 Hz, 1H), 3.06 (dd, J = 13.5, 9.1 Hz, 1H), 1.84 (s, 3H). ¹³C{¹H} NMR (101 MHz, DMSO) δ 172.3, 169.9, 159.2, 150.1, 138.27, 121.7, 119.8, 51.8, 22.8. NMR spectral data are in accordance with those previously reported.²⁵

3-(2-(4,5-dimethoxy-2-nitrobenzyl)disulfanyl)-2-acetamidopropanoic acid (5a): To a solution of compound **4a** (0.2 g, 0.87 mmol) in methanol **NAC-pyDS (4)** (0.213 g, 0.78 mmol) was added. The reaction mixture was stirred for 2 h at rt, monitoring reaction progress with TLC (50:50; hexane: EtOAc). Once complete, the solvent of the reaction mixture was evaporated in rotary evaporator to get a crude yellow solid which was further purified by silica gel chromatography (5% methanol in DCM), yielding a yellow solid (0.26 g, 78 % yield) (purity > 99% from HPLC chromatogram). ¹H NMR (600 MHz, CDCl₃) δ 7.72 (s, 1H), 6.90 (s, 1H), 6.66 (s, 1H), 4.78 – 4.72 (m, 1H), 4.34 – 4.27 (m, 2H), 4.02 (s, 3H), 3.98 (s, 3H), 3.07 (d, *J* = 13.6 Hz, 1H), 2.95 (d, *J* = 13.4 Hz, 1H), 2.08 (d, *J* = 8.8 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 172.9, 171.3, 153.2, 148.4, 140.1, 128.0, 113.9, 108.7, 56.7, 56.4, 52.3, 41.8, 39.8, 22.9. HRMS (ESI⁺) calcd for C₁₄H₁₉N₂O₇S₂ [M+H]⁺, 391.0628, found 391.0628.

2-acetamido-3-(2-(1-(4,5-dimethoxy-2-nitrophenyl)ethyl)disulfanyl)propanoic acid (5b): To a solution of compound 4a (0.2 g, 0.82 mmol) in methanol NAC-pyDS (4) (0.201 g,

0.73 mmol) was added. The reaction mixture was stirred for 2 h at rt, monitoring reaction progress with TLC (50:50; hexane: EtOAc). Once complete, the solvent of the reaction mixture was evaporated in rotary evaporator to get a crude yellow solid which was further purified by silica gel chromatography (5% methanol in DCM), yielding regioselectively diastereomeric pair (1:1) (yellow solid, 0.25 g, 78 % yield) (purity > 99% as diastereomeric pair from HPLC chromatogram). ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 2.2 Hz, 1H), 7.06 (d, *J* = 6.6 Hz, 1H), 6.51 – 6.43 (m, 1H), 5.14 – 5.08 (m, 1H), 4.75 – 4.70 (m, 1H), 4.01 (d, *J* = 5.1 Hz, 3H), 3.97 (s, 3H), 3.04 – 2.96 (m, 2H), 2.84 (dd, *J* = 14.0, 6.3 Hz, 1H), 2.08 (dt, *J* = 6.1, 3.0 Hz, 3H), 1.71 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 171.9, 171.2, 153.2, 153.0, 148.5, 148.3, 140.2, 140.1, 128.29, 127.8, 114.0, 113.9, 108.7, 108.5, 56.7, 56.6, 56.4, 56.3, 52.1, 42.1, 41.8, 39.5, 23.0. HRMS (ESI⁺) calcd for C₁₅H₂₁N₂O₇S₂ [M+H]⁺ 405.0785, found 405.0775.

