

Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry

ISSN: 1553-3174 (Print) 1553-3182 (Online) Journal homepage: http://www.tandfonline.com/loi/lsrt20

Comparison N-Cu co-doped nanotitania and N doped nanotitania in photocatalytic reduction of CO₂ under UV light

Cuiping Liu, Tao Yu, Xin Tan & Xiang Huang

To cite this article: Cuiping Liu, Tao Yu, Xin Tan & Xiang Huang (2016): Comparison N-Cu codoped nanotitania and N doped nanotitania in photocatalytic reduction of CO₂ under UV light, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, DOI: 10.1080/15533174.2015.1137053

To link to this article: http://dx.doi.org/10.1080/15533174.2015.1137053

Accepted author version posted online: 18 Aug 2016. Published online: 18 Aug 2016.

🖉 Submit your article to this journal 🗷

Article views: 1

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsrt20

Comparison N-Cu co-doped nanotitania and N doped nanotitania in photocatalytic

reduction of CO₂ under UV light

Cuiping Liu^{1,2} Tao Yu¹ Xin Tan³ Xiang Huang^{1,3,*}

¹School of Chemical Engineering and Technology, Tianjin University,

²School of Science, Tianjin Chengjian University

³School of Science, Tibet University

*Corresponding Author Email: xiang.huang@utibet.edu.cn

Abstract

Nitrogen-copper co-doped nanotitania and nitrogen doped nanotitania for CO_2 photoreduction by water in liquid phase were prepared by sol-gel method. The catalysts were characterized by XRD, HRTEM, DRS, FTIR, and XPS. N doped TiO₂ have remarkably better photocatalytic activity than N and Cu co-doped TiO₂ for the CO₂ photoreduction to acetone under ultraviolet illumination. The acetone yield of N₃/TiO₂ could reach 52.6 µmol/g·h and the acetone yield of Cu_{0.6}N₄/TiO₂ could reach 33.2µmol/g·h under UV conditions. The mechanism of CO₂ photoreduction on N doped nanotitania and N -Cu co-doped TiO₂ was proposed.

keywords

Nano-TiO₂; Nitrogen and copper codoping; Sol-gel;CO₂ photoreduction; Acetone.

¹ ACCEPTED MANUSCRIPT

1. Introduction

Global warming caused by the emission of greenhouse gases, primarily carbon dioxide (CO₂), is attracting increasing attention all over the world [1].It is highly desired to convert atmospheric CO₂ into useful substances. Previous work demonstrated that CO₂ could be photocatalytically reduced to carbon monoxide and hydrocarbons including methane, ethane, formaldehyde, methanol, and formic acid [2-5] in both liquid phase and gas phase. Most of the investigations of photoreduction of CO₂ have focused on TiO₂.From the view point of practical application, TiO₂ is reasonably cheap, photo-stable, and non-toxic, making it a perfect candidate for photocatalytic processes. Yet carbon dioxide conversion rates still low despite using ultraviolet illumination for band gap excitations. [6].

Numerous studies have been reported on how to increase the photoreduction activity of TiO_2 using metal-doped modified TiO_2 [7-9]. For example, the optimal Cu-loaded titania was a highly efficient, photocatalyst for CO₂ reduction since copper are an effective electron trapper [10-11]. Besides, nonmetal-doped TiO_2 have been used as visible light-responsive photocatalysts for CO₂ photoreduction. Significant enhancement of CO₂ photoreduction to CO have been reported for I-doped TiO_2 due to the extension of TiO_2 absorption spectra to the visible light region by I doping [12].There have been literature reports that suggest that co-doping of metal and nonmetal species on TiO_2 leads to enhanced photoreduction activity as compared with single N-doped TiO_2 .For example, Ni and N co-doped TiO_2 for enhanced CO₂ photoreduction as compared to N/TiO₂

² ACCEPTED MANUSCRIPT

because of a smaller crystal size and higher surface area[13]. The V-N co-doped TiO2 nanotube arrays co-doped TiO2 photocatalysts show remarkably enhanced photocatalytic activity for the CO2 photoreduction to methane under ultraviolet illumination[14].

Among the current research of Cu and N doping into anatase TiO_2 , the photocatalytic activity of some Cu-N co-doped TiO_2 was considerably greater than that of the sample N doped TiO_2 and commercially available TiO_2 which is attributed to the synergistic effect of Cu-N co-doped[15-16].