N-acetyl-S-(benzylthio)cysteine (7): To a solution of benzyl marcaptan (0.1 g, 0.80 mmol) in methanol NAC-pyDS (4) (0.196 g, 0.72 mmol) was added . The reaction mixture was stirred for 2 h at rt, monitoring reaction progress with TLC (50:50; hexane: EtOAc). Once complete, the solvent of the reaction mixture was evaporated in rotary evaporator to get a grey solid which was further purified by silica gel chromatography (2% methanol in DCM), yielding a white solid, 0.25 g, 78 % yield) (purity > 99% from HPLC chromatogram). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.89 (s, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.30–7.32 (m, 4H), 7.26 (m, 1H), 4.46 (dt, *J* = 8.1, 4.5 Hz, 1H), 3.99 – 3.91 (m, 2H), 2.97 – 2.89 (m, 1H), 2.75 (dd, *J* = 13.6, 9.3 Hz, 1H), 1.84 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 172.5, 169.8, 137.8, 129.7, 128.9, 127.7, 51.6, 42.4, 40.1, 22.9. HRMS (ESI⁺) calcd for C₁₂H₁₆NO₃S₂ [M+H]⁺ 286.0572, found 286.0574.

N-acetyl-S-((2,4-dinitrophenyl)thio)cysteine (DNB-SS-NAC, 9): NaSH (0.15g, 2.68 mmol) in water was added dropwise to an ethanolic solution of 2,4 dinitrofluorobenzene (0.5g, 2.68 mmol). The resulting solution was stirred 1 h at room temperature. After 1 h, the ethanol was evaporated in the rotary evaporator and acidified with 1 N HCl to make the pH of the solution to 6. The aqueous fraction was extracted with EtOAc (3×30 mL). The organic layers were dried over Na₂SO₄, evaporated and purified to get the pure compound (Yield: 0.318g, 60%). To the resulting yellow solid compound (0.1 g, 0.5 mmol) the methanolic solution of linker 4 (0.12 g, 0.44 mmol) was added and heated to 60°C for 1 h. After 1 h, the methanol was evaporated and purified by column chromatography to get the yellow solid (Yield: 0.16 g, 90%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.88 (s, 1H), 8.57 (d, *J* = 8.8 Hz, 1H), 8.49 (d, *J* = 8.9 Hz, 1H), 8.27 (d, *J* = 6.9 Hz, 1H), 4.41 – 4.35 (m, 1H), 3.22 (s, 1H), 3.14 (s, 1H), 1.84 (s, 3H). ¹³C{¹H} NMR (101 MHz) δ 171.9, 169.9, 145.8, 145.2, 145.0, 129.4, 128.6, 121.9, 52.2, 40.1, 22.9. HRMS (ESI⁺) calcd for C₁₁H₁₂N₃O₇S₂ [M+H]⁺ 362.0117, found 362.0111.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: NMR and HRMS spectra of all synthesized compounds, stability studied of donors, All experimental details of photolysis, qualitative and quantitative analysis, Related emission, HPLC and LC-MS spectra, Details information of biological studies, Cell viability assay (PDF)

AUTHOR INFORMATION

Corresponding Author

* ndpradeep@chem.iitkgp.ac.in

[§]These authors contributed equally.

ACKNOWLEDGMENT

We thank DST SERB (Grant No. EMR/2016/005885) for financial support. Amrita Chaudhuri is thankful to UGC-New Delhi for fellowship and Yarra Venkatesh is thankful to the Indian Institute of Technology Kharagpur for the fellowship. We are grateful to S. Bhattacharya (Physics Department, IIT Kharagpur) for helping us to perform the two-photon uncaging experiments.

REFERENCES:

 (a) Wang, R. Physiological Implications of Hydrogen Sulfide: A Whiff Exploration that Blossomed. *Physiol. Rev.* 2012, *92*, 791–896. (b) Li, L.; Rose, P.; Moore, P. K. Hydrogen Sulfide and Cell Signaling. *Annu. Rev. Pharmacol. Toxicol.* 2011, *51*, 169–187. (c) Fukuto, J. M.; Carrington, S. J.; Tantillo, D. J.; Harrison, J. G.; Ignarro, L. J.; Freeman, B. A., Chen, A.; Wink, D. A. Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and their Derived Species. *Chem. Res. Toxicol.* 2012, *25*, 769–793. (d) Yang, C.; Chen, Li.; Xu, S.; Day, J. J.; Li, X.; Xian. M. Recent Development of Hydrogen Sulfide Releasing/Stimulating Reagents and their Potential Applications in Cancer and Glycometabolic Disorders. *Frontiers in Pharmacology* 2017, *8*, 1– 16.

2. Xu, S.; Hamsath, A.; Neill, D. L.; Wang, Y.; Yang, C.; Xian, M. Strategies for the Design of Donors and Precursors of Reactive Sulfur Species. *Chem.-A Eur. J.* **2018**, DOI 10.1002/chem.201804895.

 Furne, J.; Saeed, A.; Levitt. M. D. Whole Tissue Hydrogen Sulfide Concentrations are Orders of Magnitude Lower than Presently Accepted Values. *Am J Physiol Regul Integr Comp Physiol* 2008, 295, 1479–1485.

4. Chauhan, P.; Bora, P.; Ravikumar, G.; Jos, S.; Chakrapani, H. Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide (H₂S) Donors. *Org. Lett.* **2017**, *19*, 62–65.

5. Sharma, A. K.; Nair, M.; Chauhan, P.; Gupta, K.; Saini, D. K.; Chakrapani, H. Visible-Light-Triggered Uncaging of Carbonyl Sulfide for Hydrogen Sulfide (H₂S) Release. *Org. Lett.* **2017**, *19*, 4822–4825.

6. Fukushima, N.; Ieda, N.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Suzuki, T.; Miyata, N.; Nakagawa, H. Synthesis of A Photocontrollable Hydrogen Sulfide Donor using Ketoprofenate Photocages. *Chem. Commun.* **2014**, *50*, 587–589.4825.

Zhao, Y.; Henthorn, H. A.; Pluth, M. D. Kinetic Insights into Hydrogen Sulfide (H₂S)
 Delivery from Caged-Carbonyl Sulfide (COS) Isomeric Donor Platforms. J. Am. Chem. Soc.
 2017, 139, 16365–16376.

 Venkatesh, Y.; Das, J.; Chaudhuri, A.; Karmakar, A.; Maiti, T. K.; Singh, N. D. P. Light Triggered Uncaging of Hydrogen Sulfide (H₂S) with Real-Time Monitoring. *Chem. Commun.* 2018, 54, 3106–3109.

9. Devarie-Baez, N. O.; Bagdon, P. E.; Peng, B.; Zhao, Y.; Park, C-M.; Xian, M. Light-Induced Hydrogen Sulfide Release from "caged" Gem-Dithiols *Org. Lett.* **2013**, *15*, 2786-2789.

10. Zheng, Y.; Yu, B.; Ji, K.; Pan, Z.; Chittavong, V.; Wang, B. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide. *Angew. Chem. Int. Ed.* **2016**, *55*, 4514–4518.

11. Zhao, Y.; Wang, H.; Xian, M. Cysteine-Activated Hydrogen Sulfide (H₂S) Donors. *J. Am. Chem. Soc.* **2011**, *133*, 15–17.

Kang, J.; Li, Z.; Organ, C. L.; Park, C-M.; Yang, C-T.; Pacheco, A.; Wang, D.; Lefer, D. J.;
 Xian, M. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury.
 J. Am. Chem. Soc. 2016, *138*, 6336–6339.

13. Zhao, Y.; Bolton, S. G.; Pluth, M. D. Light-Activated COS/H₂S Donation from Photocaged Thiocarbamates. *Org. Lett.* **2017**, *19*, 2278–2281.

14. (a) Powell, C. R.; Dillon, K. M.; Matson, J. B. A Review of Hydrogen Sulfide (H₂S) Donors: Chemistry and Potential Therapeutic Applications. *Biochemical Pharmacology* 2018, *149*, 110–123. (b) Ju, Y.; Fu, M.; Stokes, E.; Wu, L.; Yang, G. H₂S-Mediated Protein S-Sulfhydration: A Prediction for its Formation and Regulation. *Molecules* 2017, *22*, 1334 (1-11).