But in Kuvarega's particle, the Cu-N co-doped TiO₂ showed least photoactivity than N doped TiO₂[17] due to the lowest adsorption capacity of Cu-N co-doped TiO₂. In other words, the photocatalytic activity of N and Cu co-doped TiO₂ in photocatalytic was not absolutely better than N doped TiO₂. At present, Cu-N co-modified TiO₂ for photocatalytic CO₂ reduction has been reported only once in the literature. Varghese et al [18] synthesized N-doped TiO₂ nanotube arrays sputtered with Cu nanoparticles as a co-catalyst and tested the catalytic activity for CO₂ reduction with water under sunlight. The raw materials used in the work of Varghese were expensive and the fabrication process was relatively complicated. In this work, we used a much simpler method and cheaper raw materials to synthesize Cu and N co-modified TiO₂ nanoparticles. The catalytic activities for the photocatalytic reduction of CO₂ with water under ultraviolet illumination and the mechanism of photocatalytic reduction CO₂ on Cu-N co-doped

³ ACCEPTED MANUSCRIPT

 TiO_2 catalyst. In order to comparion, photocatalytic reduction CO_2 on N doped TiO_2 were proposed.

2. Experiment

2.1 Catalyst preparation

The synthesis of N and Cu co-doped TiO₂ (N-Cu/TiO₂) nanoparticles involved the following steps:First, tetrabutyl titanate and ethanol were mixed and stirred for 30 min at room temperature(solution A).A appropriate amount of acetic acid, copper nitrate(Cu(NO₃)₂·6H₂O),urea, H₂O, dissolved in ethanol(solution B). Then, solution B was dropped into solution A and kept the solution stirring for 2 h. Thereafter, the solution was aged until the gel formed. The gel was dried at 80 °C and calcined in a muffle at 500 °C for 2h. Then, the N and Cu co-doped TiO₂ samples can be obtained. The doping amount of N varied from 1 to 6 wt%(N:TiO₂ = 1wt%,2wt%,3wt%,4wt%, 5wt%,6wt% respectively)and the amount of Cu²⁺ was 0.6wt%(Cu:TiO₂ = 0.6wt%). (For short, hereafter, Cu_{0.6}N_X/TiO₂ denotes the sample containing X wt% of N and 0.6wt% of Cu²⁺).

2.2 Characterization

The phase compositions of samples were identified by X-Ray Powder Diffraction (Cu K α radiation). The UV-vis diffuse reflectance spectra (DRS) were recorded at room temperature on a Shimadzu UV-3600 UV-vis spectrometer with barium sulfate as the reference sample. FT-IR spectra of the samples were collected on a Nicolet 6700 FT-IR spectrophotometer at room

⁴ ACCEPTED MANUSCRIPT

temperature by KBr method. Morphologies of samples were characterized using a high resolution transmission electron microscope (JEM-2100F). The XPS measurement was performed using a PHI1600 Analyzer.

2.3 Photocatalytic reduction of CO₂

The photocatalytic reaction system was illuminated by a 365W Hg lamp in the center, and it was shielded by a black box during the reaction to prevent interference from outside light. The catalyst was suspended in 40 ml of 0.2mol/L NaOH aqueous solution. Ultra pure CO₂ was bubbled through the reactor for at least 30 min to eliminate the dissolved oxygen and saturate the solution. The catalyst suspended solution was agitated by a magnetic stirrer. A needle-type probe was inserted into the reactor to withdraw a small liquid sample, and after the catalyst powder were filtered, the liquid sample was analyzed using gas chromatography (Agilent 6890N-05973). Analysis indicated that acetone was the major hydrocarbon. Blank reactions were also conducted, one without catalyst, and one without illumination; no hydrocarbon was detected in the blank tests. Then the N and Cu co-doped TiO₂ (Cu_{0.6}N₁/TiO₂,Cu_{0.6}N₂/TiO₂,Cu_{0.6}N₃/TiO₂,Cu_{0.6}N₄/TiO₂, Cu_{0.6}N₅/TiO₂,Cu_{0.6}N₆/TiO₂) samples turned on to start the reaction. For the sake of comparison, pure $Cu_{0.6}TiO_2$ and N doped TiO_2 (N₁/TiO₂, N₂/TiO₂, N₃/TiO₂, N₄/TiO₂, N₅/TiO₂, N_6/TiO_2) samples, also prepared by the similar procedure.

3. Results and Discussion

3.1 Characterization

⁵ ACCEPTED MANUSCRIPT

3.1.1 XRD

Characteristics of samples the XRD of the catalysts in Fig.1 shows all samples were ascribed to pure anatase TiO2. The grain sizes of the catalyst were calculated from the Scherrer equation. The particle sizes of sol-gel derived N-Cu co-doped TiO₂ and N doped TiO₂ are uniform and the diameter is between 10-15nm, The particle sizes of Cu_{0.6}N₂/TiO₂, Cu_{0.6}N₄/TiO₂, Cu_{0.6}N₆/TiO₂ are 15.2nm, 9.6nm, 13.7 nm respectively; N₂/TiO₂, N₄/TiO₂, N₆/TiO₂ are 11.0 nm, 9.1nm, 12.6 nm respectively. From above the result, the particle sizes of Cu-N co-doped TiO₂ are larger than N doped TiO₂.A detail analysis of XRD patterns was performed by enlarging the anatase (101) plane of the samples as shown in the inset of Figure 1.(a) and (b), Figure 1.(a) indicated that the peak position of the Cu-N co-doped TiO₂ samples gradually shifted toward a higher diffraction angle. It suggested that Cu, N might be incorporated into the crystal lattice of anatase[14]. Figure 1.(b) indicated that the peak position of the N doped TiO₂ samples gradually shifted toward a higher diffraction angle too. However, peak position change of N_4/TiO_2 was not obvious, indicating that the doped N might be excessive then inhibit the incorporation of N into crystal lattice.

3.1.2 FT-IR

Fig.2 shows the FTIR spectrum of TiO₂, Cu_{0.6}/TiO₂, Nx/TiO₂, and Cu_{0.6}N_x/TiO₂. All of the samples show similar FT-IR spectra, indicating the structure of TiO₂ did not change after copper and nitrogen-doping. The absorption bands at about 3406 cm⁻¹ and 1663 cm⁻¹ are assigned to the surface adsorbed water and hydroxyl groups. The absorption band corresponds to Ti-O-N was not

⁶ ACCEPTED MANUSCRIPT

observed for the nitrogen-doped samples, probably because the amount of doped N was very small. The peak at 500 cm⁻¹ is due to stretching vibration of Ti-O[19,20]. The peak at 1380 cm⁻¹ was ascribed to the symmetric stretching vibration of bidentate carbonate b- $CO_3^{2^-}$ bonded with Ti⁴⁺-O²⁻[21].The peaks were seen at 2330 cm⁻¹ and 2360 cm⁻¹, which can be assigned to the stretching vibration of C-O, maybe due to the oxidation of existing C element when the products exposed to air.[22]

3.1.3 TEM

The morphologies of the particles measured by transmission electron microscopy (TEM) are given in Figure.3.(a)(b)(c).Figure.3.(a) shows the $Cu_{0.6}N_4/TiO_2$ particles with uniform spheroidal shape, and an average agglomerate size are about 9-12nm for $Cu_{0.6}N_4/TiO_2$. The difference of the particle size by TEM with that estimated by XRD results is attributed to the particle agglomeration. The diffraction pattern of the $Cu_{0.6}N_4/TiO_2$ shown in Figure.3.(b) indicates the presence of TiO₂ anatase with the typical (101) direction [23]. Fig.3.(c) shows the EDX spectrum of $Cu_{0.6}N_4/TiO_2$, which indicates the presence of Cu and N in the nanocomposite.

3.1.4 Optical property

Fig.4.(a) displays the UV-vis diffuse reflectance spectra of serial copper and nitrogen co-doped TiO₂.The Cu_{0.6}N₄/TiO₂ and Cu_{0.6}N₂/TiO₂ shows absorption in the UV region, However Cu_{0.6}N₆-TiO₂ shows absorption in the visible region. Fig.4.(b) presents the spectra of nitrogen doped TiO₂ and non-doped TiO₂ samples. The N₄/TiO₂ and N₂/TiO₂ shows absorption in the UV