15. Paul, B.; Snyder, S. H. H₂S Signalling through Protein Sulfhydration and beyond. *Nature Reviews Molecular Cell Biology* **2012**, *13*, 499-507.

16. (a) Lau, N.; Pluth, M. D. Reactive Sulfur Species (RSS): Persulfides, Polysulfides, Potential, and Problems. *Curr. Opin. Chem. Biol.* 2018, 49, 1–8. (b) Bora, P.; Chauhan, P.; Pardeshi, K. A.; Chakrapani. H. Small Molecule Generators of Biologically Reactive Sulfur Species. *RSC Adv.* 2018, 8, 27359–27374. (c) Idaa, T.; Sawaa, T.; Iharac, H.; Tsuchiyad, Y.; Watanabed, Y.; Kumagaie, Y.; Suematsuf, M.; Motohashig, H.; Fujiia, S.; Matsunagaa, T.; Yamamotoh, M.; Onoi, K.; Devarie-Baezj, N. O.; Xianj, M.; Fukutoi, J. M.; Akaikea, T. Reactive Cysteine Persulfides and S-Polythiolation Regulate Oxidative Stress and Redox Signaling. *Proc. Natl. Acad. Sci. U.S.A.* 2014, *111*, 7606–7611.

17. Zhao, Y.; Biggs T. D.; Xian, M. Hydrogen Sulfide (H₂S) Releasing Agents: Chemistry and Biological Applications. *Chem. Commun.* **2014**, *50*, 11788–11805.

18. Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical Biology of H₂S Signaling through Persulfidation. *Chem. Rev.* **2018**, *118*, 1253-1337.

19. (a) Kang, J.; Ferrell, A. J.; Chen, W.; Wang, D.; Xian M. Cyclic Acyl Disulfides and Acyl Selenylsulfides as the Precursors for Persulfides (RSSH), Selenylsulfides (RSeSH), and Hydrogen Sulfide (H₂S). *Org. Lett.* **2018**, *20*, 852–855. (b) Khodade, V. S.; Toscano. J. P. Development of S-Substituted Thioisothioureas as Efficient Hydropersulfide Precursors. *J. Am. Chem. Soc.* **2018**, *140*, 17333–17337.

20. Artaud, I.; Galardon, E. A Persulfide Analogue of the Nitrosothiol SNAP: Formation, Characterization and Reactivity. *ChemBioChem* **2014**, *15*, 2361–2364.

21. Yuan, Z.; Zheng, Y.; Yu, B.; Wang, S.; Yang, X.; Wang, B. Esterase-Sensitive Glutathione Persulfide Donor. *Org. Lett.* **2018**, *20*, 6364-6367.

22. Yu, B.; Zheng, Y.; Yuan, Z.; Li, S.; Zhu, H.; De La Cruz, L. K.; Zhang, J.; Ji, K.; Wang, S.; Wang, B. Toward Direct Protein S-Persulfidation: A Prodrug Approach that Directly Delivers Hydrogen Persulfide. *J. Am. Chem. Soc.* **2018**, *140*, 30–33.

23. Zheng, Y.; Yu, B.; Li, Z.; Yuan, Z.; Organ, C. L.; Trivedi, R. K.; Wang, S.; Lefer, D. J.; Wang. B. An Esterase-Sensitive Prodrug Approach for Controllable Delivery of Persulfide Species. *Angew. Chem. Int. Ed.* **2017**, *56*, 11749–11753.

24. Kang, J.; Xu, S.; Radford, M. N.; Zhang, W.; Kelly, S. S.; Day, J. J.; Xian, M. O→S Relay Deprotection: A General Approach to Controllable Donors of Reactive Sulfur Species. *Angew. Chem. Int. Ed.* **2018**, *57*, 5893–5897.

25. Powell, C. R.; Dillon, K. M.; Wang, Y.; Carrazzone, R. J.; Matson, J. B. A Persulfide Donor Responsive to Reactive Oxygen Species: Insights into Reactivity and Therapeutic Potential. *Angew. Chem. Int. Ed.* **2018**, *57*, 6324–6328.