ACCEPTED MANUSCRIPT

region. However, N₆/TiO₂ shows absorption in the visible region. Kubelka-Munk function was used to estimate the band-gap energy of all samples [24]. The calculated results of band gap energies for the Cu_{0.6}-TiO₂, Cu_{0.6}N₂-TiO₂, Cu_{0.6}N₄-TiO₂ and Cu_{0.6}N₆-TiO₂ are 2.76eV, 2.98eV, 3.02eV and 2.86eV ; TiO₂, N₂-TiO₂, N₄-TiO₂ and N₆-TiO₂ are 3.03eV, 3.1eV, 3.06eV and 2.95 eV respectively. It shows that the Cu-N co-doped TiO2 have a narrower band gap than that of N doped TiO2 samples. And with the increase of N doping amount, an obvious red shift of the N-Cu/TiO₂ and N/TiO₂.The N₆/TiO₂ and Cu_{0.6}N₆/TiO₂ absorption in the visible-light range was related to impurity energy levels of N doping in the gap[25]-[26]. The reason of Cu_{0.6}N₂-TiO₂, Cu_{0.6}N₄/TiO₂, N₂/TiO₂ and N₄/TiO₂ absorption in the visible amount of N. *3.1.5 XPS*

To explore the states of the copper and nitrogen doped species, the samples were subjected to X-ray photoelectron spectroscopy (XPS) analysis. Fig.5.(a) shows the XPS survey spectrum of the representative $Cu_{0.6}N_4/TiO_2$ sample and TiO₂. Obviously, Ti, O, N and C elements exist at the surface of the sample. Fig. 5.(b) depicts the N 1s XPS spectra of $Cu_{0.6}N_4/TiO_2$, showing the peaks at the binding energy positions of ca.395-405 eV. After background subtraction and curve fitting, the N1s peak could be decomposed to one component peaks centered at ca.400.23. These peak were attributed to the signals of the molecularly chemisorbed nitrogen species (N₂) or nitroxide species (e.g., NO and NO₂) [27].The peak related to the signal of Ti-N bonding (at ca.

[®] ACCEPTED MANUSCRIPT

396--397eV) was not observed [28]. There were approximately 0.7% of lattice O atoms substituted by N atoms for the $Cu_{0.6}N_4/TiO_2$ sample.

3.2 Activity evaluation

3.2.1 The effect of N in photoreduction of CO_2

The aqueous phase was analysed for the reduction products of CO_2 . Photoreduction of products were determined by gas chromatography on a Hp-innowax column using a flame ionization detector. During the research acetone is the only one hydrocarbon product to be detected in the aqueous phase over all the samples.

From Fig.6, one can see that the unloaded TiO_2 sample shows poor activity and there was trace amount of acetone detected. The loading of Cu^{2+} and N generally promoted the formation of acetone. The optimum loading amounts for N is 4 wt%. The acetone yield is two times that achieved over the unloaded TiO_2 sample. Fig.7 shows the loading of N sample promoted the formation of acetone, too. The optimum loading amounts for N is 3 wt%; The acetone yield is three times that achieved over the unloaded TiO_2 sample. N doping can greatly enhance the activity of light absorption. But when the doping amount of N is excess, N species may be piled together on the crystal surface of TiO_2 .

The acetone yield of N₃/TiO₂ could reach 52.6 μ mol/g·h and the acetone yield of Cu_{0.6}N₄/TiO₂ could reach 33.2 μ mol/g·h under UV conditions($\lambda = 365$ nm). In this article, N doped TiO₂ have better property than Cu-N co-doped TiO₂ on photoreduction of CO₂, the one reason is maybe the

ACCEPTED MANUSCRIPT

particle sizes of N-doped TiO₂ smaller than Cu-N co-doped TiO₂ on the basis of XRD result; the other reason is the band gap of N doped TiO₂ (N_2/TiO_2 -3.1eV; N_4/TiO_2 -3.06eV) are little higher than Cu-N co-doped TiO₂ (Cu_{0.6} N_2/TiO_2 -2.98eV ; Cu_{0.6} N_4/TiO_2 -3.02eV), meaning the better absorption of ultraviolet light.

3.3 Mechanism of photoreduction of CO₂

In liquid system of photoreduction of CO₂, CH₃OH, HCOOH often detected as photoreduction production. At present, acetone as photoreduction product is scarce. $TiO_2/Pd/Al_2O_3$ system is quite noteworthy in relation to other semiconductor based systems $(TiO_2/Pd/SiO_2,etc)$ which generate abroad distribution of C₁--C₃ product (CH₃OH, C₂H₅OH, C₃H₆O),and the C₃H₆O yield notebalely higher than the yield of CH₃OH and C₂H₅OH[29].C₃H₆O may be producted by CH₃OH and C₂H₅OH.Other based sample of derived from the urea graphitic carbon nitride (u-g-C₃N₄) result in the formation of a mixture containing CH₃OH and C₂H₅OH,too[30]. Cu-N co-doped TiO₂ and N doped TiO₂ regard as the based sample due to the N doping, so generate C₃ product(C₃H₆O).

Therefore, we propose the following scheme. When illuminated by UV light, photo generated electron and holes, photon-generated electrons(e⁻) and holes (h⁺) are created on the surface of the TiO₂ catalysts(Eq.(1)). The holes first react with water adsorbed on the catalyst, producing oxygen and H⁺ (Eq.(2)). The interaction of H⁺ ions with the excited electrons leads to the formation of \cdot H radicals (Eq. (3)). At the same time, \cdot CO₂ radicals are formed by CO₂(Eq.(4)). H radicals react with \cdot CO₂ radicals leading to formation methyl alcohol and formaldehyde[30](Eq.(5))

and Eq.(6)). Then the \cdot CH₃ and H- \cdot C(OH) radicals are formed from methyl alcohol and formaldehyde respectively(Eq.(7) and Eq.(8)) [29]. The H- \cdot C(OH) radicals fixation via \cdot CH₃ radicals lead to form ethyl alcohol(Eq. (9)). So methyl alcohol and ethyl alcohol possiblely produce acetone(Eq. (10)).

$\text{TiO}_2 \longrightarrow e^- + h^+$	(1)
$4h^+ + 2H_2O \longrightarrow O_2 + 4H^+$	(2)
$\mathrm{H}^{+} + \mathrm{e}^{-} \longrightarrow \mathrm{H}$	(3)
$CO_2 + e^- \longrightarrow CO_2^-$	(4)
$\cdot \mathrm{CO}_{2}^{-} + 6 \cdot \mathrm{H} \longrightarrow \mathrm{CH}_{3}\mathrm{OH} + 2\mathrm{H}_{2}\mathrm{O}$	(5)
$\cdot \mathrm{CO}_2^- + 4 \cdot \mathrm{H} \longrightarrow \mathrm{HCOH} + \mathrm{H}_2\mathrm{O}$	(6)
$CH_3OH + \cdot H \longrightarrow \cdot CH_3 + H_2O$	(7)
$HCOH + \cdot H \longrightarrow H \cdot C(OH) - H$	(8)
$\cdot CH_3 + H - \cdot C(OH) - H \longrightarrow C_2H_5OH$	(9)
$CH_3OH + C_2H_5OH \longrightarrow CH_3COCH_3 + 2H_2O$	(10)
4. Conclusion	

In this study, Cu-N co-doped TiO₂ and N doped TiO₂ photocatalysts were prepared by sol-gel method for CO₂ photoreduction by water in liquid phase. All of the TiO₂ samples were crystallized basically in anatase phase. The TEM image revealed that the Cu_{0.6}N₄/TiO₂ were uniform spheroidal shape with agglomerate size of 9-12nm. The Cu_{0.6}N₄/TiO₂ and N₃/TiO₂ catalyst showed the maximum activity in photoreduction of CO₂. When the N amount was 2wt% and 4wt%, the N doped and Cu-N co-doped TiO₂ showed absorption in the UV region, However, when the N amount was 6wt% the N doped and Cu-N co-doped TiO₂ had good visible light absorption. XPS analysis indicated that the doped nitrogen was in the state of molecularly chemisorbed nitrogen. Acetone is the only hydrocarbon product in CO₂ photoreduction over the TiO₂ samples.

ACCEPTED MANUSCRIPT

3wt%. However, the acetone yield of Cu-N co-doped TiO₂ was lower than that of N doped TiO₂ due to the bigger particle size and narrower band gap.