26. Klan, P.; Solomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. J. *Chem. Rev.* **2013**, *113*, 119–191.

27. (a) Behara, K. K.; Rajesh, Y.; Venkatesh, Y.; Pinninti, B. R.; Mandal, M.; Singh, N. D. P. Cascade Photocaging of Diazeniumdiolate: A Novel Strategy for One and Two Photon Triggered Uncaging with Real Time Reporting. *Chem. Commun.* **2017**, *53*, 9470–9473. (b) Venkatesh, Y.; Kiran, K. S.; Shah, S. S.; Chaudhuri, A.; Dey, S.; Singh, N. D. P. One- and two-photon responsive sulfur dioxide (SO₂) donors: A combinatorial drug delivery for improved antibiotic therapy, *Org. Biomol. Chem.*, **2019**, *17*, 2640-2645.

28. Aujard, I.; Benbrahim, C.; Gouget, M.; Ruel, O.; Baudin, J-B.; Neveu, P.; Jullien, L. *o*-Nitrobenzyl Photolabile Protecting Groups with Red-Shifted Absorption: Syntheses and Uncaging Cross-Sections for One- and Two-Photon Excitation. *Chem. Eur. J.* **2006**, *12*, 6865 – 6879.

29. Gao, C.; Luan, Z-L.; Zhang, Q.; Yang, S.; Rao, S-J.; Qu, D-H.; Tian, H. Triggering a [2] Rotaxane Molecular Shuttle by a Photochemical Bond-Cleavage Strategy. *Org. Lett.* **2017**, *19*, 1618–1621.

30. (a) Montanari, S.; Paradisi, C.; Scorrano, G. Pathways of Nitrosobenzene Reduction by Thiols in Alcoholic Media. *J. Org. Chem.* **1999**, *64*, 3422-3428. (b) Zuman, P.; Shah, B. Addition, Reduction, and Oxidation Reactions of Nitrosobenzene. *Chem. Rev.* **1994**, *94*, 1621-1641 (c) Fukushima, N.; Ieda, N.; Sasakura, K.; Nagano, T.; Hanaoka, K.; Suzuki, T.; Miyataa N.; Nakagawa, H. Synthesis of a photocontrollable hydrogen sulphide donor using ketoprofenate photocages. *Chem. Commun.* **2014**, 50, 587–589.

31. (a) Chaudhuri, A.; Venkatesh, Y.; Behara, K. K.; Singh, N. D. P. Bimane: A Visible Light Induced Fluorescent Photoremovable Protecting Group for the Single and Dual Release of Carboxylic and Amino Acids. *Org. Lett.* **2017**, *19*, 1598–1601. (b) Chaudhuri, A.; Venkatesh, Y.; Das, J.; Behara, K. K.; Mandal, S.; Maiti, T. K.; Singh, N. D. P. Squaric Acid-Coumarin-Chlorambucil: Photoresponsive Single-Component Fluorescent Organic Nanoconjugates for Self-Monitored Therapeutics, *ACS Appl. Nano Mater.* **2018**, *1*, 6312–6319. (c) Venkatesh, Y.; Rajesh, Y.; Karthik, S.; Chetan, A. C.; Mandal, M.; Jana, A.; Singh, N. D. P. Photocaging of Single and Dual (Similar or Different) Carboxylic and Amino Acids by Acetyl Carbazole and its Application as Dual Drug Delivery in Cancer Therapy. *J. Org. Chem.* **2016**, *81*, 11168–11175.

32. Furuta, T.; Wang, S. S.-H.; Dantzker, J. L.; Dore, T. M.; Bybeei, W. J.; Callaway, E. M.; Denk, W.; Tsien, R. Y. Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile Protecting Groups with Biologically Useful Cross-Sections for Two Photon Photolysis. *Proc. Natl. Acad. Sci.* **1999**, *96*, 1193–1200.

33. Bora, P.; Chauhan, P.; Manna, S.; Chakrapani, H. Esterase-Sensitive Glutathione Persulfide Donor. *Org. Lett.* **2018**, *20*, 7916–7920.