Acknowledge

This work was supported by the National Natural Science Foundation of China (21406164, 21466035), the National Key Basic Research and Development Program of China (973 program, No. 2014CB239300, 2012CB720100), the Natural Science Foundation of Tianjin (No.13JCQNJC05700), Research Fund for the Doctoral Program of Higher Education of China(No.20130032120019)

¹² ACCEPTED MANUSCRIPT

Reference

- [1] C.M. White, B.R. Strazisar, E.J. Granite, Separation and capture of CO₂ from large stationary sources and sequestration in geological formations coal beds and deep saline aquifers, Journal of Air & Waste Management Association. 53 (2003) 645-715.
- [2]M. Anpo,H. Yamashita,Y. Ichihashi, S. Ehara, Photocatalytic reduction of CO₂ with H₂O on various titanium oxide catalysts, Journal of Electroanalytical Chemistry.396(1995) 21-26.
- [3]M.Anpo, H.Yamashita, K.Ikeue, Y.Fujii, S.G.Zhang, Photocatalytic reduction of CO₂ with H₂O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catalysis Today. 44 (1998) 327-332.
- [4]Y.Kohno, H.Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO₂, Journal of photochemistry and Photobiology A. 126 (1999) 117-123.
- [5]Y. Kohno, T. Tanaka, T. Funabiki, S. Yoshida, Photoreduction of CO₂ with H₂ over ZrO₂. A study on interaction of hydrogen with photoexcited CO₂, Physical Chemistry Chemical Physics. 2 (2000) 2635-2639.
- [6]Xiukai Li, Zongjin Zhuang, Wei Li, Huiqi. Pan, Photocatalytic reduction of CO₂ over noble metal loaded and nitrogen-doped mesoporous TiO₂, Applied Catalysis A: General.429-430 (2012) 31- 38.

¹³ ACCEPTED MANUSCRIPT

- [7]I.H. Tseng, J.C.S. Wu, HY Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO₂ in CO₂ photoreduction, Journal of Catalysis. 221 (2004) 432–440.
- [8]Kocí K, Obalová L, Matijová L, Effect of TiO₂ particle size on the photocatalytic reduction of CO₂, Applied Catalysis B: Environmental.89(2009)494-502.
- [9] P.L. Richardson, Marisa L.N, Perdigoto, W. Wang, Manganese-and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol, Applied Catalysis B: Environmental. 126 (2012) 200-207.
- [10]I.H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO₂ using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental. 37(2002) 37-48.
- [11]I.H. Tseng, Jeffrey C.-S. Wu, Chemical states of metal-loaded titania in the photoreduction of CO₂, Catalysis Today. 97 (2004) 113-119.
- [12]Zhang Q, Li Y, Ackerman EA, Gajdardziska-Josifovska M, Li H, Visible light responsive iodine-doped TiO₂ for photocatalytic reduction of CO₂ to fuels, Applied Catalysis A General.400(2011)195-202.
- [13]Jun Fan, Enzhou Liu, Lei Tian, Synergistic Effect of N and Ni²⁺on nanotitania in photocatalytic Reduction of CO₂, Journal of Environmental Engineering. 137(2011)171-176.
- [14]Dandan Lu, Min Zhang, Zhihua Zhang, Self-organized vanadium and nitrogen co-doped titaniananotube arrays with enhanced photocatalytic reduction of CO₂ into CH₄, Nanoscale Research letter .9(2014)272.

¹⁴ ACCEPTED MANUSCRIPT

- [15]Kaixi Song, Jiahong Zhou, Jianchun Bao, Photocatalytic Activity of (Copper, Nitrogen)
 co-doped Titanium Dioxide Nanoparticles, Journal of the American Ceramic Society.91[4]
 (2008) 1369-1371.
- [16]Chan-Soo Kim, Jung-Woo Shin, Young-Hyuck Cho, Synthesis and characterization of Cu/N doped mesoporous TiO₂ visible light photocatalysts, Applied Catalysis A: General. 455 (2013) 211-218.
- [17]Alex T. Kuvarega, RuiW. M. Krause, Bhekie B. Mamba, Comparison between base metals and platinum group metals in nitrogen, M Codoped TiO₂ (M = Fe, Cu, Pd, Os) for
 Photocatalytic Removal of an Organic Dye in Water, Journal of Nanomaterials.2014(2014)
- [18] Oomman K. Varghese, Maggie Paulose, Thomas J. LaTempa, Craig A. Grimes, High-Rate Solar Photocatalytic Conversion of CO₂ and Water Vapor to Hydrocarbon Fuels, Nano Letters. 9(2009)731-737.
- [19]S. Xu, W. Shangguan, J. Yuan, M. Chen, J. Shi, Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO₂ supported on nickel ferrite, Applied Catalysis.
 B: Environmental. 71 (2007)177-184.
- [20]G.S. Shao, F.Y. Wang, T.Z. Ren, Y. Liu, Hierarchical mesoporous phosphorus and nitrogen doped titania materials: Synthesis, characterization and visible-light photocatalytic activity, Applied Catalysis B: Environmental. 92 (2009) 61-67.

¹⁵ ACCEPTED MANUSCRIPT

- [21]L, Liu, C, Zhao, Y Li, Spontaneous dissociation of CO₂ to CO on defective surface of Cu(I)/TiO₂ Nanoparticles at Room Temperature, Journal of Physical Chemistry C.116 (2012) 7904-7912.
- [22]Guidong Yang, Ting Wang, Bolun Yang, Enhanced visible-light activity of F-N co-doped TiO₂ nanocrystals via nonmetal impurity, Ti³⁺ ions and oxygen vacancies, Applied Surface Science.287 (2013) 135-142.
- [23]Y. Gao, S.A. Elder, Shape control of nanostructured TiO₂ using a Schiff base ligand via sol-gel hydrothermal method, Journal of Sol-Gel Science Technology. 69 (2014)544-552.
- [24] L.K"orösi, I. Dékány, Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide, Colloids Surface A: General Physicochemical and Engineering Aspects.280 (2006) 146-154.
- [25]M.M. Joshi, N.K. Labhsetwar, P.A. Mangrulkar, S.N. Tijare, S.P. Kamble, S.S. Rayalu, Visible light induced photoreduction of methyl orange by N-doped mesoporous titania, Applied. Catalysis. A Genera.357 (2009) 26-33.
- [26]R.Asahi, T.Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science .293 (2001) 269-271.
- [27]Z. Wang, W. Cai, X. Hong, X. Zhao, F. Xu, C. Cai, Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO₂ suspensions with various light sources, Applied Catalysis. B: Environmental. 57 (2005)223-231.

¹⁶ ACCEPTED MANUSCRIPT

- [28]J. Yuan, M. Chen, J. Shi, W. Shang guan, Preparations and photocatalytic hydrogen evolution of N-doped TiO₂ from urea and titanium tetrachloride, International Journal of Hydrogen Energy.31 (2006)1326-1331.
- [29]M. Subrahmanyam, S. Kaneco. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C₁–C₃ selectivity, Applied Catalysis B: Environmental. 23 (1999) 169-174.
- [30]Tianyou Peng, Xiaohu Zhang, Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic of reduction CO₂ under visible light, Catalysis Science & Technology. 3 (2013) 1253-1260.

¹⁷ ACCEPTED MANUSCRIPT

Fig.1. XRD pattern of (a) Cu and N co-doped $TiO_2 - (1)TiO_2 (2)Cu_{0.6}/TiO_2 (3)Cu_{0.6}N_2/TiO_2 (4)Cu_{0.6}N_4/TiO_2 (5)Cu_{0.6}N_6/TiO_2 (b) N doped <math>TiO_2 - (1)TiO_2 (2)N_2/TiO_2 (3)N_4/TiO_2 (4) N_6/TiO_2 (5)Cu_{0.6}N_6/TiO_2 (5)Cu$

¹⁸ ACCEPTED MANUSCRIPT

Fig.2. FTIR pattern of (a) Cu and N co-doped TiO₂ (b) N doped TiO₂

¹⁹ ACCEPTED MANUSCRIPT

Fig.3. (a) TEM of $Cu_{0.6}N_4/TiO_2$ (b) HRTEM image of $Cu_{0.6}N_4/TiO_2$ with labeled lattice spacings

and surface facet for anatase (101) (c) EDX of $Cu_{0.6}N_4/TiO_2$

²⁰ ACCEPTED MANUSCRIPT

Fig.4. UV-vis of (a) Cu and N co-doped TiO₂ (b) N-doped TiO₂

²¹ ACCEPTED MANUSCRIPT

Fig.5. XPS spectra of $Cu_{0.6}N_4/TiO_2$ and TiO_2 (a) Survey spectrum and (b) peak fitting of N 1s spectrum of $Cu_{0.6}N_4/TiO_2$.

²² ACCEPTED MANUSCRIPT

Fig.6. Effect of N doping amount on acetone yield of Cu-N co-doped TiO₂

²³ ACCEPTED MANUSCRIPT

Fig.7. Effect of N doping amount on acetone yield of N doped TiO₂

²⁴ ACCEPTED MANUSCRIPT